Lower and upper bounds on independent double Roman domination in trees

M. Kheibaria, H. Abdollahzadeh Ahangarb*, R. Khoeilara, S.M. Sheikholeslamia

aDepartment of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
bDepartment of Mathematics, Babol Noshirvani University of Technology, Shariati Ave., Babol, I.R. Iran

m.kheibari@azaruniv.ac.ir, ha.ahangar@nit.ac.ir, khoeilar@azaruniv.ac.ir, s.m.sheikholeslami@azaruniv.ac.ir

*corresponding author

Abstract

For a graph $G = (V, E)$, a double Roman dominating function (DRDF) $f : V \to \{0, 1, 2, 3\}$ has the property that for every vertex $v \in V$ with $f(v) = 0$, either there exists a neighbor $u \in N(v)$, with $f(u) = 3$, or at least two neighbors $x, y \in N(v)$ having $f(x) = f(y) = 2$, and every vertex with value 1 under f has at least a neighbor with value 2 or 3. The weight of a DRDF is the sum $f(V) = \sum_{v \in V} f(v)$. A DRDF f is an independent double Roman dominating function (IDRDF) if the vertices with weight at least two form an independent set. The independent double Roman domination number $i_{dR}(G)$ is the minimum weight of an IDRDF on G. In this paper, we show that for every tree T with diameter at least three, $i(T) + i_R(T) - \frac{s(T)}{2} + 1 \leq i_{dR}(T) \leq i(T) + i_R(T) + s(T) - 2$, where $i(T)$, $i_R(T)$ and $s(T)$ are the independent domination number, the independent Roman domination number and the number of support vertex of T, respectively.

Keywords: double Roman domination, independent double Roman dominating function, independent double Roman domination number

Mathematics Subject Classification: 05C69, 05C05

DOI: 10.5614/ejgta.2022.10.2.8

26 March 2021, Revised: 16 April 2022, Accepted: 6 May 2022.
1. Introduction

In a graph \(G = (V, E) \), the open neighborhood of a vertex \(v \in V \) is \(N(v) = \{u \in V \mid uv \in E\} \), and the closed neighborhood is \(N(v) \cup \{v\} \). The degree of a vertex \(v \) denoted by \(\deg_G(v) \) is the cardinality of its open neighborhood. The maximum degree of a graph \(G \) is denoted by \(\Delta = \Delta(G) \). A leaf of a tree \(T \) is a vertex of degree one, while a support vertex of \(T \) is a vertex adjacent to a leaf. A strong support vertex is a support vertex adjacent to at least two leaves. We denote the set of leaves and support of \(G \) by \(L(G) \) and \(S(G) \), respectively. The distance between two vertices \(u \) and \(v \) in a connected graph \(G \) is the length of a shortest \(uv \)-path in \(G \). The diameter of \(G \), denoted by \(\text{diam}(G) \), is the maximum value among minimum distances between all pairs of vertices of \(G \).

For a vertex \(v \) in a rooted tree \(T \), let \(C(v) \) and \(D(v) \) denote the set of children and descendants of \(v \), respectively and let \(D[v] = D(v) \cup \{v\} \). Also, the depth of \(v \), \(\text{depth}(v) \), is the largest distance from \(v \) to a vertex in \(D(v) \). The maximal subtree \(T_v \) at \(v \) is the subtree of \(T \) induced by \(D[v] \). A double star \(DS_{p,q} \) is a tree containing exactly two vertices that are not leaves, where one of which is adjacent to \(p \) leaves and the other is adjacent to \(q \) leaves. A healthy spider is a tree obtained from the star \(K_{1,k} \) for \(k \geq 2 \) by subdividing each edge once, while a wounded spider \(S_{k,t} \) is obtained from a star \(K_{1,k} \) by subdividing \(t \) edges exactly once, where \(1 \leq t \leq k - 1 \).

A set \(S \subseteq V \) is a dominating set of \(G \) if every vertex \(V - S \) has a neighbor in \(S \). The independent domination number \(i(G) \) is the minimum cardinality of a set that is both independent and dominating.

A function \(f : V(G) \to \{0, 1, 2\} \) is a Roman dominating function (RDF) on \(G \) if every vertex \(u \in V \) for which \(f(u) = 0 \) is adjacent to at least one vertex \(v \) with \(f(v) = 2 \). The weight of an RDF \(f \) is \(f(V(G)) = \sum_{u \in V(G)} f(u) \). Roman domination was introduced by Cockayne et al. in [14], and has been intensively studied in recent years [2, 3, 6, 11, 15, 19].

An independent Roman dominating function (IRDF) on \(G \) is an RDF such that the set \(\{u \in V(G) \mid f(u) \geq 1\} \) is independent set. The independent Roman domination number \(i_{R}(G) \) is the minimum weight of an IRDF on \(G \). The concept of independent Roman dominating function was first defined in [14] and studied by several authors, see [12, 13].

In [10], Beeler et al. introduced double Roman domination defined as follows. A double Roman dominating function (DRDF) on \(G \) is a function \(f : V \to \{0, 1, 2, 3\} \) having the property that if \(f(v) = 0 \), then vertex \(v \) has at least two neighbors assigned 2 under \(f \) or one neighbor \(w \) with \(f(w) = 3 \), and if \(f(v) = 1 \), then vertex \(v \) has at least one neighbor \(w \) with \(f(w) \geq 2 \). The double Roman domination number \(\gamma_{dR}(G) \) is the minimum weight of a DRDF on \(G \). For a DRDF \(f \), let \(V_i = \{v \in V \mid f(v) = i\} \) for \(i = 0, 1, 2, 3 \). Since these four sets determine \(f \), we can equivalently write \(f = (V_0, V_1, V_2, V_3) \) (or \(f = (V_0^f, V_1^f, V_2^f, V_3^f) \) to refer \(f \)). We note that \(\omega(f) = |V_0| + |V_2| + 3|V_3| \). Double Roman domination is studied for example in [1, 4, 5, 8, 9, 16, 18, 21, 22, 23], and elsewhere.

A DRDF \(f = (V_0, V_1, V_2, V_3) \) is an independent double Roman dominating function (IDRDF) if \(V_2 \cup V_3 \) is an independent set. The independent double Roman domination number \(i_{dR}(G) \) is the minimum weight of an IDRDF on \(G \). Clearly, for all \(G \) we have the following,

\[
\gamma_{dR}(G) \leq i_{dR}(G).
\]
In this paper, we prove that for any tree \(T \) with diameter at least three,
\[
i(T) + i_R(T) - \frac{s(T)}{2} + 1 \leq i_{dR}(T) \leq i(T) + i_R(T) + s(T) - 2.
\]

We make use of the following results in this paper.

