On the construction of super edge-magic total graphs

Darmajia, S. Wahyudia, Rinurwatia, S.W. Saputrob

aDepartment of Mathematics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
bDepartment of Mathematics, Institut Teknologi Bandung, Jl.Ganesa 10 Bandung, Indonesia

\{darmaji, suhud, rinur\}@matematika.its.ac.id; suhadi@math.itb.ac.id

Abstract

Suppose $G = (V, E)$ be a simple graph with p vertices and q edges. An edge-magic total labeling of G is a bijection $f : V \cup E \rightarrow \{1, 2, \ldots, p+q\}$ where there exists a constant r for every edge xy in G such that $f(x) + f(y) + f(xy) = r$. An edge-magic total labeling f is called a super edge-magic total labeling if for every vertex $v \in V(G)$, $f(v) \leq p$. The super edge-magic total graph is a graph which admits a super edge-magic total labeling. In this paper, we consider some families of super edge-magic total graph G. We construct several graphs from G by adding some vertices and edges such that the new graphs are also super edge-magic total graphs.

Keywords: edge-magic total labeling, super edge-magic total graph, super edge-magic total labeling

Mathematics Subject Classification: 05C78

DOI: 10.5614/ejgta.2022.10.1.21

1. Introduction

We assume that all graphs in this paper are simple and finite. Let $G = (V, E)$ be a graph with p vertices and q edges. Let f be a bijection function defined as $f : V \cup E \rightarrow \{1, 2, \ldots, p+q\}$. Ringel and Llado \cite{16} provided the definition that the function f is called an edge-magic total labeling if there exists a constant r for every edge xy in G such that the weight of the edge $f(x) + f(y) + f(xy) = r$. We can say the constant r as a magic constant of f. Wallis \cite{18} then called a graph G admitting an edge-magic labeling as an edge-magic total graph.
The edge-magic total concept was introduced by Kotzig and Rosa [10, 11]. They proved that complete bipartite graphs $K_{m,n}$ ($m, n \geq 1$) and cycles C_n ($n \geq 3$) are edge-magic total graphs. They also proved that a complete graph K_n is edge-magic total graph if and only if $n = 1, 2, 3, 4, 5$ or 6; and the disjoint union of n copies of P_2 has an edge-magic total labeling if and only if n is odd. Interested readers are referred to a number of relevant literature that are mentioned in the bibliography section, including [1, 8, 14, 16, 17].

In this paper, we consider an edge-magic total labeling of G where the p smallest labels are given to $V(G)$. Enomoto et al. [3] defined this version of edge-magic total labeling as a super edge-magic total labeling. If there exists a super edge-magic total labeling in a graph G, then G is called as a super edge-magic total graph.

Enomoto et al. [3] proved that caterpillars are super edge-magic total. They also determined that a complete graph K_n is super edge-magic total if and only if $n = 1, 2, 3, 4, 5$ or 6; and a complete bipartite graph $K_{m,n}$ is super edge-magic total if and only if $m = 1$ or $n = 1$. Enomoto et al. also proved that odd cycles are super edge-magic total. Some other results on super edge-magic total graph can be seen in [4, 5, 6, 7, 8, 9, 15].

The following properties are useful to show whether a graph G is super edge-magic total or not. A graph $G = (V, E)$ is super edge-magic total graph if there exists a vertex labeling that causes a consecutive labeling.

Lemma 1.1. [2, 6] A graph G is super edge-magic total if and only if there is a vertex labeling f such that $f(V(G))$ and $\{f(u) + f(v) \mid uv \in E(G)\}$ are both consecutive.

In this case, in order to show that graph G is super edge-magic total graph, it is simply indicated by taking a bijection of vertex labeling $f : V \rightarrow \{1, 2, \ldots, p\}$ where $\{f(u) + f(v) \mid uv \in E(G)\}$ is consecutive. The vertex labeling f can be extended to be a total labeling by defining $f(uv) = p + q + \min\{f(u) + f(v) \mid uv \in E(G)\} - f(u) - f(v)$ for every edge $uv \in E(G)$. So that, the total labeling f is a super edge-magic total labeling of G.

