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Abstract
A paired dominating set of a graph G is a dominating set whose induced subgraph has a perfect
matching. The paired domination number γpr(G) of G is the minimum cardinality of a paired dom-
inating set. A paired dominating set D is a γpr(G)-set if |D| = γpr(G). The γ-paired dominating
graph PDγ(G) of G is the graph whose vertex set is the set of all γpr(G)-sets, and two γpr(G)-sets
D1 and D2 are adjacent in PDγ(G) if D2 = (D1 \ {u}) ∪ {v} for some u ∈ D1 and v /∈ D1. This
paper determines the paired domination numbers of lollipop graphs, umbrella graphs, and coconut
graphs. We also consider the γ-paired dominating graphs of those three graphs.
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1. Introduction

We in general follow the graph theory notation and terminology from [22]. Let G be a graph
with vertex set V (G) and edge set E(G). The open and closed neighborhoods of a vertex v ∈ V (G)
are N(v) = {u ∈ V (G) : uv ∈ E(G)} and N [v] = N(v)∪{v}, respectively. The open and closed
neighborhoods of a set D ⊆ V (G) are N(D) =

⋃
v∈D N(v) and N [D] = N(D)∪D, respectively.

We use Pk and Ck to denote a path and a cycle, respectively, with k vertices.

Received: 9 December 2021, Revised: 21 October 2022, Accepted: 6 January 2023.

65



www.ejgta.org

γ-Paired dominating graphs | P. Eakawinrujee and N. Trakultraipruk

A set D ⊆ V (G) is a dominating set of G if every vertex v ∈ V (G) which does not belong to D
has a neighbor in D. The domination number γ(G) of G is the minimum cardinality among all
dominating sets. A dominating set D is a γ(G)-set if |D| = γ(G). For more details on domination
and its variants in graphs, see [2, 5, 11, 12, 14].

Subramanian and Sridharan [21] defined the gamma graph of G, denoted by γ.G, to be the
graph whose vertex set is the set of all γ(G)-sets, and two γ(G)-sets D1 and D2 are adjacent in
γ.G if they satisfy the following condition: for some u ∈ D1 and v /∈ D1,

D2 = (D1 \ {u}) ∪ {v}, (1)

or |D1 \D2| = 1 = |D2 \D1|. Fricke et al. [9] defined the γ-graph G(γ) of G, which is the graph
with V (G(γ)) = V (γ.G), and two γ(G)-sets D1 and D2 are adjacent in G(γ) if they satisfy the
condition (1) and uv ∈ E(G). Observe that G(γ) is a spanning subgraph of γ.G. For additional
results on gamma graphs or γ-graphs, see [3, 4, 15, 16, 17].

The k-dominating graph Dk(G) of G, studied by Haas and Seyffarth [10], is the graph whose
vertex set is the set of all dominating sets of G having cardinality at most k, and two vertices
of Dk(G) are adjacent if they differ by either adding or deleting a single vertex. The authors
determined conditions for Dk(G) to be connected. For additional results on k-dominating graph,
see [18], and for other variations of the k-dominating graph, see [1, 8].

Wongsriya and Trakultraipruk [23] defined the γ-total dominating graph TDγ(G) of G to be
the graph whose vertex set is the set of all γt(G)-sets (minimum total dominating sets). Two γt(G)-
sets D1 and D2 are adjacent in TDγ(G) if they satisfy the condition (1). They studied TDγ(Pk)
and TDγ(Ck). The γ-independent dominating graph [19] and the γ-induced-paired dominating
graph [20] are defined similarly.

A set D ⊆ V (G) is a paired dominating set of G if it is a dominating set and the subgraph
of G induced by D contains a perfect matching. The paired domination number γpr(G) of G is the
minimum cardinality among all paired dominating sets. A paired dominating set D is a γpr(G)-set
if |D| = γpr(G). Let D be a paired dominating set of G with a perfect matching M . We say that a
vertex v ∈ D dominates a vertex u if they are adjacent in G. If an edge uv ∈ M , then we call the
set {u, v} a pair. The concept of paired domination was introduced by Haynes and Slater [13].

In [6], we defined the γ-paired dominating graph PDγ(G) of G to be the graph whose ver-
tices are γpr(G)-sets, and two γpr(G)-sets D1 and D2 are adjacent in PDγ(G) if they satisfy the
condition (1). We studied PDγ(Pk) in [6] and PDγ(Ck) in [7]. This paper determines the paired
domination numbers of lollipop graphs, umbrella graphs, and coconut graphs. We also determine
the γ-paired dominating graphs of those graphs.

2. Preliminary Results

In this section, we recall some definitions, notations, and results used in the proofs of our main
results.

A support vertex is a vertex adjacent to a vertex of degree one. Haynes and Slater [13] provided
a couple of useful lemmas.

Lemma 2.1 ([13]). If v is a support vertex of a graph G, then v is in every paired dominating set
of G.
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Lemma 2.2 ([13]). Let k ≥ 2 be an integer. Then γpr(Pk) = 2⌈k
4
⌉.

The Cartesian product of graphs G and H , denoted by G2H , is the graph with vertex set
V (G) × V (H) where vertices (u1, v1) and (u2, v2) are adjacent if and only if either u1 = u2 and
v1v2 ∈ E(H), or v1 = v2 and u1u2 ∈ E(G).

Let Pp : u1u2u3 · · ·up and Pq : v1v2v3 · · · vq be the paths, where p and q are positive integers.
Fricke et al. [9] defined a stepgrid SGp,q to be the subgraph of Pp□Pq induced by {(ux, vy) : 1 ≤
x ≤ p, 1 ≤ y ≤ q, x − y ≤ 1}. We call the vertex (ux, vy) in the stepgrid as the vertex at the
position (x, y). The stepgrids SG2,2 and SG4,3 are shown in Figure 1.

