Local edge antimagic chromatic number of comb products involving path graph

Ivana Joice Chandra, Denny Riama Silaban

Abstract


Let G = (V, E) be a graph with n vertices and no isolated vertices. A local edge antimagic labeling of G is a bijection f : V(G)→{1, 2, …, n} such that the weights of any two adjacent edges in G are distinct, where the weight of an edge in G is defined as the sum of the labels of its end vertices. Such a labeling induces a proper edge coloring of G, with edge weights serving as the colors. The local edge antimagic chromatic number of G, denoted χlea(G), is the minimum number of colors used across all such labelings. In this paper, we investigate the local edge antimagic chromatic number of comb product graphs, focusing on the case where a path graph is combined with copies of other graphs—specifically paths, cycles, and ladders. The comb product of G and H, with respect to an assigned vertex, is constructed by taking one copy of G and |V(G)| copies of H and identifying the assigned vertex from the i-th copy of H to the i-th vertex of G.

Keywords


comb product; cycle; ladder; local edge antimagic chromatic number; local edge antimagic labeling; path

Full Text:

PDF

DOI: http://dx.doi.org/10.5614/ejgta.2025.13.1.12

References

L. Accardi, A.B. Ghorbal, and N. Obata, Monotone independence, comb graphs and Bose-Einstein condensation, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 7 (2004), 419–435.

I.H. Agustin, M. Hasan, Dafik, R. Alfarisi, and R.M. Prihandini, Local edge antimagic coloring of graphs, Far East Journal of Mathematical Sciences, 102 (2017), 1925–1941.

I.H. Agustin, M. Hasan, Dafik, R. Alfarisi, A.I. Kristiana, and R.M. Prihandini, Local edge antimagic coloring of comb product of graphs, J. Phys.: Conf. Ser., 1008 (2018), 012038.

S. Aisyah, R. Alfarisi, R.M. Prihandini, A.I. Kristiana, and R.D. Christyanti, On the local edge antimagic coloring of corona product of path and cycle, CAUCHY-Jurnal Matematika Murni dan Aplikasi, 6 (2019), 40–48.

S. Aisyah, M.I. Utoyo, and L. Susilowati, The fractional local metric dimension of comb product graphs, Baghdad Science Journal, 17 (2020), 1288–1293.

S. Arumugam, K. Premalatha, M. Bacǎ, and A. Semaničová-Feňovčiková, Local antimagic vertex coloring of a graph, Graphs Combin., 33 (2017), 275–285.

R. Diestel, Graph Theory, 5th ed., Springer, 2017.

D.A. Fahrudin and S.W. Saputro, The geodetic-dominating number of comb product graphs, Electron. J. Graph Theory Appl., 8(2) (2020), 373–381.

D. Fitriani, A.N.M. Salman, and Z.Y. Awanis. Rainbow connection number of comb product of graphs, Electron. J. Graph Theory Appl., 10(2) (2022), 461–474.

F.F. Hadiputra and T.K. Maryati, A note on local edge antimagic chromatic number of graphs, Proyecciones Journal of Mathematics, 43 (2024), 447–458.

N. Hartsfield and G. Ringel, Pearls in Graph Theory, Academic Press, 1990.

S. Rajkumar and M. Nalliah, On local edge antimagic chromatic number of graphs, Proyecciones Journal of Mathematics, 41 (2022), 1397–1412.

N.M. Rosyidah, S. Zahidah, U.D. Purwati, and L. Susilowati, On comb product graphs with respect to the complement metric dimension, AIP Conference Proceedings, 2329 (2021), 020006.

K. Somasundaram, J. Geetha, and R. Vignesh, Total coloring conjecture on certain classes of product graphs, Electron. J. Graph Theory Appl., 11(1) (2023), 223–234.


Refbacks

  • There are currently no refbacks.


ISSN: 2338-2287

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View EJGTA Stats