In this paper, we will construct some families of super edge-magic total graph which obtained from a known super edge-magic total graph. We obtain four results. First theorem is related to a path P_n. Lee and Lee [12] have provided a construction on a path P_2 such that a new graph is super edge-magic total. In this paper, we generalized such construction on a path P_{2n} ($n \geq 1$).

The second result is related to disjoint union graph and joint product graphs. For graphs G and H, a disjoint union graph $G \cup H$ is a graph with vertex set $V(G) \cup V(H)$ and an edge set $E(G) \cup E(H)$. A joint product graph of G and H, denoted by $G \times H$, is a graph with $V(G \times H) = V(G) \cup V(H)$ and $E(G \times H) = E(G) \cup E(H) \cup \{uv \mid u \in V(G), v \in V(H)\}$. For any super edge-magic total graphs G, we construct a new graph from G by using disjoint union and joint product with some graphs, such that a new graph is also super edge-magic total.

For the third result, we define graph $G(+P_m(+H))$ where $m \geq 2$ as a graph obtained by taking one copy of the graphs G and H and a path P_m, then connect an end point of P_m to all vertices of G and the other end point of P_m to all vertices of H. For any super edge-magic total graphs G, we provide some graphs H such that $G(+P_m(+H))$ is also super edge-magic total. The last result is a construction of a super edge-magic total graph from a super edge-magic total graph by considering a super edge-magic labeling of the origin graph.
2. Main Results

In this section, we provide some constructions to obtain a new super edge-magic total graph which obtained from a super edge-magic total graph.

First, we consider a path P_n ($n \geq 2$). López et al. [13] have proved that paths are super edge-magic total. Now, we define a graph $(P_n \cup hK_1)(+2K_1)$ ($h \geq 1$), which is a graph obtained by taking one copy of a path P_n, h copies of K_1, and two isolated vertices ($2K_1$), then connect all end points of P_n and all vertices of h copies of K_1 to both two vertices of $2K_1$. We can say that $V((P_n \cup hK_1)(+2K_1)) = V(P_n) \cup V(hK_1) \cup V(2K_1)$ and $E((P_n \cup hK_1)(+2K_1)) = E(P_n) \cup \{uv \mid u \in V(hK_1) \text{ or } u \text{ is an end point of } P_n; v \in V(2K_1)\}$. In [12], Lee and Lee have proved that $(P_2 \cup hK_1)(+2K_1)$ ($h \geq 1$) are super edge-magic total. In the following theorem, we generalize Lee and Lee construction on a path P_{2n} ($n \geq 1$).

Theorem 2.1. For integers $h, n \geq 1$, graphs $(P_{2n} \cup hK_1)(+2K_1)$ are super edge-magic total.

![Figure 1. Graph $(P_{2n} \cup hK_1)(+2K_1)$.](image)

Proof of Theorem 2.1. Let $V(hK_1) = \{x_i \mid 1 \leq i \leq h\}$, $V(2K_1) = \{y_1, y_2\}$, $V(P_{2n}) = \{z_i \mid 1 \leq i \leq 2n\}$, and $E(P_{2n}) = \{z_i z_{i+1} \mid 1 \leq i \leq 2n - 1\}$. It is easy to verify that $(P_{2n} \cup hK_1)(+2K_1)$ has $2n + h + 2$ vertices and $2n + 2h + 3$ edges.