(u1, v1) (u1, v2)

(u2, v1) (u2, v2)

(u1, v1) (u1, v2) (u1, v3)

(u2, v1) (u2, v2) (u2, v3)

(u3, v2) (u3, v3)

(u4, v3)

Figure 1: The stepgrids SG2,2 (left) and SG4,3 (right)

Let Pp : u1u2u3 · · ·up, Pq : v1v2v3 · · · vq, and Pr : w1w2w3 · · ·wr be the paths, where p, q,
and r are positive integers. In [6], we defined a stepgrid SGp,q,r be the graph with vertex set

V (SGp,q,r) = {(ux, vy, wz) ∈ V (Pp□Pq□Pr) : 1 ≤ x ≤ p, 1 ≤ y ≤ q, 1 ≤ z ≤ r,

x− y ≤ 0, x− z ≤ 1, y − z ≥ 0}

and edge set

E(SGp,q,r) = E(Pp□Pq□Pr) ∪ {(ux, vx, wx)(ux+1, vx+1, wx) : 1 ≤ x ≤ p− 1}.

The vertex (ux, vy, wz) is called the vertex at the position (x, y, z) in SGp,q,r. The stepgrid SG4,4,3

is shown in Figure 2, where we write (x, y, z) for (ux, vy, wz).
Eakawinrujee and Trakultraipruk [6] determined the γ-paired dominating graphs of paths and

their properties. At this point, we denote Pk : v1v2v3 · · · vk to be the path with k vertices.

Lemma 2.3 ([6]). Let k ≥ 0 be an integer. Then there is exactly one γpr(P4k+3)-set containing the
pair {v4k+2, v4k+3} and this set has degree one in PDγ(P4k+3).

Lemma 2.4 ([6]). Let k ≥ 1 be an integer. All γpr(P4k+2)-sets containing the pair {v4k+1, v4k+2}
form a path with k+1 vertices in PDγ(P4k+2), where one endpoint contains the pair {v4k−2, v4k−1}
and the others contain the pair {v4k−3, v4k−2}.

Lemma 2.5 ([6]). Let k ≥ 1 be an integer. Then all γpr(P4k+1)-sets containing the pair {v4k, v4k+1}
form a stepgrid SGk+1,k in PDγ(P4k+1) (see Figure 3), where D1,k, D2,k, . . . , Dk,k contain the
pair {v4k−3, v4k−2}, Dk+1,k contains the pair {v4k−2, v4k−1}, and the others contain the pair
{v4k−4, v4k−3}. Moreover, D1,1, D2,1, D1,k have degree three, D2,k, D3,k, . . . , Dk,k have degree
four, and Dk+1,k has degree two in PDγ(P4k+1).
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(1,1,1) (1,2,1)

(2,2,1)

(1,2,2)

(2,2,2)
(1,3,1)

(1,3,2)

(2,3,1)

(2,3,2)

(3,3,2)

(1,4,1)

(1,4,2)

(1,3,3)

(1,4,3)

(2,4,1)

(2,4,2)

(2,4,3)
(2,3,3)

(3,3,3)

(3,4,2)

(3,4,3)

(4,4,3)

Figure 2: The stepgrid SG4,4,3

D1,1 D1,k

D2,1 D2,k

D3,k

Dk,k

Dk+1,k

Figure 3: The stepgrid SGk+1,k in PDγ(P4k+1)

Theorem 2.1 ([6]). Let k ≥ 1 be an integer. Then PDγ(P4k) ∼= P1.

Theorem 2.2 ([6]). Let k ≥ 0 be an integer. Then PDγ(P4k+3) ∼= Pk+2.

Theorem 2.3 ([6]). Let k ≥ 0 be an integer. Then PDγ(P4k+2) ∼= SGk+1,k+1.

Theorem 2.4 ([6]). Let k ≥ 1 be an integer. Then PDγ(P4k+1) ∼= SGk+1,k+1,k.

From the proof of Theorem 2.2, we get the following result.

Corollary 2.1. Let k ≥ 1 be an integer and PDγ(P4k−1) ∼= Pk+1
∼= D1D2 · · ·Dk+1, where Dx

is a γpr(P4k−1)-set for all x ∈ {1, 2, . . . , k + 1}. If Dk+1 contains the pair {v4k−2, v4k−1}, then
Dx = Sx ∪ {v4k−3, v4k−2}, where Sx is a γpr(P4k−5)-set for all x ∈ {1, 2, . . . , k} and especially
Sk contains the pair {v4k−6, v4k−5}, and Dk+1 = Sk ∪ {v4k−2, v4k−1}.

The following corollary can be obtained from the proofs of Lemma 2.5 and Theorem 2.4.

Corollary 2.2. Let k ≥ 1 be an integer and Dx,y,z the γpr(P4k+1)-set at the position (x, y, z) in
PDγ(P4k+1) ∼= SGk+1,k+1,k for all x, y ∈ {1, 2, . . . , k + 1}, z ∈ {1, 2, . . . , k} with x − y ≤
0, x − z ≤ 1, y − z ≥ 0. If either x = 1 or y = k + 1, then Dx,y,z contains the pair {v4k, v4k+1}.
Moreover, if Dx,k+1,z contains the pair {v4k, v4k+1}, then
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(1) Dx,k+1,z = (Dx,k,z \ {v4k−1}) ∪ {v4k+1} for all x, z ∈ {1, 2, . . . , k}, and Dk+1,k+1,k =
(Dk,k,k \ {v4k−3}) ∪ {v4k+1},

(2) Dx,k+1,k = Dx ∪ {v4k−3, v4k−2, v4k, v4k+1}, where Dx is a γpr(P4k−5)-set for all x ∈ {1, 2,
. . . , k}, Dk contains the pair {v4k−6, v4k−5}, and Dk+1,k+1,k = Dk∪{v4k−2, v4k−1, v4k, v4k+1},

(3) Dx,k+1,z contains the pairs {v4k−4, v4k−3}, {v4k, v4k+1} for all z < k.

