On list coloring with separation of the complete graph and set system intersections
Abstract
Keywords
Full Text:
PDFDOI: http://dx.doi.org/10.5614/ejgta.2025.13.1.5
References
Y. Aubry, J.C. Godin, and O. Togni, Every triangle-free induced subgraph of the triangular lattice is (5m, 2m)-choosable, Discrete Applied Mathematics 166 (2014), 51–58.
Y. Aubry, J.C. Godin, and O. Togni, Free choosability of outerplanar graphs, Graphs and Combinatorics, 32(3) (2016), 851–859.
Z. Berikkyzy, C. Cox, M. Dairyko, K. Hogenson, M.M. Kumbhat, B. Lidický, K. Messerschmidt, K. Moss, K. Nowak, K.F. Palmowski, and D. Stolee, (4, 2)-Choosability of Planar Graphs with Forbidden Structures, Graphs and Combinatorics 33 (2017),751–787.
M. Chen, K.W. Lih, and W. Wang, On choosability with separation of planar graphs without adjacent short cycles, Bulletin of the Malaysian Mathematical Sciences Society, 41 (2018), 1507–1518.
M. Chen, Y. Fan, A. Raspaud, W.C. Shiu, and W. Wang, Choosability with separation of planar graphs without prescribed cycles, Applied Mathematics and Computation, 367 (2020).
I. Choi, B. Lidický, and D. Stolee, On choosability with separation of planar graphs with forbidden cycles, Journal of Graph Theory, 81 (2016), 283–306.
M. Chen, Y. Fan, Y. Wang, and W. Wang, A sufficient condition for planar graphs to be (3,1)-choosable, Journal of Combinatorial Optimization, 34 (2017), 987–1011.
M.M. Cropper, J.L. Goldwasser, A.J.W. Hilton, D.G. Hoffman, and P.D. Johnson, Extending the disjoint-representatives theorems of Hall, Halmos, and Vaughan to list-multicolorings of graphs, Journal of Graph Theory 33(4) (2000), 199–219.
Z. Dvořák, S. Norin, and L. Postle, List coloring with requests, Journal of Graph Theory, 92 (2019), 191–206.
L. Esperet, R.J. Kang, and S. Thomassé Separation Choosability and Dense Bipartite Induced Subgraphs, Combinatorics, Probability and Computing, 28 (2019), 720–732.
Z. Füredi, A. Kostochka, and M. Kumbhat Choosability with separation of complete multipartite graphs and hypergraphs, Journal of Graph Theory, 76 (2014), 129–137.
J.C. Godin and O. Togni Choosability with Separation of cycles and outerplanar graphs, Discussiones Mathathematicae - Graph Theory, 43(3) (2023).
H.A. Kierstead and B. Lidický, On choosability with separation of planar graphs with lists of different sizes, Discrete Mathematics 338(10) (2015), 1779–1783.
J. Kratochvíl, Z. Tuza, and M. Voigt, Complexity of choosing subsets from color sets, Discrete Mathematics, 191(1-3) (1998), 139–148. J.
Kratochvíl, Z. Tuza, and M. Voigt Brooks-type theorems for choosability with separation, Journal of Graph Theory, 27 (1998), 43–49.
M. Kumbhat, K. Moss, and D. Stolee, Choosability with union separation, Discrete Mathematics 341(3) (2018), 600–605.
Y-C. Liang, T-L. Wong, and X. Zhu, Total weight choosability for Halin graphs, Electronic Journal of Graph Theory and Applications, 9(1) (2021).
R. Škrekovski, A note on choosability with separation for planar graphs, Ars Combinatoria, 58 (2001), 169–174.
X. Zhu, List 4-colouring of planar graphs, Journal of Combinatorial Theory, Series B 162 (2023), 1–12.
Refbacks
- There are currently no refbacks.
ISSN: 2338-2287

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.