Chromatic number of super vertex local antimagic total labelings of graphs

Fawwaz F. Hadiputraa, Kiki A. Sugenga, Denny R. Silabana, Tita K. Maryatib, Dalibor Froncekc

aDepartment of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok - Indonesia.
bDepartment of Mathematics Education, Faculty of Tarbiyah and Teacher Training (FITK), UIN Syarif Hidayatullah Jakarta, Ciputat - Indonesia.
cDepartment of Mathematics, University of Minnesota Duluth, USA.

\{fawwazfh, denny, kiki\}@sci.ui.ac.id, tita.khalis@uinjkt.ac.id, dalibor@d.umn.edu

Abstract

Let $G(V, E)$ be a simple graph and f be a bijection $f : V \cup E \rightarrow \{1, 2, \ldots, |V| + |E|\}$ where $f(V) = \{1, 2, \ldots, |V|\}$. For a vertex $x \in V$, define its weight $w(x)$ as the sum of labels of all edges incident with x and the vertex label itself. Then f is called a super vertex local antimagic total (SLAT) labeling if for every two adjacent vertices their weights are different. The super vertex local antimagic total chromatic number $\chi_{\text{slat}}(G)$ is the minimum number of colors taken over all colorings induced by super vertex local antimagic total labelings of G. We classify all trees T that have $\chi_{\text{slat}}(T) = 2$, present a class of trees that have $\chi_{\text{slat}}(T) = 3$, and show that for any positive integer $n \geq 2$ there is a tree T with $\chi_{\text{slat}}(T) = n$.

Keywords: super vertex local antimagic total labeling, super vertex local antimagic total chromatic number, tree, chromatic number
Mathematics Subject Classification : 05C05, 05C15, 05C78
DOI: 10.5614/ejgta.2021.9.2.19
1. Introduction

All graphs defined in this paper are simple and connected. Introduced by Arumugam et al. [1], a vertex local antimagic labeling is a bijective function \(f : E(G) \to \{1, 2, \ldots, |E(G)|\} \) such that \(w(u) \neq w(v) \) for any adjacent vertices \(u \) and \(v \), where the weight \(w(x) \) of a vertex \(x \in V \) is the sum of labels of all edges incident with \(x \). The minimum number of distinct weights needed for a graph \(G \) to have a vertex local antimagic labeling is denoted by \(\chi_{la}(G) \). They conjectured that every connected graph other than \(K_2 \) is a vertex local antimagic graph, which was confirmed by Haslegrave using probabilistic method [4].

Putri et al. [7] introduced a new variant of vertex local antimagic labeling, called vertex local antimagic total labeling. A vertex local antimagic total labeling is a bijective map \(f : \sum_{xy \in E(G)} f(xy) \) where \(f \) assigns distinct weights to the edges of a graph \(G \). The minimum number of distinct weights needed for a graph \(G \) to have a vertex local antimagic total labeling is denoted by \(\chi_{lat}(G) \). The minimum number of distinct weights needed for a graph \(G \) to have a vertex local antimagic labeling is denoted by \(\chi_{la}(G) \). Lau [5] adopts a result from Haslegrave [4] to show that every connected graph is a vertex local antimagic total graph. For more information on local antimagic or antimagic labelings, we refer the reader to Gallian’s survey [3].

Furthermore, Slamin et al. [8] introduced a new variant of the labeling. A super vertex local antimagic total labeling is a bijective map \(f : V(G) \cup E(G) \to \{1, 2, \ldots, |V(G)| + |E(G)|\} \) where \(f(V(G)) = \{1, 2, \ldots, |V(G)|\} \) such that \(w(u) \neq w(v) \) for any two adjacent vertices \(u \) and \(v \), where \(w(x) = f(x) + \sum_{xy \in E(G)} f(xy) \). The minimum number of distinct weights needed for a graph \(G \) to have a super vertex local antimagic labeling is denoted by \(\chi_{slat}(G) \). From the definition, we can perceive the super vertex local antimagic labeling as a vertex coloring of a graph with some additional conditions. An easy observation then follows.

Observation 1.1. For any graph \(G \), \(\chi_{slat}(G) \geq \chi(G) \).

We limit our current research to some classes of trees; in particular, stars \(S_n \), paths \(P_n \), caterpillars \(S_{n_1,n_2,\ldots,n_k} \) and shrubs \(\tilde{S}(n_1,n_2,\ldots,n_k) \). A shrub \(\tilde{S}(n_1,n_2,\ldots,n_k) \) is defined as a tree constructed from a star \(S_m \), every leaf of which is adjacent to some number of isolated vertices (see [6]).

