Further results on the total vertex irregularity strength of trees
Abstract
We investigate the total vertex irregularity strength of trees with specific characteristics. Initially, we categorize trees into three distinct groups: types A, B, and C. Subsequently, we calculate tvs(T) for all type A trees T where the maximum degree is at least three. Additionally, we provide the value of tvs(T) whenever T is a tree of types B or C with maximum degree at least three and large number of exterior vertices. Finally, we propose a conjecture related to tvs(T) where T is a non-path tree of types B or C with few exterior vertices.
Keywords
Full Text:
PDFDOI: http://dx.doi.org/10.5614/ejgta.2025.13.1.9
References
G. Ali, M. Bača, M. Lascsáková, A. Semaničová-Feňovčíková, A. ALoqaily, and N. Mlaiki, Modular total vertex irregularity strength of graphs, AIMS Math., 8 (2023), 7662–7671.
A. Ali, G. Chartrand, and P. Zhang, Irregularity in Graphs, Springer, Cham, 2021.
M. Bača, S. Jendrol’, M. Miller, and J. Ryan, On irregular total labellings, Discrete Math., 307 (2007), 1378–1388.
M. Bača, K. Muthugurupackiam, K.M. Kathiresan, and S. Ramya, Modular irregularity strength of graphs, Electron. J. Graph Theory Appl., 8(2) (2020), 435–443.
G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz, and F. Saba, Irregular networks, Congr. Numer., 64 (1988), 197–210.
G. Chartrand, L. Lesniak, and P. Zhang, Graphs and Digraphs, Sixth Edition, CRC Press, New York, 2016.
J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin., (2023), #DS6.
Nurdin, E.T. Baskoro, A.N.M. Salman, and N.N. Gaos, On the total vertex irregularity strength of trees, Discrete Math., 310 (2010), 3043–3048.
Nurdin, E.T. Baskoro, A.N.M. Salman, and N.N. Gaos, On total vertex-irregular labellings for several types of trees, Util. Math., 83 (2010), 277–290.
R. Simanjuntak, Susilawati, and E.T. Baskoro, Total vertex irregularity strength for trees with many vertices of degree two, Electron. J. Graph Theory Appl., 8(2) (2020), 415–421.
K.A. Sugeng, P. John, M.L. Lawrence, L.F. Anwar, M. Bača, and A. Semaničová-Feňovčíková, Modular irregularity strength on some flower graphs, Electron. J. Graph Theory Appl., 11(1) (2023), 27–38.
I.N. Suparta, M. Candiasa, K.W. Prasancika, and M. Bača, Modular irregularity strength of dense graphs, Electron. J. Graph Theory Appl., 12(1) (2024), 105–116.
F. Susanto, R. Simanjuntak, and E.T. Baskoro, A note on vertex irregular total labeling of trees, Indonesian J. Combin., 7 (2023), 1–7.
F. Susanto, R. Simanjuntak, and E.T. Baskoro, Counterexamples to the total vertex irregularity strength’s conjectures, Discrete Math. Lett., 12 (2023), 159–165.
Susilawati, E.T. Baskoro, R. Simanjuntak, and J. Ryan, On the vertex irregular total labeling for subdivision of trees, Australas. J. Combin., 71 (2018), 293–202.
Susilawati, E.T. Baskoro, and R. Simanjuntak, Total vertex-irregularity labelings for subdivision of several classes of trees, Procedia Comput. Sci., 74 (2015), 112–117.
Susilawati, E.T. Baskoro, and R. Simanjuntak, Total vertex irregularity strength of trees with maximum degree five, Electron. J. Graph Theory Appl., 6(2) (2018), 250–257.
Susilawati, E.T. Baskoro, and R. Simanjuntak, Total vertex irregularity strength of trees with maximum degree four, AIP Conf. Proc., 1707 (2016), 020022.
Refbacks
- There are currently no refbacks.
ISSN: 2338-2287

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.