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cUniversity of Zurich, 8050 Zürich, Switzerland
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Abstract

Let G be a finite plane multigraph and G′ its dual. Each edge e of G is interpreted as a resistor
of resistance Re, and the dual edge e′ is assigned the dual resistance Re′ := 1/Re. Then the
equivalent resistance re over e and the equivalent resistance re′ over e′ satisfy re/Re +re′/Re′ = 1.
We provide a graph theoretic proof of this relation by expressing the resistances in terms of sums
of weights of spanning trees in G and G′ respectively.
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1. Introduction

The systematic study of electrical resistor networks goes back to the German physicist Gustav
Robert Kirchhoff in the middle of the 19th century. In particular, Kirchhoff’s node and loop laws,
and Ohm’s law allow to fully describe the electric current and potential in a given static network of
resistors and voltage sources. In the course of his investigations, Kirchhoff discovered the Matrix
Tree Theorem, which states that the number of spanning trees in a graph G is equal to any cofactor
of the Laplacian matrix of G. Surprisingly, this purely graph theoretic fact has a deep connection
to the physical question of the equivalent resistance between two vertices of an electric network.

In the simplest situation, a finite simple graph G can be interpreted as an electrical network by
considering each edge as a resistor of 1 Ohm. One is then interested in the resulting equivalent
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resistance between any two vertices. For example, a method developed by Van Steenwijk [8] has
recently been generalized to calculate the resistance between any two vertices of a symmetrical
polytope (see [6]). For general graphs the key observation for solving the problem goes back to
Kirchhoff: The equivalent resistance over an edge e in the graph G is given by the quotient of the
number of spanning trees containing the edge e divided by the total number of spanning trees in
G.

More generally, we may consider a finite multigraph G and assign to each edge e of G a weight
Re > 0 interpreted as resistance of e. Also in this case, the equivalent resistance between two
vertices can be expressed in terms of sums of weights of spanning trees (see Section 2).

Consider a cube as a graph with unit resistance on each edge and the dual polyhedron, the
octahedron, in the same way. The equivalent resistance over an edge of the cube turns out to be
7/12 Ohm, the equivalent resistance over an edge of the octahedron is 5/12 Ohm. Observe, that
these values add up to 1! The same phenomenon occurs for the dodecahedron with equivalent
resistance of 19/30 Ohm over each edge and the dual graph, the icosahedron, with 11/30 Ohm, or
the rhombic dodecahedron with equivalent resistance of 13/24 Ohm over each edge and the dual
graph, the cuboctahedron, with 11/24 Ohm. This is not just a coincidence: Suppose that a planar
graph and its dual are both interpreted as electrical networks with unit resistance for all edges.
Now, if re is the equivalent resistance over an edge e and r′e is the equivalent resistance over the
dual edge e′, then re + r′e = 1 (see [2, Exercise 7, Section 10.5], [9, Theorem 2.3]). The aim of this
article is to generalize this formula to plane networks with arbitrary resistors (see Theorem 5) and
to give a graph theoretic proof.

2. Preliminaries

Let G be a finite connected graph with n ≥ 3 vertices and without loops. Multiple edges are
allowed. Each edge e is considered as a resistor of resistance Re > 0. Then, we consider the
weighted Laplace matrix L = (`ij) of G defined as

`ij :=


−
∑

1
Re
, where the sum runs over all edges e

between the vertices i and j1,
aii, if i = j,

where the diagonal values aii are chosen such that the sum of all rows of L vanishes. The weight
of a subgraph H of G is defined as

Π(H) :=
∏

e an edge of H

1

Re

.

The set of all spanning trees of a graph G will be denoted by S(G). We recall the following:

1By convention, an empty sum is 0.
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Proposition 1. (i) The value of each cofactor Lij of L is the sum of the weights of all spanning
trees of G.

(ii) Let Lij,ij denote the determinant of the matrix L with rows i, j and columns i, j deleted, and
let e be an edge between the vertices i and j. Then the quotient Lij,ij/Re equals the sum of
the weights of all spanning trees of G which contain the edge e.

Proof. The first part of the proposition follows directly from a general version of the Matrix
Tree Theorem (see, e.g., [7, Theorem VI.27]).