Slamin et al. [8] proved the following. If \(T \) is a tree on \(n \geq 2 \) vertices with \(k \) leaves, then \(\chi_{slat}(T) \leq n - k + 1 \). For a star \(S_n \) and a double star \(S_{k,n-k} \), we have \(\chi_{slat}(S_{n+1}) = 2 \) and \(\chi_{slat}(S_{k,n-k}) = 3 \). In addition, if \(P_n \) is a path, \(\chi_{slat}(P_n) = 3 \) if \(n \) is odd and \(n \geq 5 \), or \(3 \leq \chi_{slat}(P_n) \leq 4 \) if \(n \) is even and \(n \geq 6 \).

In this paper, we characterize trees \(T \) with \(\chi_{slat}(T) = 2 \), show existence of trees with \(\chi_{slat}(T) = 3 \), and construct trees \(T \) that have \(\chi_{slat}(T) = n \) for any positive integer \(n \geq 2 \).

2. Characterization of Trees with \(\chi_{slat}(T) = 2 \)

We start by determining the lower bound of \(\chi_{slat}(T) \). The following Lemma 2.1 shows sufficient condition for vertices having different weights based on their degrees.
Lemma 2.1. Let T be a tree graph which has SLAT-labeling f and $v_1, v_2 \in V(T)$. If $2 \deg(v_1) + 1 \leq \deg(v_2)$, then $w(v_1) < w(v_2)$.

Proof. Let $\deg(v_1) = d$ and $|V| = n$, so that $\deg(v_2) \geq 2d + 1$ and $|E| = n - 1$. By assigning v_1 and edges incident with v_1 labels such that the weight of v_1 is as large as possible, we have

$$w(v_1) \leq (d + 1)|V| + d|E| - \sum_{i=1}^{d} (i - 1)$$

$$w(v_1) \leq (d + 1)n + d(n - 1) - \frac{(d - 1)d}{2}$$

$$w(v_1) \leq 2dn + n - \frac{d^2 + d}{2}.$$

Then, by assigning v_2 and edges incident with v_2 labels such that the weight of v_2 is as small as possible, we have

$$w(v_2) \geq (2d + 1)|V| + \sum_{i=1}^{2d+1} (i + 1)$$

$$w(v_2) \geq (2d + 1)n + \frac{(2d + 1)(2d + 2)}{2} + 1$$

$$w(v_2) \geq 2dn + n + 2d^2 + 3d + 1.$$

It can be seen that $w(v_1) < w(v_2)$. \qed

The following special case where v_1 is a leaf will be useful.

Corollary 2.1. For an arbitrary tree, if v_1 is a leaf vertex and v_2 is a vertex with $\deg(v_2) \geq 3$, then $w(v_1) \neq w(v_2)$.

Based on [8], $\chi_{slat}(S_n) = 2$. We will show that stars are the only trees with $\chi_{slat}(T) = 2$. In our proof, we provide a labeling different from the one in [8].

Theorem 2.1. Suppose T is a tree graph, then $\chi_{slat}(T) = 2$ if and only if $T \cong S_n$ for $n \in \mathbb{N}$.

Proof. Let $T \cong S_n$ for $n \in \mathbb{N}$, we will show that $\chi_{slat}(T) = 2$. By the fact that $\chi(T) = 2$ and Observation 1.1 we conclude that $\chi_{slat}(T) \geq 2$. To show $\chi_{slat}(T) \leq 2$, define $f : V(T) \cup E(T) \rightarrow \{1, 2, \ldots, |V(T)| + |E(T)|\}$ as follows:

$$f(c) = n + 1,$$

$$f(v_i) = i, 1 \leq i \leq n,$$

$$f(cv_i) = 2n + 2 - i, i \leq i \leq n.$$

From here, we get

$$w(v_i) = 2n + 2, 1 \leq i \leq n,$$

$$w(c) = \frac{3}{2}n^2 + \frac{5}{2}n + 1.$$

487
Therefore, $\chi_{slat}(T) \leq 2$. We conclude that if $T \cong S_n$, then $\chi_{slat}(T) = 2$.

Now let $\chi_{slat}(T) = 2$, we will show that $T \cong S_n$.

Let the partition of $V(T)$ be V_1, V_2. Without loss of generality, let $x_0 \in V_1$ and $P = x_0, y_1, x_1, \ldots$ be a diametrical path. Then x_0 is of degree one. By Corollary 2.1, all vertices in V_1 are of degree at most two and therefore all vertices of V_2 belong to P. Denote by p the number of leaves in V_1 and by q the number of vertices of degree two. We want to show that $q = 0$.

Using this notation, we can see that $p = |V_1| - 2q - 1$.

Denote by V_i the set of vertices of degree i in V_1. Then we have $|V_1^1| = p$ and $|V_1^2| = q$. Denote $|V| = m$.