Proposition A ([17]). Let \(G \) be a graph. There exists an \(i_{dR} \)-function \(f = (V_0, V_1, V_2, V_3) \) such that \(V_1 = \emptyset \).

By Proposition A, we assume no vertex needs to be assigned the value 1 for any \(i_{dR}(G) \)-function \(f \).

Proposition B ([17]). Let \(T \) be a tree of order \(n \geq 3 \). Then

1. \(T \) has an \(i_{dR}(T) \)-function \(f = (V_0, \emptyset, V_2, V_3) \) such that \(L(T) \cap V_3 = \emptyset \).
2. For any IDRDF \(f = (V_0, \emptyset, V_2, V_3) \) of \(T \), \(V_2 \cap S(T) = \emptyset \).

Proposition C ([20]). Let \(T \) be a tree of order at least three. Then

1. \(T \) has an \(i_R(T) \)-function \(f = (V_0, V_1, V_2) \) such that \(L(T) \cap V_2 = \emptyset \).
2. For any IRDF \(f = (V_0, V_1, V_2) \) of \(T \), \(V_1 \cap S(T) = \emptyset \).

Proposition D. Let \(G \) be a graph of order \(n \geq 4 \). Then \(i_R(G) = 3 \) if and only if (a) \(\Delta(G) = n - 2 \) or (b) \(n = 3 \) and \(\Delta(G) \leq 1 \).

Proposition E ([7]). For any graph \(G \), \(i(G) \leq i_R(G) \leq 2i(G) \), with equality in lower bound if and only if \(G = \overline{K_n} \).

The next result is easy to establish, and so we omit the proof.

Proposition 1.1. For any graph \(G \), \(i_R(G) \leq i_{dR}(G) \).

2. Trees

In this section, we present bounds on independent double Roman domination of a tree in terms of the sum its independent domination and independent Roman domination numbers. We start with the following lemmas.

Lemma 2.1. Let \(r, s, t, \ell \) be non-negative integers and let \(T \) be a tree and \(T' \) a subtree of \(T \).

1. If \(i_{dR}(T) \leq i_{dR}(T') + 3s + 2t - \ell, i_R(T') + 2s + t - \ell \leq i_R(T), i(T') + s + t - r \leq i(T), s(T') \leq s(T) - r, \) and \(i_{dR}(T') - i_R(T') - s(T') + 2 \leq i(T') \), then \(i_{dR}(T) - i_R(T) - s(T) + 2 \leq i(T) \).
2. If \(i_{dR}(T) \geq i_{dR}(T') + 3s + 2t - \ell, i_R(T') \geq i_R(T) - 2s - t + \ell, i(T') \geq i(T) - s - t - r, s(T') \leq s(T) - 2r, \) and \(i(T') \leq i_{dR}(T') - i_R(T') + \frac{s(T')}{2} - 1 \), then \(i(T) \leq i_{dR}(T) - i_R(T) + \frac{s(T)}{2} - 1 \).
Proof. (1) By the assumptions we have
\[i(T) \geq i(T') + s + t - r \]
\[\geq i_{dR}(T') - i_R(T') - s(T') + 2 + s + t - r \]
\[\geq (i_{dR}(T) - 3s - 2t + \ell) - (i_R(T) - 2s - t + \ell) - (s(T) - r) + 2 + s + t - r \]
\[\geq i_{dR}(T) - i_R(T) - s(T) + 2. \]

(2) By the assumptions we obtain
\[i(T) \leq i(T') + s + t + r \]
\[\leq i_{dR}(T') - i_R(T') + \frac{s(T')}{2} + s + t + r - 1 \]
\[\leq (i_{dR}(T) - 3s - 2t + \ell) - (i_R(T) - 2s - t + \ell) + \frac{s(T) - 2r}{2} + s + t + r - 1 \]
\[< i_{dR}(T) - i_R(T) + \frac{s(T)}{2} - 1. \]

Lemma 2.2. Let \(T \) be a tree. Then
(i) \(i_{dR}(T) = i_R(T) + 1 \) if and only if \(T \) is a star.
(ii) \(i_{dR}(T) = i_R(T) + 2 \) if and only if \(T \) is a wounded spider with only one foot or \(T \) is a tree obtained from a double star by subdividing its central edge once or twice.

Proof. (i) If \(T \) is a star, then clearly \(i_{dR}(T) = 3 \) and \(i_R(T) = 2 \) and we are done. Let \(i_{dR}(T) = i_R(T) + 1 \). We show that \(T \) is a star. Let \(f = (V_0, \emptyset, V_2, V_3) \) be an \(i_{dR} \)-function of \(T \) such that \(|V_3| \) is as large as possible. We consider two cases.

Case 1. \(V_3 \neq \emptyset \).
Let \(v \in V_3 \). If \(T = N_T[v] \), then \(T \) is a star and we are done. Suppose \(T \neq N_T[v] \) and let \(T' = T - N_T[v] \). Assume \(T_1, T_2, \ldots, T_q \) \((q \geq 1)\) are the components of \(T' \). Clearly, the function \(f \), restricted to \(T' \) is an IDRDF of \(T' \) and hence
\[i_{dR}(T') = i_{dR}(T_1) + i_{dR}(T_2) + \cdots + i_{dR}(T_q) \leq i_{dR}(T) - 3. \] (2)

On the other hand, any \(i_{dR} \)-function of \(T' \) can be extended to an IDRDF of \(T \) by assigning a 3 to \(v \) and a 0 to vertices in \(N_T(v) \) and so
\[i_{dR}(T) \leq i_{dR}(T') + 3 = i_{dR}(T_1) + i_{dR}(T_2) + \cdots + i_{dR}(T_q) + 3. \] (3)

By (2) and (3), we have
\[i_{dR}(T) = i_{dR}(T_1) + i_{dR}(T_2) + \cdots + i_{dR}(T_q) + 3. \] (4)

Similarly, we have
\[i_R(T) = i_R(T_1) + i_R(T_2) + \cdots + i_R(T_q) + 2 \] (5)
We deduce from the assumption

\[i(T) = i(T_1) + i(T_2) + \ldots + i(T_q) + 1 = i(T') + 1. \]

(6)

By (4), (5) and Proposition 1.1, we obtain

\[i_{dR}(T) - i_R(T) \geq \sum_{i=1}^{q} (i_{dR}(T_i) - i_R(T_i)) + 1 \geq q + 1 \]

which contradicts the assumption \(i_{dR}(T) = i_R(T) + 1. \)

Case 2. \(V_3 = \emptyset. \)

Then all leaves of \(T \) are assigned 2 under \(f \). Since \(V_3 = \emptyset \), \(\text{diam}(T) = 3 \) is impossible. So, let \(\text{diam}(T) \geq 4 \) and \(u, v \) be two leaves at distance \(\text{diam}(T) \), then the function \(g: V(T) \to \{0, 1, 2\} \)

defined by \(g(u) = g(v) = 1 \) and \(g(x) = f(x) \) for \(x \in V(T) - \{u, v\} \), is an IRDF of \(T \) of weight at most \(i_{dR}(T) - 2 \) which is a contradiction. Therefore \(\text{diam}(T) \leq 2 \) and so \(T \) is a star.