Let G1 and G2 be complete graphs with p vertices, where V (G1) = {u1, u2, . . . , up} and
V (G2) = {v1, v2, . . . , vp}. We define Ap to be the graph with vertex set V (Ap) = {(ux, vy) ∈
V (G1□G2) : 1 ≤ x ≤ y ≤ p} and edge set E(Ap) = E(G1□G2) ∪ {(ux, vy)(uy+1, vz) : 1 ≤ x ≤
y < z ≤ p}. We illustrate the graph A3 as shown in Figure 4.

{w1, w2}
{w1, w3}

{w1, w4}

{w2, w3}
{w2, w4}

{w3, w4}

(u1, v1)
(u1, v2)

(u1, v3)

(u2, v2)

(u2, v3)

(u3, v3)

Figure 4: The graphs PDγ(K4) (left) and A3 (right)

Theorem 2.5. Let k ≥ 2 be an integer. Then PDγ(Kk) ∼= Ak−1.

Proof. Let V (Kk) = {w1, w2, . . . , wk}. Note that γpr(Kk) = 2, so V (PDγ(Kk)) = {{wm, wn} :
1 ≤ m < n ≤ k}. Let V (Ak−1) = {(ux, vy) : 1 ≤ x ≤ y ≤ k − 1}. Define f : V (PDγ(Kk)) →
V (Ak−1) by f({wm, wn}) = (um, vn−1). Clearly, f is bijection, and preserve edges and non-edges.
The theorem follows.

3. Paired Domination Numbers of Lollipop Graphs, Umbrella Graphs, and Coconut Graphs

In this section, we give the definitions of a lollipop graph, a umbrella graph, and a coconut
graph. We then determine the paired domination numbers of those graphs.

A lollipop graph Lp,q is obtained by appending an endpoint of a path Pp to a vertex of a
complete graph Kq. For convenence, we label the vertices of the path as v1, v2, . . . , vp and the
vertices of the complete graph as u1, u2, . . . , uq, where vp is adjacent to u1. For example, the
lollipop graph L7,6 is shown in Figure 5.

A umbrella graph Up,q is obtained by joining an endpoint of a path Pp to the central vertex of a
fan graph Fq

∼= K1 ∨ Pq−1. A coconut graph Cp,q is obtained by joining an endpoint of a path Pp

to the support vertex of a star graph Sq
∼= K1,q−1. We label the vertices of Up,q and Cp,q as shown

in Figures 6 and 7, respectively.
Let p be a positive integer. If q = 1, then Lp,q

∼= Up,q
∼= Cp,q

∼= Pp+1, so γpr(Lp,q) =
γpr(Up,q) = γpr(Cp,q) = 2⌈p+1

4
⌉ by Lemma 2.2. If q ≥ 2, then we get the following theorem.
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u1

u2 u3

u4

u5u6

v1 v2 v3 v4 v5 v6 v7

Figure 5: The lollipop graph L7,6

u2

u3

u4

uq−1

uq

v1 v2 v3 vp−1 vp u1

Figure 6: The umbrella graph Up,q

u2

u3

u4

uq−1

uq

v1 v2 v3 vp−1 vp u1

Figure 7: The coconut graph Cp,q

Theorem 3.1. Let p ≥ 1 and q ≥ 2 be integers. Then γpr(Lp,q) = γpr(Up,q) = γpr(Cp,q) = 2⌈p+2
4
⌉.

Proof. If q = 2, then Lp,q is a path with p+2 vertices. By Lemma 2.2, we get γpr(Lp,2) = 2⌈p+2
4
⌉.

Let q ≥ 3 and P̂u2 be the graph obtained from Lp,q by deleting the vertices u3, u4, . . . , uq. Clearly,
P̂u2 is a path with p + 2 vertices, and γpr(P̂u2) = 2⌈p+2

4
⌉. Let D be a γpr(Lp,q)-set. To prove

γpr(Lp,q) ≥ 2⌈p+2
4
⌉, we show that |D| ≥ γpr(P̂u2). If u1 ∈ D, then D contains either the pair

{vp, u1} or, without loss of generality, {u1, u2}. In both cases, D is a paired dominating set of P̂u2 ,
so |D| ≥ γpr(P̂u2). Thus, we assume that u1 /∈ D. Since D is a γpr(Lp,q)-set, D must contain
exactly two vertices from {u2, u3, . . . , uq}. Without loss of generality, we may assume that D
contains the pair {u2, u3}. Hence, D′ = (D \ {u3}) ∪ {u1} is a paired dominating set of P̂u2 , so
|D| = |D′| ≥ γpr(P̂u2). Now, we get γpr(Lp,q) ≥ 2⌈p+2

4
⌉. Note that Up,q and Cp,q are spanning

subgraphs of Lp,q, so γpr(Up,q) ≥ γpr(Lp,q) and γpr(Cp,q) ≥ γpr(Lp,q).