We know that all vertices in V_1 have the same weight, call it w^*. We first look at the p vertices of degree one, observing that

$$\sum_{x_i \in V_1^1} w(x_i) = pw^*. \quad (1)$$

We also know that

$$\sum_{x_i \in V_1^1} w(x_i) = \sum_{x_i \in V_1^1} f(x_i) + \sum_{x_i \in V_1^1, x_i y_j \in E} f(x_i y_j) \leq \sum_{s=m-p+1}^m s + \sum_{t=2m-p}^{2m-1} t = \frac{(2m-p+1)p}{2} + \frac{(4m-p-1)p}{2} \quad (2)$$

Combining (1) and (2), we obtain

$$pw^* = \sum_{x_i \in V_1^1} w(x_i) \leq \frac{(2m-p+1)p}{2} + \frac{(4m-p-1)p}{2}, \quad (3)$$

which yields

$$w^* \leq \frac{(2m-p+1)}{2} + \frac{(4m-p-1)}{2} = 3m - p, \quad (4)$$

Now we look at the q vertices of degree two, observing that

$$\sum_{x_i \in V_1^2} w(x_i) = qw^*. \quad (5)$$
We also know that
\[
\sum_{x_i \in V_1^2} w(x_i) = \sum_{x_i \in V_1^2} f(x_i) + \sum_{x_i \in V_1^2, x_i y_j \in E} f(x_i y_j) \\
\geq \sum_{s=1}^{q} s + \sum_{t=m+1}^{m+2q} t \\
= \frac{(q + 1)q}{2} + \frac{(2m + 2q + 1)(2q)}{2}
\]
Combining (5) and (6), we obtain
\[
qw^* = \sum_{x_i \in V_1^2} w(x_i) \geq \frac{(q + 1)q}{2} + \frac{(2m + 2q + 1)(2q)}{2},
\]
which for \(q > 0\) yields
\[
w^* \geq \frac{q + 1}{2} + (2m + 2q + 1) = 2m + \frac{5q + 3}{2}.
\]
We noted above that
\[
p = |V| - 2q - 1 = m - 2q - 1.
\]
Substituting (9) into (4), we have
\[
w^* \leq 3m - p = 3m - (m - 2q - 1) = 2m + 2q + 1.
\]
Now comparing (8) and (10), we get
\[
2m + \frac{5q + 3}{2} \leq w^* \leq 2m + 2q + 1,
\]
which is impossible for \(q > 0\). Hence, \(q = 0\). We already noticed that \(|V_2| = q + 1 = 1\), which implies that \(T\) must be the star \(S_p\).

In Figure 1, we give an example of SLAT labeling on \(S_8\).

Corollary 2.2. Suppose \(T\) is a non-trivial tree graph and \(S_n\) is a star graph. If \(T\) is not isomorphic to \(S_n\), then \(\chi_{slat}(T) \geq 3\).
3. Existence of Trees with $\chi_{slat}(T) = 3$

Slam et al. in [8] investigated paths P_n and proved that $\chi_{slat}(T_n) = 3$ when n is odd, and $3 \leq \chi_{slat}(T_n) \leq 4$ when n is even. In Theorem 3.1, we present a more straightforward proof.

Theorem 3.1. Let P_n be a path on n vertices, $n \geq 4$. Then $\chi_{slat}(P_n) = 3$ when n is odd or $n \in \{4, 6, 8, 10\}$ and $3 \leq \chi_{slat}(P_n) \leq 4$ when n is even and $n \geq 12$.

Proof. Let $V(P_n) = \{v_i|1 \leq i \leq n\}$ and $E(P_n) = \{v_iv_{i+1}|1 \leq i \leq n-1\}$ with $n \in \mathbb{N}$. According to Corollary 2.2, graphs that are not isomorphic to a star have $\chi_{slat}(P_n) \geq 3$. To show the upper bound, the problem is divided into two cases, according to the parity of n.

Case 1. n is odd

Define $f : V(P_n) \cup E(P_n) \rightarrow \{1, 2, 3, \ldots, |V| + |E|\}$ as follows

$$f(v_i) = \begin{cases}
2i - 1, & \text{if } i \in \{1, 2\}, \\
2, & \text{if } i = n, \\
n - i + 2, & \text{if } 3 \leq i \leq n - 2, i \text{ is odd}, \\
n - i + 4, & \text{if } 4 \leq i \leq n - 1, i \text{ is even}.
\end{cases}$$

$$f(v_iv_{i+1}) = \begin{cases}
2n - 1, & \text{if } i = 1, \\
n + \frac{i-1}{2}, & \text{if } 3 \leq i \leq n - 2, i \text{ is odd}, \\
\frac{3}{2}(n - 1) + \frac{i}{2}, & \text{if } 2 \leq i \leq n - 1, i \text{ is even}.
\end{cases}$$

Then we have the weights as follows.

$$w(v_i) = \begin{cases}
2n, & \text{if } i \in \{1, n\}, \\
\frac{7}{2}n - \frac{1}{2}, & \text{if } 3 \leq i \leq n - 2, i \text{ is odd}, \\
\frac{7}{2}n + \frac{3}{2}, & \text{if } 4 \leq i \leq n - 1, i \text{ is even}.
\end{cases}$$

Therefore, $\chi_{slat}(P_n) \leq 3$.