(ii) Let \(i_{dR}(T) = i_R(T) + 2 \). Assume that \(f = (V_0, \emptyset, V_2, V_3) \) is an \(i_{dR} \)-function of \(T \) such that \(|V_3| \) is as large as possible. First let \(V_3 \neq \emptyset \). As above, we have

\[i_{dR}(T) - i_R(T) \geq \sum_{i=1}^{q} (i_{dR}(T_i) - i_R(T_i)) + 1 \geq q + 1. \]

We deduce from the assumption \(i_{dR}(T) - i_R(T) = 2 \) that \(q = 1 \) and \(i_{dR}(T') - i_R(T') = 1 \), that is \(T' \) is a star (by (i)). Using (6) we obtain

\[2 = i_{dR}(T) - i_R(T) = i_{dR}(T') - i_R(T') + 1 = i(T') + 1 = i(T). \]

It follows from Proposition E that \(3 \leq i_R(T) \leq 4 \). If \(i_R(T) = 3 \), then by Proposition D, we have \(\Delta(G) = n - 2 \) and so \(T \) is a wounded spider with only one foot. Assume that \(i_R(T) = 4 \). Then

\[i_R(T) = 2i(T) \]

and using the constructive characterization given by Chellali and Jafari Rad [13] we can see that the only trees satisfying \(i_{dR}(T) - i_R(T) = 2 \) are trees obtained from a double star by subdividing its central edge once or twice.

Theorem 2.1. Let \(T \) be a tree with \(s(T) \geq 2 \) support vertices. Then

\[i_R(T) + i(T) - \frac{s(T)}{2} + 1 \leq i_{dR}(T) \leq i_R(T) + i(T) + s(T) - 2. \]

Proof. It is enough to prove \(i_{dR}(T) - i_R(T) - s(T) + 2 \leq i(T) \leq i_{dR}(T) - i_R(T) + \frac{s(T)}{2} - 1 \). The proof is by induction on \(t = i_{dR}(T) - i_R(T) \). Since \(T \) is not a star, we have \(t > 1 \) by Lemma 2.2 (item (i)). If \(t = 2 \), then the result holds by Lemma 2.2 (item (ii)). Assume that \(t \geq 3 \) and statement holds for each tree \(T' \) with \(i_{dR}(T') - i_R(T') < t \). Let \(T \) be a tree with \(t = i_{dR}(T) - i_R(T) \). It follows from Lemma 2.2 (item (i)) that \(\text{diam}(T) \geq 3 \). If \(\text{diam}(T) = 3 \), then \(T = DS_{p,q} \) \((q \geq p \geq 1) \) and hence \(i_{dR}(T) = 3 + 2p \), \(i_R(T) = 2 + p \) and \(i(T) = 1 + p \) and clearly the inequalities hold. Assume that \(\text{diam}(T) \geq 4 \) and \(v_1v_2\ldots v_k \) \((k \geq 5) \) is a diametral path in \(T \) such that \(\text{deg}(v_2) \) is as large as possible. We consider the following cases.

Case 1. \(\text{deg}(v_2) \geq 3 \) and \(v_3 \) is not a support vertex and has a child \(a \) with depth 1 and degree 2.

Let \(v_3aa' \) be a path in \(T \) and let \(T' = T - \{a, a', v_1\} \). First we show that \(i_{dR}(T) - 4 \leq i_{dR}(T') \leq i_{dR}(T) - 3 \). To proved the left side, suppose that \(f = (V_0, \emptyset, V_2, V_3) \) is an \(i_{dR}(T') \)-function such
that $V_3 \cap L(T') = \emptyset$. By Lemma B, $f(v_2) = 3$ or $f(v_2) = 0$. If $f(v_2) = 3$, then $f(v_3) = 0$ and the function $g : V(T') \rightarrow \{0, 1, 2, 3\}$ defined by $g(a) = 3$, $g(x) = 0$ for $x \in \{v_1, a'\}$ and $g(x) = f(x)$ for $x \in V(T')$, is an IDRDF of T yielding $i_{dR}(T) \leq i_{dR}(T') + 3$. If $f(v_2) = 0$, then $f(v_3) \geq 2$ and the function $g : V(T) \rightarrow \{0, 1, 2, 3\}$ defined by $g(v_1) = g(a') = 2$, $g(a) = 0$ and $g(x) = f(x)$ for $x \in V(T')$, is an IDRDF of T and we have $i_{dR}(T) \leq i_{dR}(T') + 4$. To proved the right side, suppose that $f = (V_0, \emptyset, V_2, V_3)$ is an $i_{dR}(T)$-function such that $V_3 \cap L(T) = \emptyset$. By Lemma B, $f(v_2) = 3$ or $f(v_2) = 0$. If $f(v_2) = 3$, then $f(v_3) = 0$ and $f(a) + f(a') = 3$ and the function f restricted to T' is an IDRDF of T and we have $i_{dR}(T) \geq i_{dR}(T') + 3$. If $f(v_2) = 0$, then $f(v_3) \geq 2$ and $f(v_1) = f(a') = 2$ and the function f restricted to T' is an IDRDF of T and we have $i_{dR}(T) \geq i_{dR}(T') + 4$.

