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Abstract

Directed acyclic graphs are often used to model situations and problems in real life. If we consider
the topological ordering of a graph as a process of arranging the vertices in the best possible way
considering the constraints caused by the direction of edges, then it makes sense to try to optimize
this process by minimizing the distances between vertices in the ordering. For this purpose, we
define measures based on distances between vertices in the topological ordering that allow us to
construct a graph with optimal topological ordering regarding a specific measure thus minimizing
the complexity of the system represented by the graph. We explore minimal and maximal values
of the defined measures and comment on the topology of graphs for which maximal and minimal
values are obtained. Potentially, the proved bounds could be used to benchmark existing algo-
rithms, devise new approximation algorithms or branch–and–bound schemas for some scheduling
problems that are usually of hard computational complexity.
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1. Introduction

Graphs are used to model many situations and problems that arise in different areas of interest.
Special class of graphs that occur widely in natural and man-made settings are directed acyclic
graphs [14]. The term refers to a finite directed graph that has no directed cycles. In computer
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science and engineering acyclic graphs occur in data structures, software call graphs, feed-forward
neural networks and parallel processing. In pure mathematics acyclic graphs are studied for their
own sake [4, 17], as a representation of partially ordered sets [20] and random graph orders [1, 7],
while in statistics the widely used Bayesian networks are an acyclic graph version of probabilistic
graphical models [12, 13, 16].

Every directed acyclic graph has a topological ordering [3], a linear ordering of its vertices in
such way that for every directed edge the starting vertex of the edge occurs earlier in the sequence
than the ending vertex of the edge. For instance, the vertices of the graph may represent tasks
to be performed, and the edges may represent constraints that one task must be performed before
another. If we consider topological ordering as a process of arranging the vertices in the best
possible way considering the constraints caused by the direction of edges, then it makes sense to
try to optimize it by minimizing the distances between vertices in the ordering. This allows for a
process that is represented by a directed acyclic graph to be more efficient (whether in execution
time or in minimizing any cost function defined on the graph). This problem is widely researched
in computer science, especially in parallel processing. It is known as task scheduling problem
and the research resulted in many algorithms in an effort to find the optimal solution [5, 9, 10, 19].
There has been a lot of work done to form a mathematical background for researching this problem
[8, 11, 15]. In mathematics, this problem is referred to as a linear ordering problem [6], [18].

In this paper we define new measures for evaluating the topological ordering of vertices in di-
rected acyclic graphs. Measures were motivated by curriculum networks presented in [2], where
vertices represent education units and directed edge uv denotes that unit u is a necessary prereq-
uisite for unit v. Using these measures one can construct a curriculum in such a way that minimal
time is needed for the student to master the materials. We define measures for single vertex, which
incorporate how a vertex depends on its incoming neighbours. We then generalize the measures
for entire graph and bound their values over a set of all topological orderings of given dag. Finally,
we give an example of a graph for which the minimal and maximal value of a certain measure
is obtained. Two types of families of graphs were considered: weakly connected directed acyclic
graphs and weakly connected directed acyclic graphs that are transitively closed. Note that we give
one possible graph for which equality holds, we do not claim that this graph is a unique solution.

2. Mathematical framework

Let G = (V,E) be a directed acyclic graph and let P (G) be the set of all bijections p :
V (G) → {1, . . . , n} such that it holds that p(u) < p(v) for each directed edge uv ∈ E(G). We
can consider P (G) to be the set of all topological orderings of a directed acyclic graph. Let us
denote dp(uv) = p(v) − p(u) for each directed edge uv ∈ E(G), which is actually the distance
between vertices u and v in the topological ordering p. Using these distances, we can define new
measures for vertices in directed acyclic graphs. For each vertex v ∈ V (G), we define sp,G(v) as
the sum of distances between v and every of its incoming neighbours,

sp,G(v) =
∑

uv∈E(G)

dp(uv).
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We can interpret this measure as a cost that vertex makes to the network or as the amount of time
needed for all of the immediate prerequisites of vertex v to be completed. We can also consider
the average distance between v and its incoming neighbours resulting in measure ap,G(v) and the
maximal distance between v and its incoming neighbours resulting in measure mp,G(v),

ap,G(v) =

{
sp,G(v)

d−G(v)
, if d−G(v) > 0,

0, if d−G(v) = 0,

mp,G(v) = max
uv∈E(G)

{dp(uv)} ,

where d−G(v) denotes in-degree of a vertex v ∈ V (G). Another way to interpret these measures
is in terms of complexity for a single vertex: sp,G(v) states that a vertex is as complex as the sum
of complexities of all of its immediate prerequisites, ap,G(v) and mp,G(v) take into account the
average and maximal complexity of its immediate prerequisites respectively.

We now expend these measures to the entire directed acyclic graph G with n vertices. There
are number of ways to approach this problem. The simplest way is to sum through all the vertices
and divide by the number of vertices, which gives us the following measures:

s1p(G) =
1

n

∑
v∈V (G)

sp,G(v),

a1p(G) =
1

n

∑
v∈V (G)

ap,G(v),

m1
p(G) =

1

n

∑
v∈V (G)

mp,G(v).