Case 2. n is even

Define $f : V(P_n) \cup E(P_n) \rightarrow \{1, 2, 3, \ldots, |V| + |E|\}$ as follows.

$$f(v_i) = \begin{cases}
n, & \text{if } i = 1, \\
n - 1, & \text{if } i = n, \\
n - i - 1, & \text{if } 2 \leq i \leq n - 2, i \text{ is even}, \\
n - i + 1, & \text{if } 3 \leq i \leq n - 1, i \text{ is odd}.
\end{cases}$$

$$f(v_iv_{i+1}) = \begin{cases}
n + \frac{i}{2}, & \text{if } 2 \leq i \leq n - 2, i \text{ is even}, \\
\frac{3}{2}n + \frac{i}{2}, & \text{if } 1 \leq i \leq n - 1, i \text{ is odd}.
\end{cases}$$

Then we have the weights as follows.

$$w(v_i) = \begin{cases}
\frac{5}{2}n, & \text{if } i = 1, \\
3n - 2, & \text{if } i = n, \\
\frac{7}{2}n, & \text{if } 3 \leq i \leq n - 2, i \text{ is odd}, \\
\frac{7}{2}n - 2, & \text{if } 2 \leq i \leq n - 1, i \text{ is even}.
\end{cases}$$
We conclude that $\chi_{\text{slat}}(P_n) = 3$ when n is odd or $n \{4, 6, 8, 10\}$, and $3 \leq \chi_{\text{slat}}(P_n) \leq 4$ when n is even and $n \geq 12$.

In Figure 2 we present SLAT labelings of P_4, P_6, P_8, P_{10} and also P_7 as an example for n odd. The labeling is not unique. Here are some labelings for P_6, P_8, P_{10}. First bracket is vertex labels, second edges, third weights. The labelings for P_6, P_8, and P_{10} were found by Branson [2].

\[
P_6\]
\[\{5, 3, 4, 1, 2, 6\}\{11, 9, 7, 8, 10\}\{16, 23, 20, 16, 20, 16\}\]

\[
P_8\]
\[\{8, 4, 1, 6, 5, 3, 2, 7\}\{14, 12, 13, 11, 10, 9, 15\}\{22, 30, 26, 30, 26, 22, 26, 22\}\]

\[
P_{10}\]
\[\{8, 1, 7, 3, 2, 5, 4, 9, 6, 10\}\{19, 14, 15, 16, 18, 11, 12, 13, 17\}\{27, 34, 36, 34, 36, 34, 27, 34, 36, 27\}\]

\[
\begin{align*}
P_6 & \quad \text{(a), } \chi_{\text{slat}}(P_6) = 3 \\
& \quad \text{(b), } \chi_{\text{slat}}(P_6) = 3 \\
& \quad \text{(c), } \chi_{\text{slat}}(P_6) = 4
\end{align*}
\]

Figure 2: SLAT labeling on P_7, P_4 and P_6.

Based on the labelings of the short even paths above, we state the following.

Conjecture. For any even $n \geq 4$, $\chi_{\text{slat}}(P_n) = 3$.

As a common generalization of caterpillars and shrubs, we introduce a new class of trees called shrubs. A shrub $\hat{S}(m, n, p)$ is defined by its vertex and edge set as follows.

\[
\begin{align*}
V(\hat{S}(m, n, p)) & = \{c, v_i, v_i^j, u_k | 1 \leq i \leq m, 1 \leq j \leq n, 1 \leq k \leq p\} \\
E(\hat{S}(m, n, p)) & = \{cv_i, v_i v_i^j, cu_k | 1 \leq i \leq m, 1 \leq j \leq n, 1 \leq k \leq p\}
\end{align*}
\]
When \(p = 0 \), then \(\hat{S}(m, n, p) \) is a regular shrub (all \(u_k \) vertices and \(cu_k \) edges are omitted). Else, if \(m \leq 2 \), then \(\hat{S}(m, n, p) \) is a caterpillar. However, when \(m = 0, n = 0 \), or \(m + p = 1 \), then \(\hat{S}(m, n, p) \) is a star. Since we already know that \(\chi_{\text{slat}}(T) = 2 \) for \(T \cong S_n \), the case of graph which is isomorphic to a star is omitted.

Theorem 3.2. Suppose \(\hat{S}(m, n, p) \) is a modified shrub. For positive \(m, n \), non-negative \(p \) and \(m + p \neq 1 \), \(\chi_{\text{slat}}(\hat{S}(m, n, p)) = 3 \).

Proof. Let \(\hat{S}(m, n, p) = \{c, v_i, v_i^j, u_k | 1 \leq i \leq m, 1 \leq j \leq n, 1 \leq k \leq p\} \) and \(E(\hat{S}(m, n, p)) = \{cv_i, v_i^jv_i^j, cu_k | 1 \leq i \leq m, 1 \leq j \leq n, 1 \leq k \leq p\} \). By Corollary 2.2, graphs other than stars have \(\chi_{\text{slat}}(\hat{S}(m, n, p)) \geq 3 \). To show the upper bound, the proof is divided into two cases.