Using Proposition C and a similar argument we can see that $i_{R}(T') = i_{R}(T) - 2$. Now we show that $i(T) \leq i(T') + 1$. To show $i(T') + 1 \geq i(T)$, let S be an $i(T)$-set. If $v_3 \not\in S$, then we may assume $v_2 \in S$ and clearly $S \cup \{a'\}$ is an IDS of T and so $i(T) \leq i(T') + 1$. Assume that $v_3 \in S$. If $N_{T'}(v_4) \cap S \neq \{v_3\}$, then $(S - N_{T'}(v_2)) \cup \{v_3\}$ is an independent dominating set of T' smaller than S which is a contradiction. Hence, $N_{T'}(v_4) \cap S = \{v_3\}$. Now $(S - N_{T'}(v_2)) \cup \{v_2, v_4, a\}$ is an independent dominating set of T which implies that $i(T) \leq i(T') + 1$. To prove $i(T) \geq i(T') + 1$, let S be an $i(T)$-set. Clearly $|S \cap \{a, a'\}| = 1$ and either $v_2 \in S$ or $L_{v_2} \subseteq S$. In both cases, $(S - (\{a, a'\} \cup L_{v_3})) \cup \{v_2\}$ is an IDS of T' and so $i(T) \geq i(T') + 1$. Thus $i(T) = i(T') + 1$. Therefore

$$i_{dR}(T') - i_{R}(T') \leq i_{dR}(T) - 3 - (i_{R}(T) - 2) = i_{dR}(T) - i_{R}(T) - 1 \leq t - 1.$$

Using the induction hypothesis on T' and setting $s = t = r = \ell = 1$, Proposition 2.1 leads to $i(T) \geq i_{dR}(T) - i_{R}(T) - s(T) + 2$ and using the induction hypothesis on T' and setting $s = 1, t = r = \ell = 0$, Proposition 2.1 leads to $i(T) \leq i_{dR}(T) - i_{R}(T) + \frac{s(T)}{2} - 1$.

Case 2. $\deg(v_2) \geq 3$ and v_3 is not a support vertex and any child of v_3 has degree at least 3. Let $T' = T - T_{v_3}$. Clearly, $s(T') \leq s(T)$ and any $i_{dR}(T')$-function (resp. $i_{R}(T)$-function) can be extended to an IDRDF (resp. IRDF) of T by assigning a 3 (resp. a 2) to each child of v_3 and a 0 to remaining vertices and hence $i_{dR}(T) \leq i_{dR}(T') + 3|C(v_3)|$ and $i_{R}(T) \leq i_{R}(T') + 2|C(v_3)|$. Likewise we have $i(T) \leq i(T') + |C(v_3)|$. Now we show that $i_{dR}(T) \geq i_{dR}(T') + 3|C(v_3)|$. Let f be an $i_{dR}(T')$-function. By Proposition B, $f(v_2) = 3$ or $f(v_2) = 0$. If $f(v_2) = 3$, then $f(v_3) = 0$ and f must assign 2 to each child of v_3 and the function f restricted to T' is an IDRDF of T' implying that $i_{dR}(T) \geq i_{dR}(T') + 3|C(v_3)|$. If $f(v_2) = 0$, then $f(v_3) \geq 2$ and f assigns 2 to each leaf of T_{v_3}. If $N(v_4) \cap ((V_2 \cup V_3) - \{v_3\}) \neq \emptyset$ and $z \in N(v_4) \cap ((V_2 \cup V_3) - \{v_3\})$, then the function $g : V(T') \rightarrow \{0, 1, 2, 3\}$ defined by $g(z) = 3$ and $g(x) = f(x)$ otherwise, is an IDRDF of T' implying that $i_{dR}(T) \geq i_{dR}(T') + 1 + 4|C(v_3)|$ and if $N(v_4) \cap ((V_2 \cup V_3) - \{v_3\}) = \emptyset$, then the function $g : V(T') \rightarrow \{0, 1, 2, 3\}$ defined by $g(v_4) = 3$ and $g(x) = f(x)$ otherwise, is an IDRDF of T' yielding $i_{dR}(T) \geq i_{dR}(T') + 4|C(v_3)|$. Thus $i_{dR}(T) = i_{dR}(T') + 3|C(v_3)|$. Similarly we can see that $i_{R}(T) = i_{R}(T') + 2|C(v_3)|$ and $i(T) = i(T') + |C(v_3)|$. It follows that

$$i_{dR}(T') - i_{R}(T') \leq i_{dR}(T) - 3|C(v_3)| - i_{R}(T) + 2|C(v_3)| = i_{dR}(T) - i_{R}(T) - |C(v_3)| \leq t - 1.$$

Applying the induction hypothesis on T' and setting $s = 1$ and $t = r = \ell = 0$, Proposition 2.1 leads to $i_{dR}(T) - i_{R}(T) - s(T) + 2 \leq i(T) \leq i_{dR}(T) - i_{R}(T) + \frac{s(T)}{2} - 1$.

www.ejgta.org
Case 3. $\deg(v_2) \geq 3$ and v_3 is a support vertex.
Let $v' \in L_{v_3}$. We distinguish the following subcases.

Subcase 3.1. $|L_{v_3}| \geq 2$.

Let $T' = T - \{v_1, v'\}$. Obviously $s(T) = s(T')$. Now we show that $i_{dR}(T') = i_{dR}(T) - 2$. Let $f = (V_0, \emptyset, V_2, V_3)$ be an $i_{dR}(T')$-function such that $L(T') \cap V_3 = \emptyset$. By Proposition B, $f(v_2) = 3$ or $f(v_3) = 0$. If $f(v_2) = 3$ then f can be extended to an IDRDF of T by assigning a 2 to v' and a 0 to v_1, and if $f(v_3) = 0$ then to double Roman dominate v_2 and the leaf adjacent to v_2 and nothing that f is a $i_{dR}(T')$-function, we must have $f(v_3) = 3$, and f can be extended to an IDRDF of T by assigning a 2 to v_1 and a 0 to v', and hence $i_{dR}(T) \leq i_{dR}(T') + 2$. To prove the inverse inequality, let $f = (V_0, \emptyset, V_2, V_3)$ be an $i_{dR}(T)$-function such that $L(T) \cap V_3 = \emptyset$.

As above $f(v_2) = 3$ and $f(v_3) = 0$ or $f(v_2) = 0$ and $f(v_3) = 3$. In each case, the function f restricted to T' is an IDRDF of T' of weight $i_{dR}(T) - 2$ and so $i_{dR}(T) \geq i_{dR}(T') + 2$. Thus $i_{dR}(T) = i_{dR}(T') + 2$. Similarly, we can verify that $i_{R}(T) = i_{R}(T') + 1$ and $i(T) = i(T') + 1$. It follows that $i_{dR}(T') - i_{R}(T') = i_{dR}(T) - 2 - i_{R}(T) + 1 = i_{dR}(T) - i_{R}(T) - 1 = t - 1$. Applying the induction hypothesis on T' and setting $t = 1$ and $s = r = \ell = 0$, Proposition 2.1 leads to $i_{dR}(T) - i_{R}(T) - s(T) + 2 \leq i(T) \leq i_{dR}(T) - i_{R}(T) + \frac{s(T)}{2} - 1$.