Now, we define a vertex labeling $f : V((P_{2n} \cup hK_1)(+2K_1)) \to \{1, 2, \ldots, 2n + h + 2\}$ where for $v \in V((P_{2n} \cup hK_1)(+2K_1))$,

$$f(v) = \begin{cases}
1, & \text{if } v = y_1, \\
2n + h + 2, & \text{if } v = y_2, \\
1 + i, & \text{if } v = z_{2i} \text{ with } 1 \leq i \leq n, \\
n + 1 + h + i, & \text{if } v = z_{2i-1} \text{ with } 1 \leq i \leq n, \\
n + 1 + i, & \text{if } v = x_i \text{ with } 1 \leq i \leq h.
\end{cases}$$

By the labeling above, we obtain that for $uv \in E((P_{2n} \cup hK_1)(+2K_1))$:

- If $u = y_1$, since v is an end point of P_{2n} or an element of $V(hK_1)$ then $\{f(u) + f(v)\} = \{1 + f(v)\} = \{n + 2, n + 3, \ldots, n + h + 3\}$.
• If \(u, v \in V(P_{2n}) \), then \(\{f(u) + f(v)\} = \{f(z_{2i-1}) + f(z_{2i}) \mid 1 \leq i \leq n\} \cup \{f(z_{2i}) + f(z_{2i+1}) \mid 1 \leq i \leq n-1\} = \{n+h+4, n+h+6, \ldots, 3n+h+2\} \cup \{n+h+5, n+h+7, \ldots, 3n+h+1\} = \{n+h+4, n+h+5, \ldots, 3n+h+2\}.

• If \(u = y_2 \), since \(v \) is an end point of \(P_{2n} \) or an element of \(V(hK_1) \) then \(\{f(u) + f(v)\} = \{2n + h + 2 + f(v)\} = \{3n + h + 3, 3n + h + 4, \ldots, 3n + 2h + 4\}. \)

Therefore, \(\{f(u) + f(v) \mid uv \in E((P_{2n} \cup hK_1)(+2K_1))\} \) is a consecutive sequence. By Lemma 1.1, the graph \((P_{2n} \cup hK_1)(+2K_1)\) is a super edge-magic total graph.

Before we continue to the next constructions, we need to show the following property of a super edge-magic total labeling.

Lemma 2.1. Let \(G \) be a connected graph with \(m \geq 2 \) vertices. Let \(f \) be a super edge-magic total labeling of \(G \). Then \(\max\{f(u) + f(v) \mid uv \in E(G)\} \geq m + 1 \).

Proof. Suppose that \(\max\{f(u) + f(v) \mid uv \in E(G)\} \leq m \). Since \(G \) is connected, a vertex \(u \) with \(f(u) = m \) will be adjacent to another vertex \(v \). So, \(f(u) + f(v) = m + f(v) \geq m + 1 \), a contradiction.

In the following theorem, we give a construction of a super edge-magic total graph obtained from any super edge-magic total graphs by applying disjoint union and joint product to an origin graph.

Theorem 2.2. Let \(G_m \) be a connected graph with \(m \geq 3 \) vertices. Let \(f \) be a super edge-magic total labeling of \(G_m \). If \(k = \max\{f(u) + f(v) \mid uv \in E(G_m)\} \), then \((G_m \cup (k-m-1)K_1) + K_1\) is a super edge-magic total graph.

![Graph](image_url)

Figure 2. Graph \((G_m \cup (k-m-1)K_1) + K_1\) where: (a) \(k = m + 1 \); (b) \(k \geq m + 2 \).

Proof. Let \(H = (G_m \cup (k-m-1)K_1) + K_1 \). By considering Lemma 2.1, we obtain \(k-m-1 \geq 0 \). In case \(k-m-1 = 0 \), we have \(H = (G_m \cup (k-m-1)K_1) + K_1 = G_m + K_1 \). We define \(V((k-m-1)K_1) = \{x_i \mid 1 \leq i \leq k-m-1\} \). Note that \((k-m-1)K_1\) is a graph
without edges. Thus, we can say that \(V(H) = V(G_m) \cup V((k - m - 1)K_1) \cup \{y\} \). Meanwhile,
\(E(H) = E(G_m) \cup \{uy \mid u \in V(G_m \cup (k - m - 1)K_1)\} \). It is easy to see that \(|V(H)| = k \) and
\(|E(H)| = |E(G_m)| + k - 1 \).