For the second part we proceed as follows: Observe, that by using the edge e between the
vertices i and j we can split up the sum of the weights of all spanning trees of G as follows:∑

T∈S(G)

Π(T ) =
∑

T∈S(G)
e∈T

Π(T ) +
∑

T∈S(G)
e/∈T

Π(T ). (1)

Furthermore, the second sum on the right-hand side of (1) corresponds to the sum of the weights
of all spanning trees of G− e, i.e., G with edge e removed. Using the first part of the proposition,
we get from (1) that ∑

T∈S(G)
e∈T

Π(T ) = Lii − Le
ii,

where Le = (`ehk) is the weighted Laplace matrix of G− e. We have

`eij = `eji = `ij +
1

Re

, `eii = `ii −
1

Re

, `ejj = `jj −
1

Re

and `ehk = `hk for all other h, k. The term Lii − Le
ii can be computed using Laplace’s cofactor

expansion. Expanding both Lii and Le
ii along the j-th row yields∑

T∈S(G)
e∈T

Π(T ) =
∑
k 6=i

`jk(Lii)jk −
∑
k 6=i

`ejk(Le
ii)jk.

Since the cofactors (Lii)jk and (Le
ii)jk are equal for all k we are left with∑

T∈S(G)
e∈T

Π(T ) = (`jj − `ejj)(Lii)jj =
Lij,ij

Re

. 2

Remark. The second part of Proposition 1 follows also quite easily from the All Minors Matrix
Tree Theorem (see [4]).

The connection to the equivalent resistance is given by the following

Proposition 2. Let e be an edge between the vertices i and j. Then the equivalent resistance re
over the edge e is given by

re =
Lij,ij

L11

. (2)
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Remark. Recall, that by Proposition 1(i) the denominator in (2) can be replaced by any other
cofactor Lhk.

Proof. Observe that the Laplace matrix of the weighted multigraph G corresponds to the Laplace
matrix of a weighted simple graph H where the multiple edges e1, . . . ek between each two vertices
i and j of G are collapsed to a single edge e with weight

Re =
1

1
Re1

+ . . . + 1
Rek

.

However this value corresponds exactly to the equivalent resistance of the parallel resistors Re1 , . . .,
Rek . Thus, the equivalent resistance over the vertices i and j in G equals the equivalent resistance
over the vertices i and j in H and the claim follows from [1, Remark 2.1, Equation (16)] for simple
graphs, and Proposition 1.

From now on we assume that G is a finite planar multigraph with dual graph G′. Recall that in
general G′ depends on the embedding of G in the plane.

Definition 3. Let G′ be the dual of a planar embedded multigraph G, and let G be interpreted as
an electrical network by associating to each edge e a resistance Re > 0. For each edge e of G, we
define the electrical resistance Re′ of the dual edge e′ to be the conductance of e, i.e., Re′ := 1/Re.
Then, G′ equipped with these resistances is called the dual electrical network of G.

Observe that the Laplace matrix L′ = (`′ij) of the dual electrical network G′ is given by

`′ij :=


−
∑

1
Re′

= −
∑

Re, where the sum runs over all edges e′

between the vertices i and j of G′,
aii, if i = j,

where the diagonal values aii are chosen such that the sum of all rows of L′ vanishes.
Similarly the weight of a subgraph H ′ of G′ is

Π(H ′) :=
∏

e′ an edge of H′

1

Re′
=

∏
e′ an edge of H′

Re .

Then we have:

Proposition 4. (i) The value of an arbitrary cofactor L′
ij of L′ is equal to the sum of the weights

of all spanning trees in G′ and therefore

L′
ij = LijΠ(G′), (3)

where Π(G′) =
∏

Re is the total weight of G′.
(ii) The product ReL

′
ij,ij equals the sum of the weights of the spanning trees in G′ which contain

the dual edge e′ of edge e.
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Proof. We only have to show equation (3), since all other statements follow from Proposition 1.
Let Ψ denote the canonical bijection from S(G′) to S(G) given by Ψ(T ′) = {e ∈ G|e′ ∈ G′−T ′}.
Observe that the weight of a spanning tree T ′ of G′ can be expressed as

Π(T ′) =
Π(G′)

Π(G′ − T ′)
. (4)

Using the bijection Ψ and Definition 3 in (4), namely the fact, that the electrical resistance of an
edge in G′ is equal to the conductance of the dual edge in G, we get

Π(T ′) = Π(G′)Π(Ψ(T ′)). (5)

The characterization of Lij and L′
ij as the sum of the weights of all spanning trees of G and G′

respectively leads, together with (5), to

L′
ij =

∑
T ′∈S(G′)

Π(T ′) =
∑

T ′∈S(G′)

Π(G′)Π(Ψ(T ′)) =

= Π(G′)
∑

T∈S(G)

Π(T ) = Π(G′)Lij,

where we have used the bijectivity of Ψ in the penultimate equality. This completes the proof.

3. The sum formula in dual networks

The main result is now the following:

Theorem 5. Let Re be the resistance of an edge e and Re′ = 1/Re the resistance of the dual edge
e′ in the dual electrical network. Let re denote the equivalent resistance over edge e and re′ denote
the equivalent resistance over edge e′. Then

re
Re

+
re′

Re′
= 1.