70



www.ejgta.org

γ-Paired dominating graphs | P. Eakawinrujee and N. Trakultraipruk

Next, we show the upper bounds of γpr(Lp,q), γpr(Up,q), and γpr(Cp,q). If p ≡ 1, 2 (mod 4),
let D = {vi, vi+1 : i ≡ 2 (mod 4), i ≤ p − 3} ∪ {vp, u1}; otherwise, let D = {vi, vi+1 : i ≡
2 (mod 4), i ≤ p − 5} ∪ {vp−2, vp−1, vp, u1}. Then D is a paired dominating set of Lp,q with
cardinality 2⌈p+2

4
⌉, so γpr(Lp,q) ≤ 2⌈p+2

4
⌉. Since D is also a paired dominating set of Up,q and

Cp,q, γpr(Up,q) ≤ 2⌈p+2
4
⌉ and γpr(Cp,q) ≤ 2⌈p+2

4
⌉.

4. γ-Paired Dominating Graphs of Lollipop Graphs

In this section, we determine the γ-paired dominating graph of a lollipop graph Lp,q. If q = 1,
then we get the γ-paired dominating graph of Lp,q

∼= Pp+1 from Theorems 2.1 - 2.4. For q ≥ 2, we
consider the value of p into four cases and then we obtain the following results.

Theorem 4.1. Let k ≥ 0 and q ≥ 2 be integers. Then PDγ(L4k+2,q) ∼= P1.

Proof. By Theorem 3.1, we have γpr(L4k+2,q) = 2k + 2. It is easy to check that there is exactly
one γpr(L4k+2,q)-set, which is D = {v4i+2, v4i+3 : 0 ≤ i ≤ k − 1} ∪ {v4k+2, u1}, so the theorem
holds.

Lemma 4.1. Let k ≥ 0 and q ≥ 2 be integers. Then each γpr(L4k+1,q)-set contains the vertex u1.
Moreover, if a γpr(L4k+1,q)-set contains the pair {u1, ui} for some i, then this set does not contain
v4k+1.

Proof. If q = 2, then u1 is a support vertex of L4k+1,q, so this lemma holds by Lemma 2.1. Let
q ≥ 3 and suppose on the contrary that there is a γpr(L4k+1,q)-set D such that u1 /∈ D. Then D
must contain exactly two vertices from {u2, u3, . . . , uq}. Since |D| = 2k+2, the other 2k vertices
of D must dominate all vertices in P4k+1. This contradicts the fact that 2k vertices can dominate at
most 4k vertices in P4k+1.

Next, we suppose that there is a γpr(L4k+1,q)-set D containing the pairs {v4k, v4k+1}, {u1, ui}
for some i. Then v4k−1 /∈ D. Recall that |D| = 2k+2, so the other 2k− 2 vertices must dominate
all vertices in P4k−2, which is impossible.

Theorem 4.2. Let k ≥ 0 and q ≥ 2 be integers. Then PDγ(L4k+1,q) ∼= Lk,q.

Proof. By Lemma 4.1, each γpr(L4k+1,q)-set must contain either the pair {v4k+1, u1} or {u1, ui}
where i ̸= 1. We first find all γpr(L4k+1,q)-sets containing the pair {v4k+1, u1}. Note that these sets
do not contain u2, u3, . . . , uq. Let P be the subgraph of L4k+1,q induced by {v1, v2, . . . , v4k+1, u1}.
Clearly, P is a path with 4k + 2 vertices. Then γpr(L4k+1,q) = 2k + 2 = γpr(P ), and every
γpr(L4k+1,q)-set containing the pair {v4k+1, u1} is a γpr(P )-set containing the pair {v4k+1, u1} and
vice versa. By Lemma 2.4, we get that all γpr(L4k+1,q)-sets containing the pair {v4k+1, u1} form
a path D1D2 · · ·Dk+1 in PDγ(L4k+1,q) where, without loss of generality, Dk+1 contains the pair
{v4k−2, v4k−1} and the others contain the pair {v4k−3, v4k−2}.

We next find all γpr(L4k+1,q)-sets containing the pair {u1, ui} where i ∈ {2, 3, . . . , q}. By
Lemma 4.1, these sets do not contain v4k+1. Then such a γpr(L4k+1,q)-set is a union of a γpr(P4k)-
set and {u1, ui}. Theorem 2.1 shows that, for each i, there is only one γpr(L4k+1,q)-set containing
the pair {u1, ui}. For each i ∈ {2, 3, . . . , q}, let

Dk+i = (Dk+1 \ {v4k+1}) ∪ {ui}.
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Thus, for each i, Dk+i is the only γpr(L4k+1,q)-set containing the pair {u1, ui}. It is clear that
Dk+1, Dk+2, . . . , Dk+q are pairwise adjacent. We can check that, for all x ∈ {1, 2, . . . , k} and
i ∈ {2, 3, . . . , q}, (Dx \ {v4k+1}) ∪ {ui} is not a dominating set, and thus Dx is not adjacent to all
Dk+2, Dk+3, . . . , Dk+q. Therefore, all γpr(L4k+1,q)-sets form a lollipop graph Lk,q.

Let p and q be positive integers. We define Ap,q to be the graph with V (Ap,q) = V (SGp,q) and
E(Ap,q) = E(SGp,q) ∪ {(ux, vy)(ux, vy′) : p − 1 ≤ y < y′ − 1 ≤ q − 1}. We also define Bp,q to
be the graph with

V (Bp,q) = V (Ap,q) ∪ {(ux, vy) : p+ 1 ≤ x ≤ y ≤ q}

and

E(Bp,q) = E(Ap,q) ∪ {(ux, vy)(ux, vy′) : p+ 1 ≤ x ≤ q − 1, x ≤ y < y′ ≤ q} ∪
{(ux, vy)(ux′ , vy) : p+ 1 ≤ y ≤ q, p ≤ x < x′ ≤ y} ∪
{(ux, vy)(uy+1, vz) : p ≤ x ≤ y < z ≤ q}.