Case 1. \(p + m \geq n + 1 \)

The case is divided into three subcases, according to the parity of \(n \) and \(m \).

Subcase 1.1. \(n \) is even

Define \(f : V \cup E \rightarrow \{1, 2, 3, \ldots, |V| + |E|\} \) as follows

\[
f(u_k) = k, 1 \leq k \leq p,
\]

\[
f(v_i^j) = \begin{cases}
 m(j - 1) + p + i, & \text{if } 1 \leq i \leq m, 1 \leq j \leq n, j \text{ is odd,} \\
 mj - i + p + 1, & \text{if } 1 \leq i \leq m, 1 \leq j \leq n, j \text{ is even.}
\end{cases}
\]

\[
f(v_i) = mn + p + i, 1 \leq i \leq m,
\]

\[
f(c) = m(n + 1) + p + 1,
\]

\[
f(v_iv_i^j) = \begin{cases}
 m(2n - j + 1) + p + i + 1, & \text{if } 1 \leq i \leq m, 1 \leq j \leq n, j \text{ is even,} \\
 m(2n - j + 2) + p - i + 2, & \text{if } 1 \leq i \leq m, 1 \leq j \leq n, j \text{ is odd.}
\end{cases}
\]

\[
f(cv_i) = m(2n + 2) + 2p - i + 2, 1 \leq i \leq m,
\]

\[
f(cu_k) = m(2n + 1) + 2p - k + 2, 1 \leq k \leq p.
\]

When \(p = 0 \), then vertices \(v_k \) and edges \(cu_k \) are omitted.

We have

\[
w(u_k) = w(v_i^j) = m(2n + 1) + 2p + 2, 1 \leq k \leq p, 1 \leq i \leq m, 1 \leq j \leq n,
\]

\[
w(v_i) = m(n(2n + \frac{9}{2}) - \frac{n(n + 1)}{2} + 2) + p(n + 3) + \frac{3n}{2} + 2, 1 \leq i \leq m,
\]

\[
w(c) = m((2m + 1)(n + 1) + p(2n + 3) + 2) + \frac{p(3p + 5)}{2} - \frac{m(m + 1)}{2} + 1.
\]

It can be seen that these three weights are different.
Subcase 1.2. Both \(n \) and \(m \) are odd
Define \(f : V \cup E \rightarrow \{1, 2, 3, \ldots, |V| + |E|\} \) as follows

\[
f(u_k) = k, 1 \leq k \leq p,
\]

\[
f(v_i^j) = \begin{cases}
 m(j - 1) + p + i, & \text{if } 1 \leq i \leq m, 1 \leq j \leq n, j \text{ is odd,} \\
 m_j - i + p + 1, & \text{if } 1 \leq i \leq m, 1 \leq j \leq n, j \text{ is even.}
\end{cases}
\]

\[
f(v_i) = \begin{cases}
 mn + p + \frac{m+1}{2} - i + 1, & \text{if } 1 \leq i \leq \frac{m+1}{2}, \\
 m(n+1) + p + \frac{m+1}{2} - i + 1, & \text{if } \frac{m+3}{2} \leq i \leq m.
\end{cases}
\]

\[
f(c) = m(n+1) + p + 1,
\]

\[
f(v_i v_i^j) = \begin{cases}
 m(2n - j + 1) + p + i + 1, & \text{if } 1 \leq i \leq m, 1 \leq j \leq n, j \text{ is even,} \\
 m(2n - j + 2) + p - i + 2, & \text{if } 1 \leq i \leq m, 1 \leq j \leq n, j \text{ is odd.}
\end{cases}
\]

\[
f(cv_i) = \begin{cases}
 m(2n + 1) + 2p + 2i, & \text{if } 1 \leq i \leq \frac{m+1}{2}, \\
 2mn + 2p + 2i, & \text{if } \frac{m+3}{2} \leq i \leq m.
\end{cases}
\]

\[
f(cv_k) = m(2n + 1) + 2p - k + 2, 1 \leq k \leq p.
\]

When \(p = 0 \), then vertices \(v_k \) and edges \(cv_k \) are omitted.

We have

\[
w(u_k) = w(v_i^j) = m(2n + 1) + 2p + 2, 1 \leq k \leq p, 1 \leq i \leq m, 1 \leq j \leq n,
\]

\[
w(v_i) = m(2n(n + 2) + (1 - n)\frac{n+1}{2} + 1) + p(n + 3) + \frac{m+3n}{2} + 2, 1 \leq i \leq m,
\]

\[
w(c) = m((2m + 1)(n + 1) + p(2n + 3) + 2) + \frac{p(3p + 5)}{2} - \frac{m(m + 1)}{2} + 1.
\]

It can be seen that these three weights are different.