Subcase 3.2. $|L_{v_3}| = 1$.

Let $T' = T - \{v_1, v'\}$. Obviously, $s(T') = s(T) - 1$ and as above we can see that $i_{dR}(T') \leq i_{dR}(T) - 2$, $i_{R}(T') \leq i_{R}(T) - 1$ and $i(T') = i(T) - 1$. Next we show that $i_{dR}(T) \leq i_{dR}(T') + 3$.

Suppose that $f = (V_0, \emptyset, V_2, V_3)$ is an $i_{dR}(T)$-function such that $V_3 \cap L(T') = \emptyset$. By Lemma B, $f(v_2) = 3$ or $f(v_2) = 0$. If $f(v_2) = 3$, then as in Subcase 3.1, we can see that $i_{dR}(T) \leq i_{dR}(T') + 2$. If $f(v_2) = 0$, then $f(v_3) \geq 2$ and the function $g : V(T) \rightarrow \{0, 1, 2, 3\}$ define by $g(v_1) = 2$, $g(v') = 0$, $g(v_3) = 3$ and $g(x) = f(x)$ for $x \in V(T')$, is an IDRDF of T and so $i_{dR}(T) \leq i_{dR}(T') + 3$. Hence $i_{dR}(T') + 2 \leq i_{dR}(T) \leq i_{dR}(T') + 3$.

Likewise, we can see that $i_{R}(T) \leq i_{R}(T') + 1$ and so $i_{R}(T) = i_{R}(T') + 1$. Hence

$$i_{dR}(T') - i_{R}(T') = i_{dR}(T) - 2 - i_{R}(T) + 1 = i_{dR}(T) - i_{R}(T) - 1 \leq t - 1.$$ Using the induction hypothesis on T' and setting $s = 0, t = 2, r = \ell = 1$, Proposition 2.1 leads to $i(T) \geq i_{dR}(T) - i_{R}(T) - s(T) + 2$ and using the induction hypothesis on T' and setting $t = 1, s = r = \ell = 0$, Proposition 2.1 leads to $i(T) \leq i_{dR}(T) - i_{R}(T) + \frac{s(T)}{2} - 1$.

Considering Cases 1, 2, and 3 we may assume that $\deg(v_2) = 2$ and by the choice of diametral path any child of v_3 will be of degree two. We proceed with further cases.

Case 4. $\deg(v_2) = 2$.

Let $T' = T - v_2$. Clearly $s(T') \leq s(T) - 1$ and any $i_{dR}(T')$-function (resp. $i_{R}(T')$-function) can be extended to an IDRDF of T by assigning a 3 (resp. a 2) to v_2 and a 0 to remaining vertices and so $i_{dR}(T) \leq i_{dR}(T') + 3$ and $i_{R}(T) \leq i_{R}(T') + 2$. Also any $i_{R}(T')$-set can be extended to an IDS of T by adding v_2 and so $i(T) \leq i(T') + 1$. Now let $f = (V_0, \emptyset, V_2, V_3)$ be an $i_{dR}(T)$-function. By Proposition B we have $f(v_2) = 3$ or $f(v_2) = 0$. If $f(v_2) = 3$, then the function f restricted to T' is an IDRDF of T' yielding $i_{dR}(T') \geq i_{dR}(T') + 3$. Assume that $f(v_2) = 0$. Then $f(v_1) = 2$ and $f(v_3) \geq 2$. If $f(v_3) = 3$, then clearly $(N(v_4) - \{v_3\}) \cap (V_2 \cup V_3) = \emptyset$ and the function $g : V(T') \rightarrow \{0, 1, 2, 3\}$ defined by $g(v_4) = 2$ and $g(x) = f(x)$ is an IDRDF of T' yielding $i_{dR}(T) \geq i_{dR}(T') + 3$, and if $f(v_3) = 2$, then clearly $(N(v_4) - \{v_3\}) \cap (V_2 \cup V_3) \neq \emptyset$ and the
function \(g : V(T') \to \{0, 1, 2, 3\} \) defined by \(g(z) = 3 \) for some \(z \in (N(v_4) - \{v_3\}) \cap (V_2 \cup V_3) \) and \(g(x) = f(x) \) is an IDRDF of \(T' \) implying that \(i_{dR}(T) \geq i_{dR}(T') + 3 \). Hence \(i_{dR}(T) \geq i_{dR}(T') + 3 \) and thus \(i_{dR}(T) = i_{dR}(T') + 3 \). Likewise we have \(i_R(T) = i_R(T') + 2 \) and \(i(T) = i(T') + 1 \). Hence \(i_{dR}(T') - i_R(T') = t - 1 \).

Applying the induction hypothesis on \(T' \) and setting \(s = 1 \) and \(t = r = \ell = 0 \), Proposition 2.1 leads to \(i_{dR}(T) - i_r(T) - s(T) + 2 \leq i(T) \leq i_{dR}(T) - i_R(T) + \frac{s(T)}{2} - 1 \).

Case 5. \(v_3 \) is a support vertex and \(v_3 \) has two children \(a \) and \(b \) with depth 1 and degree 2. Suppose \(v_3a'a' \) and \(v_3bb' \) are paths in \(T \). Let \(T' = T - \{a, a', b, b'\} \). It is easy to verify that \(s(T') = s(T) - 2, i_{dR}(T') = i_{dR}(T) - 4, i_R(T') + 2 \leq i_R(T) \leq i_R(T') + 3 \) and \(i(T') + 1 \leq i(T) \leq i(T') + 2 \). Hence \(i_{dR}(T') - i_r(T') \leq i_{dR}(T') - i_r(T') + 2 = i_{dR}(T') - i_r(T') + 2 \leq t - 1 \).

Using the induction hypothesis on \(T' \) and setting \(s = \ell = 0, t = 2, r = 1 \), Proposition 2.1 leads to \(i(T) \geq i_{dR}(T) - i_r(T) - s(T) + 2 \) and using the induction hypothesis on \(T' \) and setting \(s = 1, t = r = \ell = 0 \), Proposition 2.1 leads to \(i(T) \leq i_{dR}(T) - i_r(T) + \frac{s(T)}{2} - 1 \).