Figure 8 shows the graphs A3,4 and A4,6 and Figure 9 shows the graphs B3,4 and B4,6, where we
use (x, y) instead of (ux, vy). Note that if p ≥ q, then Ap,q

∼= Bp,q
∼= SGp,q.

(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2) (2, 3) (2, 4)

(3, 2) (3, 3) (3, 4)

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

(3, 2) (3, 3) (3, 4) (3, 5) (3, 6)

(4, 3) (4, 4) (4, 5) (4, 6)

Figure 8: The graphs A3,4 (left) and A4,6 (right)

Theorem 4.3. Let k ≥ 1 and q ≥ 2 be integers. Then PDγ(L4k,q) ∼= Bk+1,k+q−1.

Proof. Note that L4k,2
∼= P4k+2. By Theorem 2.3, we get PDγ(L4k,2) ∼= SGk+1,k+1

∼= Bk+1,k+1.
Let q ≥ 3. If a γpr(L4k,q)-set contains the vertex u1, then it contains either the pair {v4k, u1}
or {u1, ui} where i ̸= 1. We first find all γpr(L4k,q)-sets containing the pair {v4k, u1}. Let P
be the subgraph of L4k,q induced by {v1, v2, . . . , v4k, u1}. Then each γpr(L4k,q)-set containing
the pair {v4k, u1} is a γpr(P )-set containing the pair {v4k, u1} and vice versa. By Lemma 2.5,
all γpr(L4k,q)-sets containing the pair {v4k, u1} form a stepgrid SGk+1,k in PDγ(L4k,q). For all
x ∈ {1, 2, . . . , k+1} and y ∈ {1, 2, . . . , k} with x−y ≤ 1, let Dx,y be the γpr(L4k,q)-set containing
the pair {v4k, u1} at the position (x, y) in SGk+1,k. Then D1,k, D2,k, . . . , Dk,k contain the pair
{v4k−3, v4k−2}, Dk+1,k contains the pair {v4k−2, v4k−1}, and Dx,y contains the pair {v4k−4, v4k−3}
for all y ̸= k.
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(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2) (2, 3) (2, 4)

(3, 2) (3, 3) (3, 4)

(4, 4)

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

(3, 2) (3, 3) (3, 4) (3, 5) (3, 6)

(4, 3) (4, 4) (4, 5) (4, 6)

(5, 5) (5, 6)

(6, 6)

Figure 9: The graphs B3,4 (left) and B4,6 (right)

We next find all γpr(L4k,q)-sets containing the pair {u1, ui} where i ∈ {2, 3, . . . , q}. Similar to
Lemma 4.1, these sets do not contain v4k. Then such a γpr(L4k,q)-set is a union of a γpr(P4k−1)-
set and {u1, ui}. By Theorem 2.2, for each i, there are k + 1 γpr(L4k,q)-sets containing the pair
{u1, ui} and they form a path in PDγ(L4k,q). Recall that D1,k, D2,k, . . . , Dk,k contain the pairs
{v4k−3, v4k−2}, {v4k, u1}, and Dk+1,k contains the pairs {v4k−2, v4k−1}, {v4k, u1}. For each x ∈
{1, 2, . . . , k + 1} and i ∈ {2, 3, . . . , q}, let

Dx,k+i−1 = (Dx,k \ {v4k}) ∪ {ui}.

Hence, for each i, the sets D1,k+i−1, D2,k+i−1, . . . , Dk+1,k+i−1 are the only γpr(L4k,q)-sets contain-
ing the pair {u1, ui} and they form a path. We also get that, for each x, Dx,k, Dx,k+1, . . . , Dx,k+q−1

are pairwise adjacent. Note that Dx,y with y < k contains the pairs {v4k−4, v4k−3}, {v4k, u1}, so
(Dx,y \ {v4k}) ∪ {ui} is not a dominating set for all i. This means that Dx,y with y < k is not
adjacent to every γpr(L4k,q)-set containing the pair {u1, ui}. Now, all γpr(L4k,q)-sets containing u1

form a graph Ak+1,k+q−1 in PDγ(L4k,q) (see Figure 10).
We finally find all γpr(L4k,q)-sets that do not contain u1. Then these sets contain exactly two

vertices from {u2, u3, . . . , uq}. Note that such a γpr(L4k,q)-set is a union of a γpr(P4k)-set and
{ui, uj} for some distinct i, j ∈ {2, 3, . . . , q}. Clearly, D = {v4i+2, v4i+3 : 0 ≤ i ≤ k − 1} is a
unique γpr(P4k)-set. Thus, D ∪ {ui, uj} is the only γpr(L4k,q)-set containing the pair {ui, uj}.
Recall that, for each i ∈ {2, 3, . . . , q}, Dk+1,k+i−1 contains the pairs {v4k−2, v4k−1}, {u1, ui}.
Then Dk+1,k+i−1 is a union of a γpr(P4k−4)-set and {v4k−2, v4k−1, u1, ui}, and thus Dk+1,k+i−1 =
{v4i+2, v4i+3 : 0 ≤ i ≤ k − 2} ∪ {v4k−2, v4k−1, u1, ui} = D ∪ {u1, ui}. For all 1 ≤ i < j ≤ q, let

Di,j = D ∪ {ui, uj}.