Let \(f \) be a super edge-magic labeling of \(G_m \) where \(k = \max\{f(u) + f(v) \mid uv \in E(G_m)\} \).
Note that for \(v \in V(G_m) \), \(f(v) \in \{1, 2, \ldots, m\} \). Now, we define a vertex labeling \(g : V(H) \to \{1, 2, \ldots, k\} \) where for \(v \in V(H) \),

\[
g(v) = \begin{cases}
 f(v), & \text{if } v \in V(G_m), \\
 k, & \text{if } v = y, \\
 m + i, & \text{if } v = x_i \text{ with } 1 \leq i \leq k - m - 1.
\end{cases}
\]

By the labeling above, we obtain that for \(uv \in E(H) \):

- If \(u, v \in V(G_m) \), since \(f \) is a super edge-magic labeling of \(G_m \), then \(\{g(u) + g(v)\} = \{f(u) + f(v)\} \) is a consecutive sequence, whose greatest element is \(k \).
- If \(u \in V(G_m) \) and \(v = y \), then \(\{g(u) + g(v)\} = \{g(u) + k\} = \{k + 1, k + 2, \ldots, k + m\} \).
- If \(u \in V((k - m - 1)K_1) \) and \(v = y \), then \(\{g(u) + g(v)\} = \{g(u) + k\} = \{k + m + 1, k + m + 2, \ldots, 2k - 1\} \).

Therefore, \(\{g(u) + g(v) \mid uv \in E(H)\} \) is a consecutive sequence. By Lemma 1.1, the graph \(H \) is a super edge-magic total graph.

Now, let us consider the graph \(G(+)P_m(+)H \) where \(m \geq 2 \). Let \(u \) and \(v \) be two end points of the path \(P_m \). Then we can write \(V(G(+)P_m(+)H) = V(G) \cup V(P_m) \cup V(H) \) and
\(E(G(+)P_m(+)H) = E(G) \cup E(P_m) \cup E(H) \cup \{ux, vy \mid x \in V(G); y \in V(H)\} \). Thus,
\(|V(G(+)P_m(+)H)| = |V(G)| + |V(P_m)| + |V(H)| \) and \(|E(G(+)P_m(+)H)| = |E(G)| + |E(P_m)| + |E(H)| + |V(G)| + |V(H)| \).

Theorem 2.3. Let \(G_m \) be a connected graph with \(m \geq 3 \) vertices. Let \(f \) be a super edge-magic total labeling of \(G_m \) and \(m + k = \max\{f(u) + f(v) \mid uv \in E(G_m)\} \). Then for \(k \geq 2 \) and \(n \geq 1 \), the graph \(G_m(+)P_{2k-2}(+)nK_1 \) is a super edge-magic total graph.

![Figure 3. Graph $G_m(+)P_{2k-2}(+)nK_1$.](image-url)
Proof of Theorem 2.3. Let $H = G_m (+) P_{2k−2}(+) nK_1$ where $n \geq 1$. It is easy to see that $|V(H)| = m + n + 2k − 2$ and $|E(H)| = |E(G_m)| + m + n + 2k − 3$. We define $V(nK_1) = \{x_i \mid 1 \leq i \leq n\}$. Note that nK_1 is a graph without edges. Let $V(P_{2k−2}) = \{z_i \mid 1 \leq i \leq 2k − 2\}$ and $E(P_{2k−2}) = \{z_i z_{i+1} \mid 1 \leq i \leq 2k − 3\}$. We assume that z_1 and $z_{2k−2}$ is adjacent to all vertices of G_m and nK_1, respectively.