Case 6. \(v_3 \) is a support vertex and \(v_3 \) has exactly one child with depth 1 and degree 2. First let \(\text{deg}(v_4) = 2 \). Suppose \(T' = T - T_{v_4} \). If \(T' \) is a star, then the result can be seen easily. Let \(T' \) is not a star. Clearly \(s(T') \leq s(T) - 1 \) and as above we can see that \(i_{dR}(T) = i_{dR}(T') + 5, i_R(T) = i_R(T') + 3, i(T) = i(T') + 2 \). Hence \(i_{dR}(T') - i_r(T') = t - 1 \). Using the induction hypothesis on \(T' \) and setting \(s = t = r = 1, t = 0 \), Proposition 2.1 leads to \(i(T) \geq i_{dR}(T) - i_r(T) - s(T) + 2 \) and using the induction hypothesis on \(T' \) and setting \(s = t = 1, r = \ell = 0 \), Proposition 2.1 leads to \(i(T) \leq i_{dR}(T) - i_r(T) + \frac{s(T)}{2} - 1 \).

Assume now that \(\text{deg}(v_4) \geq 3 \) and \(v' \in L_{v_3} \). Consider the following subcases.

Subcase 6.1. \(v_4 \) has a child \(a \) with depth 1 and degree 2. Suppose \(v_4a'a' \) is a path in \(T \) and let \(T' = T - \{v_4, v_2, a, a'\} \). Clearly, \(s(T) = s(T') - 2 \) and it is easy to verify that \(i_{dR}(T) = i_{dR}(T') + 5, i_R(T) = i_R(T') + 3, i(T) = i(T') + 2 \). Hence \(i_{dR}(T') - i_r(T') \leq t - 1 \) and using the induction hypothesis on \(T' \) and setting \(s = t = 1, r = t = 0 \), Proposition 2.1 leads to \(i(T) + i(T) - \frac{s(T)}{2} + 1 \leq i_{dR}(T) \leq i_r(T) + i(T) + s(T) - 2 \).

Subcase 6.2. \(v_4 \) is a strong support vertex. First let \(|L_{v_3}| \geq 2 \). Suppose that \(w \in L_{v_3} \). Suppose that \(T' = T - \{v', w\} \). Clearly, \(s(T) = s(T') \) and one can easily see that \(i_{dR}(T') = i_{dR}(T) + 2, i_R(T) = i_R(T') + 1, i(T) = i(T') + 1 \). Hence \(i_{dR}(T') - i_r(T') \leq t - 1 \) and using the induction hypothesis on \(T' \) and setting \(s = t = 1, r = \ell = 0 \), Proposition 2.1 leads to \(i(T) + i(T) - \frac{s(T)}{2} + 1 \leq i_{dR}(T) \leq i_R(T) + i(T) + s(T) - 2 \).

Now, let \(|L_{v_3}| = 1 \). Assume that \(T' = T - T_{v_3} \). Clearly \(s(T') = s(T) - 2 \) and any \(i_{dR}(T') \)-function (resp. \(i_R(T') \)-function) can be extended to an IDRDF of \(T \) by assigning a 1 (resp. a 2) to \(v_3 \), a 2 (resp. a 1) to \(v_1 \) and a 0 to remaining vertices and so \(i_{dR}(T) \leq i_{dR}(T') + 5 \) and \(i_R(T) \leq i_R(T') + 2 \). Also any \(i(T') \)-set can be extended to an IDS of \(T \) by adding \(v_2, v' \) and so \(i(T) \leq i(T') + 2 \). Now let \(f = (V_0, \emptyset, V_2, V_3) \) be an \(i_R(T) \)-function such that \(L(T) \cap V_3 = \emptyset \). By Proposition B, we have \(f(v_2) = 3 \) or \(f(v_2) = 0 \). If \(f(v_2) = 3 \), then \(f(v') = 2 \) and the function \(f \) restricted to \(T' \) is an IDRDF of \(T' \) yielding \(i_{dR}(T) \geq i_{dR}(T') + 5 \). Assume that \(f(v_2) = 0 \). Then \(f(v_1) = 2 \) and \(f(v_3) = 3 \) since \(v_3 \) is a support vertex and so \(f(x) = 2 \) for each \(x \in L_{v_3} \). Hence the function \(f \) restricted to \(T' \) is an IDRDF of \(T' \) yielding \(i_{dR}(T) \geq i_{dR}(T') + 5 \). Thus \(i_{dR}(T) = i_{dR}(T') + 5 \). Likewise we have \(i_R(T) = i_R(T') + 3 \) and \(i(T) = i(T') + 2 \). It follows that \(i_{dR}(T') - i_r(T') = t - 1 \) and using the induction hypothesis on \(T' \) and setting \(s = t = 1, r = \ell = 0 \),
Proposition 2.1 leads to \(i_R(T) + i(T) - \frac{s(T)}{2} + 1 \leq i_{dR}(T) \leq i_R(T) + i(T) + s(T) - 2 \).

Subcase 6.3. \(v_4 \) is adjacent to at most one leaf, any child of \(v_4 \) with depth 1 is of degree at least 3 and for any child \(y \) of \(v_4 \) with depth 2 we have \(T_y = DS_{1,\deg(y) - 1} \) where \(\deg(y) \geq 3 \) or \(T_y \) is a healthy spider. We consider the following.

- \(|L_{v_3}| = 1 \).
 Let \(T' = T - T_{v_3} \). Clearly, \(s(T') = s(T) - 2 \), \(i_{dR}(T') + 4 \leq i_{dR}(T) \leq i_{dR}(T') + 5 \), \(i_R(T') + 2 \leq i_R(T) \leq i_R(T') + 3 \) and \(i(T') + 1 \leq i(T) \leq i(T') + 2 \).

 It follows that \(i_{dR}(T') - i_R(T') \leq t - 1 \) and using the induction hypothesis on \(T' \) and setting \(t = 3, \ell = 1, r = 2, s = 0 \), Proposition 2.1 leads to \(i(T) \geq i_{dR}(T) - i_R(T) - s(T) + 2 \) and using the induction hypothesis on \(T' \) and setting \(s = 1, r = \ell = 0 \), Proposition 2.1 leads to \(i(T) \leq i_{dR}(T) - i_R(T) + \frac{s(T)}{2} - 1 \).

\[
i(T) \leq i(T') + 2
\leq i_{dR}(T') - i_R(T') + \frac{s(T')}{2} + 1
\leq i_{dR}(T) - 4 - i_R(T) + 3 + \frac{s(T) - 2}{2} + 1
= i_{dR}(T) - i_R(T) + \frac{s(T)}{2} - 1.
\]