We can also consider finding maximal values over all vertices in the graph.

s∞p (G) = max
v∈V (G)

{sp,G(v)} ,

a∞p (G) = max
v∈V (G)

{ap,G(v)} ,

m∞p (G) = max
v∈V (G)

{mp,G(v)} .

One can also consider the α-mean values between these two cases:

sαp (G) =

 1

n

∑
v∈V (G)

sαp,G(v)

 1
α

,

aαp (G) =

 1

n

∑
v∈V (G)

aαp,G(v)

 1
α

,
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mα
p (G) =

 1

n

∑
v∈V (G)

mα
p,G(v)

 1
α

.

Since the topological ordering od directed acyclic graph is generally not unique, we define

sα(G) = min
p∈P (G)

{
sαp (G)

}
,

aα(G) = min
p∈P (G)

{
aαp (G)

}
,

mα(G) = min
p∈P (G)

{
mα
p (G)

}
.

and are interested in finding upper and lower bound for these values for α ≥ 1. We shall study two
types of families of graphs:

1. Type A - weakly connected directed acyclic graphs.

2. Type B - weakly connected directed acyclic graphs that are transitively closed.

A graph G is weakly connected if its underlying undirected graph (all edges replaced by undi-
rected edges) is connected. Graph G is transitively closed if there is an edge uv ∈ E(G) corre-
sponding to each directed path from u to v in G.

3. Extremal results

(a) (b) (c)

(d) (e)

Figure 1: Simple examples of graphs for n = 5: (a) G = Sn (b) G = Tn (c) G = On (d), (e)
Disoriented path

Let n be the number of vertices in a graph G. Let us denote G = Sn a directed graph which
underlying graph is a star and all edges are oriented from the center of the star toward a pendant
vertex (see Figure 1 (a)). LetG = On be a directed graph that corresponds to total linear order of n
elements (equivalently, let On be simple directed graph without directed cycles which underlying
graph is complete graph or equivalently let On be a tournament without directed cycles). Example

570



www.ejgta.org

Evaluating topological ordering in directed acyclic graphs | S. Antunović and D. Vukičević

of O5 is given in Figure 1 (c). Let G = Pn be a directed path, i.e. digraph with n vertices which
underlying graph is a path and for each i it holds ei = (vi−1, vi). Disoriented path on n vertices
is a directed graph with n vertices which underlying graph is a path, but there are no directed
paths such that d(u, v) ≥ 2 (see Figure 1 (d) and (e)). In this case d(u, v) represents standard
graph–theoretical distance between vertices u and v. Note that there are (up to isomorphism) two
disoriented paths for odd n and only one for even n.

3.1. Graphs of type A

Theorem 3.1. Let G be a directed graph of type A with n ≥ 3 vertices. It holds

1. 1 ≤ m∞(G) ≤ n − 1. The lower bound is obtained for G = Pn and the upper bound is
obtained for G = On.

2. 1 ≤ s∞(G) ≤
n−1∑
i=1

i. The lower bound is obtained for G = Pn and the upper bound is

obtained for G = On.

3. 1 ≤ a∞(G) ≤ n − 1. The lower bound is obtained for G = Pn and the upper bound is
obtained for G = Sn.

Proof. By definition, for graphG it holds p(u) < p(v) for each uv ∈ E(G) for each permutation p,
so p(v)−p(u) > 0. Since bijection p is defined with p : V (G)→ {1, . . . , n} it holds p(v)−p(u) <
n. From this we conclude that 1 ≤ m∞(G) ≤ n − 1. It can easily be calculated that the lower
bound is obtained for Pn and the upper for On. This proves 1. The other claims are trivial.

Theorem 3.2. Let G be a directed graph of type A with n ≥ 3 vertices and α ≥ 1. It holds(
n− 1

n

) 1
α

≤ mα(G) ≤

(
1

n

n−1∑
i=1

iα

) 1
α

.

The lower bound is obtained for G = Pn and the upper bound for G = On.

Proof. Let G be a directed graph with n ≥ 3 vertices and let p be a bijection that minimizes
mα(G). Let us note that graph G has at least n− 1 arcs since it is weakly connected. It holds

mα
p (G) =

 1
n

∑
v∈V (G)

mα
p,G(v)

 1
α

≥

 1
n

∑
v∈V (G)

(d−G(v))
α

 1
α

.

Note that xα is a convex function for α > 1 and that at least one in-degree is equal to 0, hence: 1
n

∑
v∈V (G)

(d−G(v))
α

 1
α

≥

(n− 1)

n


∑

v∈V (G)

d−G(v)

n− 1


α

1
α

≥

≥
[
(n− 1)

n

(
e(G)

n− 1

)α] 1
α

≥
[
(n− 1)

n

(
n− 1

n− 1

)α] 1
α

=

(
n− 1

n

) 1
α

,
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where e(G) denotes the number of directed edges in graph G. The upper bound follows because
for every two vertices u, v ∈ V (G) it holds p(v)− p(u) ≤ p(v)− 1, which is true if vertex u such
that p(u) = 1 points to all other vertices.