Theorem 2.5 implies that all Di,j’s form a graph Aq−1 in PDγ(L4k,q) (see Figure 10). Note
that Dx,y with y ≤ k does not contain u2, u3, . . . , uq, so it is not adjacent to Di,j for all 2 ≤
i < j ≤ q. Recall that, for each i ∈ {2, 3, . . . , q}, Dx,k+i−1 with x ≤ k contains the pairs

73



www.ejgta.org

γ-Paired dominating graphs | P. Eakawinrujee and N. Trakultraipruk

D1,1 D1,2 D1,k D1,k+1 D1,k+2 D1,k+3 D1,k+q−1

D2,1 D2,2 D2,k D2,k+1 D2,k+2 D2,k+3 D2,k+q−1

D3,2 D3,k D3,k+1 D3,k+2 D3,k+3 D3,k+q−1

Dk+1,k Dk+1,k+q−1

D2,3 D2,4 D2,q

D3,4 D3,q

Dq−1,q

Ak+1,k+q−1

Aq−1

Figure 10: The graph Bk+1,k+q−1

{v4k−3, v4k−2}, {u1, ui}, so (Dx,k+i−1 \ {u1}) ∪ {uj} is not a dominating set for j ̸= 1, and thus
Dx,k+i−1 is not adjacent to Di,j for all 2 ≤ i < j ≤ q. This completes the proof.

Let p, q and r be positive integers. Let Ap,q,r be the graph with V (Ap,q,r) = V (SGp,q,r) and

E(Ap,q,r) = E(SGp,q,r) ∪ {(ux, vy, wz)(ux, vy′ , wz) : r + 2 ≤ y + 2 ≤ y′ ≤ q} ∪
{(ur, vr, wr)(ur+1, vy′ , wr) : r + 2 ≤ y′ ≤ q}.

Let Bp,q,r be the graph with

V (Bp,q,r) = V (Ap,q,r) ∪ {(ux, vy, wz) : 1 ≤ x ≤ p, r + 1 ≤ z < y ≤ q}

and

E(Bp,q,r) = E(Ap,q,r) ∪ {(ux, vy, wz)(ux, vy, wz′) : r + 2 ≤ y ≤ q, r ≤ z < z′ ≤ y − 1} ∪
{(ux, vy, wz)(ux, vy′ , wz) : r + 1 ≤ z ≤ q − 2, z + 1 ≤ y < y′ ≤ q} ∪
{(ux, vy, wz)(ux, vy′ , wy) : r ≤ z < y < y′ ≤ q} ∪
{(ux, vy, wz)(ux+1, vy, wz) : r < z < q}.

The graphs A4,5,3 and A3,5,2 are shown in Figure 11, while the graphs B4,5,3 and B3,5,2 are shown in
Figure 12, where we write (x, y, z) instead of (ux, vy, wz). We observe that if q = r or q = r + 1,
then Ap,q,r

∼= Bp,q,r
∼= SGp,q,r.
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(1, 1, 1)

(1, 2, 1) (1, 3, 1)
(1, 5, 1)

(1, 2, 2)

(1, 5, 2)

(1, 3, 3) (1, 4, 3)

(1, 5, 3)

(2, 2, 1)
(2, 5, 1)

(2, 2, 2) (2, 5, 2)

(2, 5, 3)

(3, 3, 2)
(3, 5, 2)

(3, 3, 3) (3, 5, 3)

(4, 4, 3) (4, 5, 3)

(1, 1, 1)

(1, 2, 1) (1, 3, 1) (1, 4, 1) (1, 5, 1)

(1, 2, 2) (1, 3, 2) (1, 4, 2) (1, 5, 2)

(2, 2, 1) (2, 5, 1)

(2, 2, 2) (2, 5, 2)

(3, 3, 2) (3, 4, 2) (3, 5, 2)

Figure 11: The graphs A4,5,3 (left) and A3,5,2 (right)

(1, 1, 1)

(1, 2, 1) (1, 3, 1)

(1, 2, 2)

(1, 3, 3) (1, 4, 3)

(1, 5, 3)

(1, 5, 4)

(2, 2, 1)

(2, 5, 3)

(2, 5, 4)

(3, 3, 2)

(3, 5, 3)

(3, 5, 4)

(4, 4, 3) (4, 5, 3)

(4, 5, 4)

(1, 1, 1)

(1, 2, 1)

(1, 2, 2) (1, 3, 2)

(1, 5, 2)

(1, 4, 3)

(1, 5, 3)

(1, 5, 4)

(2, 2, 1)

(2, 5, 2)

(2, 5, 3)

(2, 5, 4)

(3, 3, 2) (3, 4, 2) (3, 5, 2)

(3, 5, 3)

(3, 5, 4)

Figure 12: The graphs B4,5,3 (left) and B3,5,2 (right)

Theorem 4.4. Let k ≥ 1 and q ≥ 2 be integers. Then PDγ(L4k−1,q) ∼= Bk+1,k+q−1,k.

Proof. If q = 2, then L4k−1,q
∼= P4k+1, so PDγ(L4k−1,2) ∼= SGk+1,k+1,k

∼= Bk+1,k+1,k by The-
orem 2.4. Let q ≥ 3. We first find all γpr(L4k−1,q)-sets containing the vertex u1. For each
i ∈ {2, 3, . . . , q}, let P i be the subgraph of L4k−1,q induced by {v1, v2, . . . , v4k−1, u1, ui}, and
then PDγ(P

i) ∼= SGk+1,k+1,k by Theorem 2.4. For all x, y ∈ {1, 2, . . . , k + 1}, z ∈ {1, 2, . . . , k}
with x− y ≤ 0, x− z ≤ 1, y− z ≥ 0 and for each i ∈ {2, 3, . . . , q}, let Di

x,y,z be the γpr(P i)-set at
the position (x, y, z) in SGk+1,k+1,k. By Corollary 2.2, without loss of generality, we may assume
that Di

x,k+1,z contains the pair {u1, ui} and Di
x,y,z contains the pair {v4k−1, u1} for all y ̸= k + 1.