- \(|L(v_3)| \geq 2 \)
 Let \(T' = T - T_{v_3} \). If \(T' \) is a star, then the result is immediate. Assume \(T' \) is not a star. Suppose that \(A \) is the set of children of \(v_3 \) of depth 1, \(B \) is the set of children of \(v_4 \) of depth 2 and \(C \) is the set of vertices \(x \in D(v_4) \cap L(T) \) satisfying \(d(v_4, x) = 3 \). Let \(B_1 = B \cap s(T) \) and \(B_2 = B - B_1 \). Clearly, \(s(T') \leq s(T) - 2 \), and it is not hard to see that \(i_{dR}(T') = i_{dR}(T) - 3|A| - 3|B_1| - 2|B_2| - 2|C| - 2|L_{v_4}| \), \(i_R(T') = i_R(T) - 2|A| - 2|B_1| - 2|B_2| - 2|C| - |L_{v_4}| \) and \(i(T') = i(T) - |A| - |B_1| - |C| - |L_{v_4}| \). Hence

\[
i_{dR}(T') - i_R(T') \leq i_{dR}(T) - 3|A| - 3|B_1| - 2|B_2| - 2|C| - 2|L_{v_4}|
- (i_R(T) - 2|A| - 2|B_1| - 2|B_2| - |C| - |L_{v_4}|)
= i_{dR}(T) - i_R(T) - (|A| + |B| + |C| + |L_{v_4}|) \leq t - 1.
\]

By the induction hypothesis we have

\[
i(T) = i(T') + |A| + |B_1| + |C| + |L_{v_4}|
\geq i_{dR}(T') - i_R(T') - s(T') + 2 + |A| + |B_1| + |C| + |L_{v_4}|
> i_{dR}(T) - i_R(T) - s(T) + 2,
\]
and
\[i(T) = i(T') + |A| + |B_1| + |C| + |L_{v_4}| \]
\[\leq i_{dR}(T') - i_R(T') + \frac{s(T')}{2} + |A| + |B_1| + |C| + |L_{v_4}| - 1 \]
\[< i_{dR}(T) - i_R(T) + \frac{s(T)}{2} - 1. \]

Case 7. \(\deg(v_3) \geq 3 \) and \(v_3 \) is not a support vertex.
Then \(T_{v_3} \) is a healthy spider and by that choice of diametral path and considering above cases we may assume that the maximal subtree at any child of \(v_4 \) with depth two is a healthy spider with at least two feet. We distinguish the following situations.

Subcase 7.1. \(\deg(v_3) \geq 4. \)
First let \(\deg(v_4) = 2 \) and let \(T' = T - T_{v_4} \). If \(T' \) is a star then the results can be verified easily. Let \(t' \) is not a star. Clearly, \(s(T') \leq s(T) - 2, i_{dR}(T') + |V(C(v_3))| \leq i_{dR}(T) \leq i_{dR}(T') + 2 + |C(v_3)| \), \(i_R(T) = i_R(T') + 2 + |C(v_3)| \) and \(i(T') + |C(v_3)| \leq i(T) \leq i(T') + |C(v_3)| + 1 \). Hence
\[i_{dR}(T'') - i_R(T'') \leq i_{dR}(T) - 2|C(v_3)| - 2. \]
and by the induction hypothesis on \(T' \) and setting \(t = |C(v_3)|, \ell = 0, r = 1, s = 1 \), Proposition 2.1 leads to \(i(T) \geq i_{dR}(T) - i_R(T) - s(T) + 2 \). On the other hand, by the induction hypothesis on \(T' \), we obtain
\[i(T) \leq i(T') + |C(v_3)| + 1 \]
\[\leq i_{dR}(T') - i_R(T') + \frac{s(T')}{2} + |C(v_3)| \]
\[\leq i_{dR}(T) - 2 - 2|C(v_3)| - i_R(T) + 2 + |C(v_3)| + \frac{(s(T) - 2)}{2} + |C(v_3)| \]
\[= i_{dR}(T) - i_R(T) + \frac{s(T)}{2} - 1 \]

Now let \(\deg(v_4) \geq 3 \). Considering above cases and subcases, we may assume that any child of \(v_4 \) with depth 2, is the center of a healthy spider. Assume \(a, b \in C(v_3) - \{v_2\} \) and let \(v_3aa' \) and \(v_3bb' \) be paths in \(T \). We distinguish the following.

- \(v_4 \) has a child \(w \) with depth 1 and degree 2.
 Suppose \(v_4ww' \) is a path in \(T \). Let \(T' = T - \{v_1, a, a', w, w'\} \). Obviously, \(s(T') = s(T) - 2 \).
 We show that \(i_{dR}(T) = i_{dR}(T') + 6\). To prove \(i_{dR}(T) \leq i_{dR}(T') + 6 \), let \(f = (V_0, \emptyset, V_2, V_3) \) be an \(i_{dR}(T') \)-function such that \(L(T) \cap V_3 = \emptyset \). By Lemma B, \(f(v_3) = 3 \) or \(f(v_3) = 0 \).
 If \(f(v_3) = 3 \), then \(f(v_4) = f(v_2) = 0 \) and the function \(g : V(T) \rightarrow \{0, 1, 2, 3\} \) define by \(g(w) = 3, g(v_1) = g(v_3) = g(a') = 2, g(a) = g(w') = 0 \) and \(g(x) = f(x) \) for \(x \in V(T') \), is an IDRDF of \(T \), and so \(i_{dR}(T) \leq i_{dR}(T') + 6 \). If \(f(v_3) = 0 \), then \(f(v_2) = 2 \)
and $f(v_4) \geq 2$ and the function $g : V(T) \to \{0, 1, 2, 3\}$ define by $g(a) = 3, g(w') = 2, g(a') = g(w) = g(v_1) = 0, g(v_2) = 3$ and $g(x) = f(x)$ for $x \in V(T')$, is an IDRDF of T, and we have $i_{dR}(T) \leq i_{dR}(T') + 6$. To prove $i_{dR}(T) \geq i_{dR}(T') + 6$, let $f = (V_0, \emptyset, V_2, V_3)$ be an $i_{dR}(T)$-function such that $L(T') \cap V_3 = \emptyset$. By Lemma B, $f(v_2) = 3$ or $f(v_2) = 0$. If $f(v_2) = 3$, then we may assume $f(a) = f(b) = 3$ and that $f(w) + f(w') \geq 2$ and the function g defined on T' by $g(v_2) = 2$ and $g(x) = f(x)$ otherwise, is an IDRDF of T' of weight $i_{dR}(T) - 6$, and if $f(v_2) = 0$, then $f(v_1) = f(a') = 2, f(v_3) \geq 2, f(w) + f(w') = 3$ and the function g defined on T' by $g(v_3) = 2$ and $g(x) = f(x)$ otherwise, is an IDRDF of T' of weight $i_{dR}(T') - 6$ and so $i_{dR}(T) \geq i_{dR}(T') + 6$. Thus $i_{dR}(T) = i_{dR}(T') + 6$.