Subcase 1.3. \(n \) is odd and \(m \) is even
Define \(f : V \cup E \rightarrow \{1, 2, 3, \ldots, |V| + |E|\} \) as follows

\[
f(u_k) = k, 1 \leq k \leq p,
\]

\[
f(v_i^j) = \begin{cases}
 m(j - 1) + p + i, & \text{if } 1 \leq i \leq m, 1 \leq j \leq n, j \text{ is odd,} \\
 m_j - i + p + 1, & \text{if } 1 \leq i \leq m, 1 \leq j \leq n, j \text{ is even.}
\end{cases}
\]

\[
f(v_i) = \begin{cases}
 mn + p + \frac{i+1}{2} + 1, & \text{if } 1 \leq i \leq m, i \text{ is odd,} \\
 mn + p + \frac{m+i}{2} + 1, & \text{if } 1 \leq i \leq m, i \text{ is even.}
\end{cases}
\]

\[
f(c) = mn + p + \frac{m}{2} + 1,
\]

\[
f(v_i v_i^j) = \begin{cases}
 m(2n - j + 1) + p + i + 1, & \text{if } 1 \leq i \leq m, 1 \leq j \leq n, j \text{ is even,} \\
 m(2n - j + 2) + p - i + 2, & \text{if } 1 \leq i \leq m, 1 \leq j \leq n, j \text{ is odd.}
\end{cases}
\]
Chromatic number of SLAT labelings of graphs | Hadiputra et al.

\[f(cv_i) = \begin{cases}
 m(2n + 1) + 2p + \frac{i}{2} + 1, & \text{if } 1 \leq i \leq m, \text{ } i \text{ is even,} \\
 m(2n + 1) + 2p + \frac{m+i+1}{2} + 1, & \text{if } 1 \leq i \leq m, \text{ } i \text{ is odd.}
\end{cases} \]

\[f(cu_k) = m(2n + 1) + 2p - k + 2, 1 \leq k \leq p. \]

When \(p = 0 \), then vertices \(v_k \) and edges \(cv_k \) are omitted.

We have

\[w(u_k) = w(v^j_i) = m(2n + 1) + 2p + 2, 1 \leq k \leq p, 1 \leq i \leq m, 1 \leq j \leq n, \]

\[w(v_i) = m(2n(n+2) + (1-n)\frac{n+1}{2} + 1) + p(n+3) + \frac{m+3n+1}{2} + 2, 1 \leq i \leq m, \]

\[w(c) = m((2m+1)(n+1) + p(2n+3) + \frac{3}{2}) + \frac{p(3p+5)}{2} - \frac{m(m+1)}{2} + 1. \]

It can be seen that these three weights are different.

Case 2. \(p + m < n + 1 \)

The case is divided into three subcases according to the parity of \(n \) and \(m \).

Subcase 2.1. \(n \) is even

Define \(f : V \cup E \rightarrow \{1, 2, 3, \ldots, |V| + |E|\} \) as follows.

\[f(u_k) = mn + k, 1 \leq k \leq p, \]

\[f(v^j_i) = \begin{cases}
 m(j - 1) + i, & \text{if } 1 \leq i \leq m, 1 \leq j \leq n, \text{ } j \text{ is odd,} \\
 mj - i + 1, & \text{if } 1 \leq i \leq m, 1 \leq j \leq n, \text{ } j \text{ is even.}
\end{cases} \]

\[f(v_i) = mn + p + i + 1, 1 \leq i \leq m, \]

\[f(c) = mn + p + 1, \]

\[f(v_i v^j_i) = \begin{cases}
 m(2n - j + 2) + 2p + i + 1, & \text{if } 1 \leq i \leq m, 1 \leq j \leq n, \text{ } j \text{ is even,} \\
 m(2n - j + 3) + 2p - i + 2, & \text{if } 1 \leq i \leq m, 1 \leq j \leq n, \text{ } j \text{ is odd.}
\end{cases} \]

\[f(cv_i) = m(n + 2) + p - i + 2, 1 \leq i \leq m, \]

\[f(cu_k) = m(n + 2) + 2p - k + 2, 1 \leq k \leq p. \]

When \(p = 0 \), then vertices \(v_k \) and edges \(cv_k \) are omitted.