Note that, for y ̸= k + 1, we have Di
x,y,z = Dj

x,y,z for all i, j ∈ {2, 3, . . . , q}, and then we let
Dx,y,z = Di

x,y,z. Note that γpr(P i) = 2k + 2 = γpr(L4k−1,q). Hence, each γpr(P
i)-set is a

γpr(L4k−1,q)-set for all i ∈ {2, 3, . . . , q}. Therefore, Dx,y,z with y ̸= k + 1 is a γpr(L4k−1,q)-set
containing the pair {v4k−1, u1}, and Di

x,k+1,z is a γpr(L4k−1,q)-set containing the pair {u1, ui} for
each i ∈ {2, 3, . . . , q}. We claim that Di

x,k+1,z is adjacent to Dj
x,k+1,z for all i ̸= j. By Corol-

lary 2.2(1), for x, z ∈ {1, 2, . . . , k}, Di
x,k+1,z = (Dx,k,z \ {v4k−1}) ∪ {ui} = [(Dx,k,z \ {v4k−1}) ∪

{uj}] \ {uj} ∪ {ui} = (Dj
x,k+1,z \ {uj}) ∪ {ui}, and Di

k+1,k+1,k = (Dk,k,k \ {v4k−3}) ∪ {ui} =
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[(Dk,k,k \ {v4k−3}) ∪ {uj}] \ {uj} ∪ {ui} = (Dj
k+1,k+1,k \ {uj}) ∪ {ui}. The claim holds. For

each i ∈ {2, 3, . . . , q}, let Dx,k+i−1,z = Di
x,k+1,z. Note that every γpr(L4k−1,q)-set containing u1 is

a γpr(P i)-set for some i ∈ {2, 3, . . . , q}, so all Dx,y,z’s are the only γpr(L4k−1,q)-sets containing u1

and they form a graph Ak+1,k+q−1,k in PDγ(L4k−1,q) (see Figure 11 (left) for k = 3 and q = 2).
We next find all γpr(L4k−1,q)-sets that do not contain the vertex u1. Then such a γpr(L4k−1,q)-

set is a union of a γpr(P4k−1)-set and {ui, uj} for some distinct i, j ∈ {2, 3, . . . , q}. By The-
orem 2.2, PDγ(P4k−1) ∼= Pk+1

∼= D1D2 · · ·Dk+1, where Dx is a γpr(P4k−1)-set for all x ∈
{1, 2, . . . , k + 1}. By Lemma 2.3, without loss of generality, we may assume that Dk+1 contains
the pair {v4k−2, v4k−1}. For all x ∈ {1, 2, . . . , k + 1} and 2 ≤ i < j ≤ q, let Di,j

x = Dx ∪ {ui, uj}.
Thus, for each pair of i and j, the sets Di,j

1 , Di,j
2 , . . . , Di,j

k+1 are the only γpr(L4k−1,q)-sets containing
the pair {ui, uj} and they form a path in PDγ(L4k−1,q). By Corollary 2.1, for all x ∈ {1, 2, . . . , k}
and 2 ≤ i < j ≤ q,

Di,j
x = Dx ∪ {ui, uj} = Sx ∪ {v4k−3, v4k−2, ui, uj},

where Sx is a γpr(P4k−5)-set and especially Sk contains the pair {v4k−6, v4k−5}, and

Di,j
k+1 = Dk+1 ∪ {ui, uj} = Sk ∪ {v4k−2, v4k−1, ui, uj}.

For all x ∈ {1, 2, . . . , k + 1} and i ∈ {2, 3, . . . , q}, let D1,i
x = Dx,k+i−1,k = Di

x,k+1,k. By
Corollary 2.2(2), for all x ∈ {1, 2, . . . , k} and i ∈ {2, 3, . . . , q}, we have

D1,i
x = Di

x,k+1,k = S ′
x ∪ {v4k−3, v4k−2, u1, ui},

where S ′
x is a γpr(P4k−5)-set and particularly S ′

k contains the pair {v4k−6, v4k−5}, and

D1,i
k+1 = Di

k+1,k+1,k = S ′
k ∪ {v4k−2, v4k−1, u1, ui}.

By Lemma 2.3, we get Sk = S ′
k. Theorem 2.2 shows that Sx = S ′

x for all x ∈ {1, 2, . . . , k}.
Therefore, for each x ∈ {1, 2, . . . , k + 1}, all Di,j

x ’s with 1 ≤ i < j ≤ q form a graph Aq−1 in
PDγ(L4k−1,q) (see Figure 13).

Let D = {Di,j
x : 1 ≤ x ≤ k + 1, 2 ≤ i < j ≤ q}. Note that Dx,y,z with y ≤ k does

not contain u2, u3, . . . , uq, so it is not adjacent to any set in D. By Corollary 2.2(3), for each
i ∈ {2, 3, . . . , q}, Dx,k+i−1,z = Di

x,k+1,z with z < k contains the pairs {v4k−4, v4k−3}, {u1, ui}, so
(Dx,k+i−1,z \ {u1})∪ {uj} is not a dominating set for all j ̸= 1. This implies that Dx,k+i−1,z is not
adjacent to any set in D. Therefore, all γpr(L4k−1,q)-sets form a graph Bk+1,k+q−1,k.

5. γ-Paired Dominating Graphs of Umbrella Graphs and Coconut Graphs

Let p and q be positive integers. If q = 1, then Up,q
∼= Pp+1

∼= Cp,q, and thus PDγ(Up,q) and
PDγ(Cp,q) can be obtained from Theorems 2.1 - 2.4. Let q ≥ 2. If p = 4k + 2 for some k ≥ 0,
then it is easy to check that {v4i+2, v4i+3 : 0 ≤ i ≤ k − 1} ∪ {v4k+2, u1} is the only γpr(Up,q)-set
and the only γpr(Cp,q)-set, so we get the following theorem immediately.

