On the spectrum of a class of distance-transitive graphs

Seyed Morteza Mirafzal, Ali Zafari


Let $\Gamma=Cay(\mathbb{Z}_n, S_k)$ be the Cayley graph on the cyclic additive group $\mathbb{Z}_n$ $(n\geq 4),$  where  $S_1=\{1, n-1\}$, \dots , $S_k=S_ {k-1}\cup\{k, n-k\}$ are the inverse-closed subsets of $\mathbb{Z}_n-\{0\}$ for any $k\in \mathbb{N}$, $1\leq k\leq [\frac{n}{2}]-1$. In this paper,  we will show that $\chi(\Gamma) = \omega(\Gamma)=k+1$ if and only if $k+1|n$. Also, we will show that if $n$ is an even integer and $k=\frac{n}{2}-1$ then $Aut(\Gamma)\cong\mathbb{Z}_2 wr_{I} {Sym}(k+1)$ where $I=\{1, \dots , k+1\}$ and in this case, we show that $\Gamma$ is an  integral graph.


Cayley graph, distance-transitive, wreath product

Full Text:


DOI: http://dx.doi.org/10.5614/ejgta.2017.5.1.7


  • There are currently no refbacks.

ISSN: 2338-2287

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View EJGTA Stats