We have

\[w(u_k) = w(v^j_i) = m(2n + 2) + 2p + 2, 1 \leq k \leq p, 1 \leq i \leq m, 1 \leq j \leq n, \]

\[w(v_i) = m(n(2n + \frac{9}{2}) - \frac{n(n+1)}{2} + 2) + 2p(n+1) + \frac{3n}{2} + 3, 1 \leq i \leq m, \]

\[w(c) = m((m + 2)(n + 2) + p) + \frac{p(3p+5)}{2} - \frac{m(m+1)}{2} + 1. \]

494
It can be seen that these three weights are different.

Subcase 2.2. Both \(n \) and \(m \) are odd

Define \(f : V \cup E \to \{1, 2, 3, \ldots, |V| + |E| \} \) as follows.

\[
f(u_k) = mn + k, 1 \leq k \leq p,
\]

\[
f(v_i) = \begin{cases}
 m(j - 1) + i, & \text{if } 1 \leq i \leq m, 1 \leq j \leq n, j \text{ is odd}, \\
 mj - i + 1, & \text{if } 1 \leq i \leq m, 1 \leq j \leq n, j \text{ is even}.
\end{cases}
\]

\[
f(v_i) = \begin{cases}
 mn + p + \frac{m+1}{2} - i + 2, & \text{if } 1 \leq i \leq \frac{m+1}{2}, \\
 m(n + 1) + p + \frac{m+1}{2} - i + 2, & \text{if } \frac{m+3}{2} \leq i \leq m.
\end{cases}
\]

\[
f(c) = mn + p + 1,
\]

\[
f(v_i v_i) = \begin{cases}
 m(2n - j + 2) + 2p + i + 1, & \text{if } 1 \leq i \leq m, 1 \leq j \leq n, j \text{ is even}, \\
 m(2n - j + 3) + 2p - i + 2, & \text{if } 1 \leq i \leq m, 1 \leq j \leq n, j \text{ is odd}.
\end{cases}
\]

\[
f(cv_i) = \begin{cases}
 m(n + 1) + p + 2i, & \text{if } 1 \leq i \leq \frac{m+1}{2}, \\
 mn + p + 2i, & \text{if } \frac{m+3}{2} \leq i \leq m.
\end{cases}
\]

\[
f(cv_k) = mn + p + 1,
\]

\[
f(ck) = m(2n + 2) + 2p - k + 2, 1 \leq k \leq p.
\]

When \(p = 0 \), then vertices \(v_k \) and edges \(cv_k \) are omitted.

We have

\[
w(u_k) = w(v_i^j) = m(2n + 2) + 2p + 2, 1 \leq k \leq p, 1 \leq i \leq m, 1 \leq j \leq n,
\]

\[
w(v_i) = m(2n(n + 2) + (1 - n)n + \frac{n+1}{2} + 1) + 2p(n + 1) + \frac{m + 3n}{2} + 3, 1 \leq i \leq m,
\]

\[
w(c) = m((m + 1)(n + \frac{3}{2}) + p(n + 3)) + \frac{p(3p + 5)}{2} + 1.
\]

It can be seen that these three weights are different.

Subcase 2.3. \(n \) is odd and \(m \) is even

Define \(f : V \cup E \to \{1, 2, 3, \ldots, |V| + |E| \} \) as follows.

\[
f(u_k) = mn + k, 1 \leq k \leq p,
\]

\[
f(v_i^j) = \begin{cases}
 m(j - 1) + i, & \text{if } 1 \leq i \leq m, 1 \leq j \leq n, j \text{ is odd}, \\
 mj - i + 1, & \text{if } 1 \leq i \leq m, 1 \leq j \leq n, j \text{ is even}.
\end{cases}
\]

\[
f(v_i) = \begin{cases}
 mn + p + \frac{i+1}{2}, & \text{if } 1 \leq i \leq m, i \text{ is odd}, \\
 mn + p + \frac{m+i}{2} + 1, & \text{if } 1 \leq i \leq m, i \text{ is even}.
\end{cases}
\]

\[
f(c) = mn + p + \frac{m}{2} + 1,
\]
Chromatic number of SLAT labelings of graphs | Hadiputra et al.

\[f(v_iv_j) = \begin{cases}
 m(2n - j + 2) + 2p + i + 1, & \text{if} \ 1 \leq i \leq m, 1 \leq j \leq n, \ j \text{ is even}, \\
 m(2n - j + 3) + 2p - i + 2, & \text{if} \ 1 \leq i \leq m, 1 \leq j \leq n, \ j \text{ is odd}.
\]

\[f(cv_i) = \begin{cases}
 m(n + 1) + p + \frac{i}{2} + 1, & \text{if} \ 1 \leq i \leq m, \ i \text{ is even}, \\
 m(n + 1) + p + \frac{m + i + 1}{2} + 1, & \text{if} \ 1 \leq i \leq m, \ i \text{ is odd}.
\]

\[f(cu_k) = m(2n + 1) + 2p - k + 2, \ 1 \leq k \leq p. \]

When \(p = 0 \), then vertices \(v_k \) and edges \(cv_k \) are omitted.

We have

\[w(u_k) = w(v_i) = m(2n + 2) + 2p + 2, \ 1 \leq k \leq p, 1 \leq i \leq m, 1 \leq j \leq n, \]

\[w(v_i) = m(2n(n + 2) + (1 - n)\frac{n + 1}{2} + 1) + 2p(n + 1) + \frac{m + 3n + 1}{2} + 2, \ 1 \leq i \leq m, \]

\[w(c) = m((m + 1)(n + \frac{3}{2}) + p(2n + 3) + \frac{1}{2}) + \frac{p(3p + 5)}{2} + 1. \]

It can be seen that these three weights are different.