Let f be a super edge-magic labeling of G_m. By considering Lemma 2.1, we have $\max\{f(u) + f(v) \mid uv \in E(G_m)\} \geq m + 1$. Now, we assume that $\max\{f(u) + f(v) \mid uv \in E(G_m)\} = m + k \geq m + 2$. Note that for $v \in V(G_m)$, $f(v) \in \{1, 2, \ldots, m\}$. Define a vertex labeling $g : V(H) \rightarrow \{1, 2, \ldots, m + n + 2k − 2\}$ where for $v \in V(H)$,

$$g(v) = \begin{cases} f(v), & \text{if } v \in V(G_m), \\ m + i, & \text{if } v = z_{2i} \text{ where } 1 \leq i \leq k - 1, \\ m + k + i, & \text{if } v = z_{2i+1} \text{ where } 0 \leq i \leq k - 2, \\ m + 2k - 2 + i, & \text{if } v = x_i \text{ with } 1 \leq i \leq n. \end{cases}$$

By the labeling above, we obtain that for $uv \in E(H)$:

- If $u, v \in V(G_m)$, since f is a super edge-magic labeling of G_m, then $\{g(u) + g(v)\} = \{f(u) + f(v)\}$ is a consecutive sequence, whose greatest element is $m + k$.
- if $u \in V(G_m)$ and $v = z_1$, then $\{g(u) + g(v)\} = \{g(u) + (m + k)\} = \{m + k + 1, m + k + 2, \ldots, 2m + k\}$.
- if $u, v \in P_{2k−2}$, then $\{g(u) + g(v)\} = \{2m + k + 1, 2m + k + 2, \ldots, 2m + 3k - 3\}$.
- if $u \in V(nK_1)$ and $v = z_{2k−2}$, then $\{g(u) + g(v)\} = \{g(u) + (m + k - 1)\} = \{2m + 3k - 2, 2m + 2k - 1, \ldots, 2m + 3k - 3 + n\}$.

Therefore, $\{g(u) + g(v) \mid uv \in E(H)\}$ is a consecutive sequence. By Lemma 1.1, the graph H is a super edge-magic total graph.

In the last theorem below, we will construct a super edge-magic total graph from a super edge-magic total graph by considering a super edge-magic labeling of the origin graph.

Theorem 2.4. Let G_m be a connected graph with $m \geq 3$ vertices. Let f be a super edge-magic total labeling of G_m. Let $F = \{f(u) + f(v) \mid uv \in E(G_m)\}$. For $ab \in E(G_m)$, let $f(a) + f(b) = \min(F)$ where $f(a) < f(b)$, $\max(F) = m + k$, and for $c \in V(G_m)$, $f(c) = k$.

1. For $f(a) = 1$, let G^*_m be a graph obtained by taking one copies of G_m and nK_1 where $n \geq 1$, then connect all vertices of nK_1 to b. Then G^*_m is a super edge-magic total graph.
2. Let G^{**}_m be a graph obtained by taking one copies of G_m and nK_1 where $n \geq 1$, then connect all vertices of nK_1 to c. Then G^{**}_m is a super edge-magic total graph.

Proof. Let f be a super edge-magic labeling of G_m. Let $F = \{f(u) + f(v) \mid uv \in E(G_m)\}$. For $ab \in E(G_m)$, let $f(a) + f(b) = \min(F)$ where $f(a) < f(b)$. By considering Lemma 2.1, let $\max(F) = m + k$ and for $c \in V(G_m)$, $f(c) = k$.

www.ejgta.org
We define \(V(nK_1) = \{x_i \mid 1 \leq i \leq n\} \). Note that \(nK_1 \) is a graph without edges. Let \(H \in \{G_m^*, G_m^{**}\} \). So, \(V(H) = V(G_m) \cup V(nK_1) \). It is easy to see that \(|V(H)| = m + n \). In the other hand, \(E(G_m^*) = E(G_m) \cup \{bu \mid u \in V(nK_1)\} \) and \(E(G_m^{**}) = E(G_m) \cup \{cu \mid u \in V(nK_1)\} \). Thus, we can verify that \(|E(H)| = |E(G_m)| + n \). We distinguish two cases.