Likewise, we can see that $i_R(T') = i_R(T) - 4$ and $i(T') = i(T) - 2$. It follows that $i_{dR}(T') - i_R(T') \leq i_{dR}(T) - 6 - i_R(T) + 4 = i_{dR}(T) - i_R(T) - 2 \leq t - 1$. Using the induction hypothesis on T' and setting $s = 2, t = \ell = r = 0$, Proposition 2.1 leads to $i_{dR}(T) + i(T) - \frac{s(T)}{2} + 1 \leq i_{dR}(T) \leq i_{dR}(T) + i(T) + s(T) - 2$.

- v_4 is a strong support vertex.

Let $w \in L_{v_4}, T' = T - \{v_1, a, a', b, b', w\}$. Clearly $s(T') = s(T) - 2$, and it is easy to verify that $i_{dR}(T') = i_{dR}(T) - 7, i_R(T') + 4 \leq i_R(T) \leq i_{dR}(T') + 5, i(T) - 3 \leq i(T') \leq i(T) - 2$ and this implies that $i_{dR}(T') - i_R(T') \leq t - 1$. Using the induction hypothesis on T' and setting $s = 1, t = 2, \ell = 0, r = 1$, Proposition 2.1 leads to $i_{dR}(T) + i(T) - \frac{s(T)}{2} + 1 \leq i_{dR}(T)$ and also we have

$$i(T) \leq i(T') + 3$$

$$\leq i_{dR}(T') - i_R(T') + \frac{s(T')}{2} + 2$$

$$\leq i_{dR}(T) - 7 - i_R(T) + 5 + \frac{(s(T) - 2)}{2} + 2$$

$$= i_{dR}(T) - i_R(T) + \frac{s(T)}{2} - 1$$

- v_4 is adjacent to at most one leaf, any child of v_4 with depth 1 is of degree at least 3 and for child y of v_4 with depth 2 is the center of a healthy spider with at least two feet.

Suppose that $T' = T - v_4$. If T' is a star, then the result can be seen immediately. Assume T' is not a star. Let A, B and C be defined as in the Subcase 6.3. Clearly, $s(T') \leq s(T) - 2|B|$ and it is not hard to verify that $i_{dR}(T') = i_{dR}(T) - 3|A| - 2|B| - 2|C| - 2|L_{v_4}|, i_R(T') = i_R(T) - 2|A| - 2|B| - |C| - |L_{v_4}| - 1 \leq i(T') \leq i(T) - |A| - |C| - |L_{v_4}|$. These imply that

$$i_{dR}(T') - i_R(T') \leq i_{dR}(T) - 3|A| - 2|B| - 2|C| - 2|L_{v_4}|$$

$$- (i_R(T) - 2|A| - 2|B| - |C| - |L_{v_4}|)$$

$$= i_{dR}(T) - i_R(T) - (|A| + |C| + |L_{v_4}|) \leq t - 1.$$
Using the induction hypothesis on T' and setting $s = |A| + |B|$, $t = |C| + |L_{vu}|$, $\ell = 0$, $r = 2|B|$, Proposition 2.1 leads to $i(T) \geq i_{dR}(T) - i_R(T) - s(T) + 2$ and also we have

$$
i(T) \leq i(T') + |A| + |C| + |L_{vu}| + 1
\leq i_{dR}(T') - i_R(T') + \frac{s(T')}{2} + |A| + |C| + |L_{vu}|
\leq i_{dR}(T) - i_R(T) + \frac{(s(T) - 2|B|)}{2}
\leq i_{dR}(T) - i_R(T) + \frac{s(T)}{2} - 1.
$$

Subcase 7.2. $\deg(v_3) = 3$ and $\deg(v_4) \geq 3$.
Assume that $T' = T - T_{vu}$. If T' is a star, then one can check the result easily. Suppose T' is not star. Obviously, $s(T') = s(T) - 2$ and one can see that $i_{dR}(T') + 5 \leq i_{dR}(T) \leq i_{dR}(T') + 6$, $i_R(T') + 3 \leq i_R(T) \leq i_R(T') + 4$ and $i(T) = i(T') + 2$. Hence $i_{dR}(T') - i_R(T') \leq i_{dR}(T) - 5 - i_R(T) + 3 = i_{dR}(T) - i_R(T) - 2 \leq t - 1$. Using the induction hypothesis on T' and setting $s = \ell = 0$, $t = 3$, $r = 1$, Proposition 2.1 leads to $i(T) \geq i_{dR}(T) - i_R(T) - s(T) + 2$ and also we have $i(T) = i(T') + 2 \leq i_{dR}(T') - i_R(T') + \frac{s(T')}{2} + 1 \leq i_{dR}(T) - 5 - i_R(T) + 4 + \frac{s(T) - 2}{2} + 1 = i_{dR}(T) - i_R(T) + \frac{s(T)}{2} - 1$.

Subcase 7.3. $\deg(v_3) = 3$ and $\deg(v_4) = 2$.
Assume that $T' = T - T_{vu}$. If T' is a star, then we can check the result easily. Suppose T' is not star. Obviously, $s(T') \leq s(T) - 1$ and $i_{dR}(T') + 6 \leq i_{dR}(T) \leq i_{dR}(T') + 7$, $i_R(T') = i_R(T') + 4$ and $i(T') + 2 \leq i(T) \leq i(T') + 3$. Hence $i_{dR}(T') - i_R(T') \leq i_{dR}(T) - 6 - i_R(T) + 3 \leq t - 1$. Applying the induction hypothesis on T' and setting $s = r = 1$, $t = 2$, $\ell = 0$, Proposition 2.1 leads to $i(T) \geq i_{dR}(T) - i_R(T) - s(T) + 2$. On the other hand, by the induction hypothesis we have $i(T) \leq i(T') + 3 \leq i_{dR}(T') - i_R(T') + \frac{s(T')}{2} + 2 \leq i_{dR}(T) - 6 - i_R(T) + 4 + \frac{s(T) - 1}{2} + 2 = i_{dR}(T) - i_R(T) + \frac{s(T)}{2} - 1/2$ and this implies $i(T) \leq i_{dR}(T) - i_R(T) + \frac{s(T)}{2} - 1$ because $i(T)$ is an integer. This completes the proof.

Acknowledgement

H. Abdollahzadeh Ahangar was supported by the Babol Noshirvani University of Technology under research grant number BNUT/385001/1401.

References