From the above cases, we can conclude that \(\chi_{slat}(S'(m, n, p)) \leq 3 \). Hence, \(\chi_{slat}(S'(m, n, p)) = 3 \).

In Figure 3, we have examples of two cases in the preceding theorem.

![Figure 3: SLAT labeling on \(T \), \(\chi_{slat}(T) = 3 \).](image)

Corollary 3.1. If a tree \(T \) is isomorphic to a regular shrub \(S(n, n, \ldots, n) \) or a caterpillar \(S_{n_1, n_2} \) or \(S_{n_1, n_2, n_3} \), then \(\chi_{slat}(T) = 3 \).

4. Construction of Trees \(T \) with \(\chi_{slat}(T) = n \) for any \(n \in \mathbb{N} \)

Motivated by the fact that for any tree (an in fact for any bipartite graph) the regular chromatic number \(\chi(T) = 2 \), it is natural to ask whether there exists \(k \in \mathbb{N} \) such that for every tree \(T \), \(\chi_{slat}(T) \leq k \). In the following theorem we show that no such bound exists.
Theorem 4.1. For every \(n \geq 2 \), there exists a tree \(T \) such that \(\chi_{slat}(T) = n \).

Proof. The assertion for \(n = 2 \) follows from Theorem 2.1 and for \(n = 3 \) from Theorem 3.1. Therefore, we only construct examples for \(n \geq 4 \).

We construct a tree \(T \) starting with the path \(P_{n+1} \). For every \(i = 2, 3, \ldots, n \) we define \(t_i = \lfloor \frac{i}{2} \rfloor + 1 \) and join vertex \(v_i \) to \(2^{t_i} - 3 \) isolated vertices. From this construction, we obtain \(\deg(v_i) = 2^{t_i} - 1 \), for \(2 \leq i \leq n \).

First, we need to show that \(\chi_{slat}(T) \geq n \). According to the definition of SLAT-labeling, adjacent vertices must have different weights, therefore \(w(v_i) \neq w(v_{i+1}) \) for \(1 \leq i \leq n \).

By the graph construction, for any \(1 \leq i, j \leq n \) such that \(j \geq i + 2 \) the vertices \(v_i, v_j \) are non-adjacent and satisfy the condition \(2 \deg(v_i) + 1 \leq \deg(v_j) \). It then follows from Lemma 2.1 that \(w(v_i) \neq w(v_j) \). In addition, it follows from Corollary 2.1 that the weights of vertices of degree at least three are all greater than the weights of all leaves. Thus, the graph needs at least \(n \) distinct weights, which means \(\chi_{slat}(T) \geq n \).

To show \(\chi_{slat}(T) \leq n \), we define a labeling \(f \) as follows. For \(i = 2, 3, \ldots, n \) and \(l = 1, 2, \ldots, t_i \) we denote by \(e_{i,l} \) the pendant edges incident with vertex \(v_i \) and by \(v_{i,l} \) the leaf incident with \(e_{i,l} \). First we label edge \(v_1 v_2 \) with label \(|V| + 1 \). Then we label the remaining pendant edges starting with the lowest available edge label \(|V| + 2 \) in lexicographic order; that is, \(f(e_{i,l}) < f(e_{i,s}) \) for any \(1 \leq l < s \leq t_i \) and \(f(e_{i,l}) < f(i, s) \) for any \(2 \leq i < j \leq n \) and any \(l \) and \(s \). Next, label the leaf incident with an edge \(e_{i,l} \) (or \(v_1 v_2 \)) so that the sum of the edge and vertex label equals \(2|V| - n + 2 \).

Then, label the vertices \(v_2, v_3, \ldots, v_n \) starting from \(f(v_2) = |V| - n + 2 \) consecutively in increasing order. Finally, label the remaining edges starting from \(f(v_2v_3) = 2|V| - n - 2 \) consecutively in increasing order. From this labeling, we have \(w(v_{i,l}) = 2|V| - n + 2 \) for every leaf vertex \(v_{i,l} \), while \(2|V| - n + 2 < w(v_i) \leq w(v_j) \) for \(2 \leq i < j \leq n \). Hence, \(\chi_{slat}(T) \leq n \).

We can conclude that \(\chi_{slat}(T) = n \).

5. Open Problems

To conclude, we state some obvious open problems.

1. Characterize trees with \(\chi_{slat}(T) = 3 \).
2. Determine \(\chi_{slat}(G) \) for other natural classes of graphs.

Acknowledgement

This research is funded by PUTI 2020 Research Grant, Universitas Indonesia No. NKB-779/UN2.RST/HKP.05.00/2020.

References