Theorem 5.1. Let k ≥ 0 and q ≥ 2 be integers. Then PDγ(U4k+2,q) ∼= P1
∼= PDγ(C4k+2,q).
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D1,2
x D1,3

x D1,4
x D1,q

x

D2,3
x D2,q

x

D3,4
x D3,q

x

Dq−1,q
x

Figure 13: The graph Aq−1 formed by all Di,j
x ’s with 1 ≤ i < j ≤ q

Lemma 5.1. Let k ≥ 0 and q ≥ 2 be integers. Then each γpr(U4k+1,q)-set contains the vertex u1.

Proof. If q = 2, then u1 is a support vertex of U4k+1,q, so this lemma holds by Lemma 2.1. Let
q ≥ 3 and suppose that there is a γpr(U4k+1,q)-set D such that u1 /∈ D. Then D must contain at
least two vertices from {u2, u3, . . . , uq}. Recall that |D| = 2k + 2, so at most 2k vertices of D
must dominate all vertices in P4k+1, which is impossible.

Theorem 5.2. Let k ≥ 0 and q ≥ 2 be integers. Then PDγ(U4k+1,q) ∼= Lk,q
∼= PDγ(C4k+1,q).

Proof. By Theorem 3.1, γpr(U4k+1,q) = γpr(L4k+1,q) = γpr(C4k+1,q). Lemmas 2.1 and 5.1 im-
ply that every γpr(C4k+1,q)-set and every γpr(U4k+1,q)-set contains either the pair {v4k+1, u1} or
{u1, ui} where i ̸= 1. We follow the steps in the proof of Theorem 4.2, so we are done.

Let k ≥ 1 be an integer. If q ∈ {2, 3}, then U4k,q
∼= L4k,q, and hence PDγ(U4k,q) ∼= Bk+1,k+q−1

by Theorem 4.3. Let q ≥ 4. Note that every γpr(U4k,q)-set is a γpr(L4k,q)-set, but the converse need
not be true for some γpr(L4k,q)-set that does not contain u1. From the proof of Theorem 4.3, we
know that each γpr(L4k,q)-set that does not contain u1 is Di,j = D ∪ {ui, uj}, where D is a
γpr(P4k)-set and 2 ≤ i < j ≤ q. Similarly, each γpr(U4k,q)-set that does not contain u1 is of
the form D ∪ {ui, uj} for some 2 ≤ i < j ≤ q. For q = 4, we have D2,4 is a γpr(L4k,4)-set
but not a γpr(U4k,4)-set, so PDγ(U4k,4) ∼= PDγ(L4k,4) − {D2,4}. For q = 5, only D3,4 is a
γpr(U4k,5)-set among all γpr(L4k,5)-sets containing the pair {ui, uj} where 2 ≤ i < j ≤ 5, and
thus PDγ(U4k,5) ∼= PDγ(L4k,5)− {D2,3, D2,4, D2,5, D3,5, D4,5}.

Corollary 5.1. Let k ≥ 1 and q ≥ 6 be integers. Then PDγ(U4k,q) ∼= Ak+1,k+q−1.

Proof. Recall that γpr(U4k,q) = γpr(L4k,q). Similar to Lemma 5.1, we can prove that each γpr(U4k,q)-
set contains u1, and then it contains either the pair {v4k, u1} or {u1, ui} where i ̸= 1. Then we
follow the first two paragraphs of the proof in Theorem 4.3.

By Lemma 2.1, each γpr(C4k,q)-set contains u1. Again, we follow the first two paragraphs of
the proof in Theorem 4.3, so we get the following corollary.

Corollary 5.2. Let k ≥ 1 and q ≥ 2 be integers. Then PDγ(C4k,q) ∼= Ak+1,k+q−1.
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Let k ≥ 1 be an integer. By Theorem 4.4, we get that PDγ(U4k−1,q) ∼= PDγ(L4k−1,q) ∼=
Bk+1,k+q−1,k for q ∈ {2, 3}. Let q ≥ 4. In the proof of Theorem 4.4, we know Di,j

1 , Di,j
2 , . . . , Di,j

k+1

are the only γpr(L4k−1,4)-sets containing the pair {ui, uj} where 2 ≤ i < j ≤ q. Note that
D2,4

1 , D2,4
2 , . . . , D2,4

k+1 are not γpr(U4k−1,4)-sets, so PDγ(U4k−1,4) ∼= PDγ(L4k−1,4) − {D2,4
x : 1 ≤

x ≤ k + 1}. Among all γpr(L4k−1,5)-sets containing the pair {ui, uj} for 2 ≤ i < j ≤ 5,
only D3,4

1 , D3,4
2 , . . . , D3,4

k+1 are γpr(U4k−1,5)-sets, so we get that PDγ(U4k−1,5) ∼= PDγ(L4k−1,5) −
{D2,3

x , D2,4
x , D2,5

x , D3,5
x , D4,5

x : 1 ≤ x ≤ k + 1}.
We can easily check that γpr(U4k−1,q) = γpr(L4k−1,q) = γpr(C4k−1,q), every γpr(U4k−1,q)-set

contains u1 for q ≥ 6, and every γpr(C4k−1,q)-set contains u1 for q ≥ 2. We can obtain the
following results by repeating the steps of proof in Theorem 4.4 (first paragraph).

Corollary 5.3. Let k ≥ 1 and q ≥ 6 be integers. Then PDγ(U4k−1,q) ∼= Ak+1,k+q−1,k.

Corollary 5.4. Let k ≥ 1 and q ≥ 2 be integers. Then PDγ(C4k−1,q) ∼= Ak+1,k+q−1,k.
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