For a proof of this formula based upon physical arguments see [5]. Here, we provide a purely
graph theoretic proof.

Proof. Let e be an edge between the vertices i and j in G, and we may assume that the vertices are
numbered such that e′ also runs between the vertices i and j in G′. In a first step, we are going to
derive a new expression for L′

ij,ij . Let Ψ be the canonical bijection from S(G′) to S(G) as defined
in the proof of Proposition 4. By part (ii) of Proposition 4 we have

L′
ij,ij =

1

Re

∑
T ′∈S(G′)

e′∈T ′

Π(T ′). (6)
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The identity (5) and the fact that Ψ(T ′) does not contain the edge e if T ′ contains the dual edge e′

allow to rewrite the right-hand side of (6) as follows

1

Re

∑
T ′∈S(G′)

e′∈T ′

Π(T ′) =
Π(G′)

Re

∑
T∈S(G)

e/∈T

Π(T ). (7)

Furthermore, the sum on the right-hand side of (7) can be expressed as the difference between the
sum of the weights of all spanning trees of G and the sum of the weights of the spanning trees that
contain the edge e. Therefore, it holds that

L′
ij,ij =

Π(G′)

Re

( ∑
T∈S(G)

Π(T )−
∑

T∈S(G)
e∈T

Π(T )
)
. (8)

Using Proposition 1 in (8) yields the following identity:

L′
ij,ij =

Π(G′)

Re

(
Lii −

Lij,ij

Re

)
. (9)

Now, in a second step, it follows from Proposition 2 and Definition 3, that

re
Re

+
re′

Re′
=

Lij,ij

LiiRe

+ Re

L′
ij,ij

L′
ii

. (10)

Using the first part of Proposition 4 and (9), we can rewrite the right-hand side of (10) and simplify
the resulting expression to arrive at

re
Re

+
re′

Re′
=

Lij,ij

LiiRe

+ Re

Π(G′)
Re

(Lii − Lij,ij

Re
)

LiiΠ(G′)
= 1,

as claimed.

Example 6. Let us consider the following electrical network:

1

2 3

4R1

R2

R3

R5R4

The corresponding Laplace matrix L is

L =


1
R1

+ 1
R2

− 1
R2

0 − 1
R1

− 1
R2

1
R2

+ 1
R3

− 1
R3

0

0 − 1
R3

1
R3

+ 1
R4

+ 1
R5

− 1
R4
− 1

R5

− 1
R1

0 − 1
R4
− 1

R5

1
R1

+ 1
R4

+ 1
R5


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The cofactor

L11 =
1

R1R2R3R4R5

(
R4(R1 + R2 + R3) + R5(R1 + R2 + R3 + R4)

)
corresponds indeed to the total weight of all spanning trees of G as one easily checks directly. For
the edge e between the vertices 3 and 4 with resistance R4, we get

L34,34 =
1

R1R2

+
1

R1R3

+
1

R2R3

which, divided by R4, gives the sum of the weights of the spanning trees which contain e, as stated
in Proposition 1.

The dual network looks as follows:

1

2 3

4R1

R2

R3

R5R4

1/R4 1/R5

1/R1

1/R3

1/R2

1 2 3

and the corresponding Laplace matrix is

L′ =

R1 + R2 + R3 + R4 −R4 −(R1 + R2 + R3)
−R4 R4 + R5 −R5

−(R1 + R2 + R3) −R5 R1 + R2 + R3 + R5

 .

The cofactor
L′

11 = R4(R1 + R2 + R3) + R5(R1 + R2 + R3 + R4)

is the total weight of the spanning trees of G′. And indeed, we have

L′
11 = L11R1R2R3R4R5

as predicted by Proposition 4. Furthermore, we get

L′
12,12 = R1 + R2 + R3 + R5
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which gives according to Proposition 1, after multiplication by R4, the total weight of the trees in
G′ which contain the dual edge e′.

Now, the equivalent resistances over edge e and e′ respectively are, according to Proposition 2,

r4 =
L34,34

L11

=
R4R5(R1 + R2 + R3)

R4(R1 + R2 + R3) + R5(R1 + R2 + R3 + R4)

r′4 =
L′

12,12

L′
11

=
R1 + R2 + R3 + R5

R4(R1 + R2 + R3) + R5(R1 + R2 + R3 + R4)

and finally indeed, with R′
4 = 1/R4,

r4

R4

+
r′4
R′

4

= 1.

Open Problems
It would be interesting to investigate graphs which are embedded in a compact surface of

positive genus and their respective duals. In particular the results in [3] might help to generalize
Theorem 5 for such graphs. However, the direct analogue is false, so one would have to expect
some sort of a correction term in the formula.

Another interesting question would be to ask if Theorem 5 holds for infinite periodic planar
graphs and their duals.
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