Case 1. \(H = G_m^* \)

So, \(f(a) = 1 \). Now, we define a vertex labeling \(g: V(H) \rightarrow \{1, 2, \ldots, m + n\} \) where for \(v \in V(H) \),

\[
g(v) = \begin{cases}
 i, & \text{if } v = x_i, \\
 f(v) + n, & \text{if } v \in V(G_m).
\end{cases}
\]

By the labeling above, we obtain that for \(uv \in E(H) \):

- If \(u \in V(nK_1) \) and \(v = b \), then \(\{g(u) + g(v)\} = \{g(u) + (f(b) + n)\} = \{f(b) + n + 1, f(b) + n + 2, \ldots, f(b) + 2n\} \).

- If \(u, v \in V(G_m) \), since \(f \) is a super edge-magic labeling of \(G_m \), then \(\{g(u) + g(v)\} = \{(f(u) + n) + (f(v) + n)\} = \{f(u) + f(v) + 2n\} \) is a consecutive sequence, whose least element is \(f(b) + 2n + 1 \).

Therefore, \(\{g(u) + g(v) \mid uv \in E(H)\} \) is a consecutive sequence. By Lemma 1.1, the graph \(H \) is a super edge-magic total graph.

Case 2. \(H = G_m^{**} \)

Now, we define a vertex labeling \(h: V(H) \rightarrow \{1, 2, \ldots, m + n\} \) where for \(v \in V(H) \),

\[
h(v) = \begin{cases}
 f(v), & \text{if } v \in V(G_m), \\
 m + i, & \text{if } v = x_i.
\end{cases}
\]

By the labeling above, we obtain that for \(uv \in E(H) \):

- If \(u, v \in V(G_m) \), since \(f \) is a super edge-magic labeling of \(G_m \), then \(\{g(u) + g(v)\} = \{f(u) + f(v)\} \) is a consecutive sequence, whose greatest element is \(m + k \).

- If \(u \in V(nK_1) \) and \(v = c \), then \(\{g(u) + g(v)\} = \{g(u) + k\} = \{m + k + 1, m + k + 2, \ldots, m + k + n\} \).

Therefore, \(\{g(u) + g(v) \mid uv \in E(H)\} \) is a consecutive sequence. By Lemma 1.1, the graph \(H \) is a super edge-magic total graph.

An illustration of graphs \(G_m^* \) and \(G_m^{**} \) of a super edge-magic total graph \(G_m \) with \(m \geq 3 \) vertices can seen in Figure 4 below. Let \(G_m \) be a super edge-magic total graph with \(m \geq 3 \) vertices where \(V(G_m) = \{z_i \mid 1 \leq i \leq m\} \) and \(f \) be a super edge-magic labeling of \(G_m \). Let \(F = \{f(z_p) + f(z_q) \mid uv \in E(G_m)\} \). In figure below, we assume that \(f(z_p) + f(z_q) = \min(F) \) where \(f(z_p) < f(z_q) \). Thus, it is clear that \(a = z_p \) and \(b = z_q \). Let \(\max(F) = m + k \) and \(f(z_r) = k \). Therefore, we have \(c = z_r \). Note that it is possible to have either vertex \(c = a \) or \(c = b \), where \(k = 1 \) or \(k = f(z_q) \), respectively.
On the construction of super edge-magic total graphs | Darmaji et al.

Figure 4. Graphs G_m^* (left) and G_m^{**} (right).

Acknowledgement

This paper was partially supported by the Department of Mathematics, Faculty of Science and Data Analysis, Institut Teknologi Sepuluh Nopember, Ministry of Education, Culture, Research and Technology, No: 1586/PKS/ITS/2020 and by "Riset P2MI FMIPA ITB".
The authors are thankful to the anonymous referees for some comments that helped to improve the presentation of the manuscript.

References

308