Theorem 3.3. Let G be a directed graph of type A with n ≥ 3 vertices and α ≥ 1. It holds(
n− 1

n

) 1
α

≤ sα(G) ≤

[
1

n

n∑
i=2

(
i−1∑
j=1

j

)α] 1
α

.

The lower bound is obtained for G = Pn and the upper bound for G = On.

Proof. The lower bound follows from Theorem 3.2. The upper bound is trivial since the value of
sαp,G(v) will be highest if all the edges that can point to a vertex v ∈ V (G) really do point to it.

Let us denote Tn,k a graph obtained from graph Pk by adding the remaining n − k vertices in
such a way that all arcs point to vertices on Pk and every vertex in Pk has equal in-degree. The
example of such graph is shown on Fig. 2.

Figure 2: Example of graph G = Tn,k for k = 5 and n = 21

Theorem 3.4. Let G be a directed graph of type A with n ≥ 3 vertices and α ≥ 1. It holds

aα(G) ≥


n

2n
1
α
, if α ≤ 1

n−1 + 1,

α
2(α−1)

[
1
n
(n− 1)(α− 1)

] 1
α , if 1

n−1 + 1 < α < 2,(
n−1
n

) 1
α , if α ≥ 2.

The lower bound is obtained forG = Tn if α ≤ 1/(n−1)+1, forG = Tn,k where k = (n−1)(α−1)
and 1/(n− 1) + 1 < α < 2 or for G = Pn if α ≥ 2.

Proof. LetG be a directed graph with n ≥ 3 vertices and let p be a bijection that minimizes aα(G).
Graph G has at least n− 1 arcs. It holds

aαp (G) =

 1
n

∑
v∈V (G)

aαp,G(v)

 1
α

≥

 1n
∑

v∈V (G)

d−G(v)6=0


d−G(v)∑
i=1

i

d−G(v)


α

1
α

≥

 1n ∑
v∈V (G)

d−G(v)6=0

(
d−G(v) + 1

2

)α
1
α

.
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Let x ∈ {1, . . . , n− 1} be the number of vertices v such that d−G(v) 6= 0. It holds:

aαp (G) ≥
[
x

n

(
e(G) + x

2x

)α] 1
α

≥
[
x

2αn

(
n− 1 + x

x

)α] 1
α

.

We need to minimize the function

f(x) = x

(
n− 1 + x

x

)α
.

First derivation gives us that function has minimum for x = (n − 1)(α − 1). Since it holds that
x ∈ {1, . . . , n− 1}, we get the following cases:

1. If (n− 1)(α− 1) ≤ 1 then aα(G) will have its minimal value for x = 1

2. If 1 < (n − 1)(α − 1) < n − 1 then aα(G) will have its minimal value if x and 1/(α − 1)
are integers and x | (n− 1)

3. If (n− 1)(α− 1) ≥ n− 1 then aα(G) will have its minimal value for x = n− 1.

Lower bounds can easily be calculated from this.

Theorem 3.5. Let G be a directed graph of type A with n ≥ 3 vertices and α ≥ 1. It holds

aα(G) ≤

(
1

n

n−1∑
i=1

iα

) 1
α

.

The upper bound is obtained for G = Sn.

Proof. Trivial.

The results obtained for graphs of type A are summerized in Table 1.

Table 1: Extremal values for the graphs of type A

Measure Minimal Maximal

s∞(G) 1
n−1∑
i=1

i

a∞(G) 1 n− 1
m∞(G) 1 n− 1

sα(G)
(
n−1
n

) 1
α

[
1
n

n∑
i=2

(
i−1∑
j=1

j

)α] 1
α

aα(G) min

{
n

2n
1
α
, α
2(α−1)

[
(n−1)(α−1)

n

] 1
α
,
(
n−1
n

) 1
α

} (
1
n

n−1∑
i=1

iα
) 1

α

mα(G)
(
n−1
n

) 1
α

(
1
n

n−1∑
i=1

iα
) 1

α
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3.2. Graphs of type B

Let us now consider graphs of type B. Graph of type B is a weakly connected directed graph
that does not contain directed cycles and that is transitively closed. Using Theorems 3.1 through
3.5 we get the following corollary.

Corollary 3.1. Let G be a directed graph of type B with n ≥ 3 vertices and α ≥ 1. It holds:

1. m∞(G) ≤ n− 1. The upper bound is obtained for G = On.

2. s∞(G) ≤
n−1∑
i=1

i. The upper bound is obtained for G = On.

3. a∞(G) ≤ n− 1. The upper bound is obtained for G = Sn.

4. mα(G) ≤
(

1
n

n−1∑
i=1

iα
) 1

α

. The upper bound is obtained for G = On.

5. sα(G) ≤

(
1
n

n∑
i=2

(
i−1∑
j=1

j

)α) 1
α

. The upper bound is obtained for G = On.

6. aα(G) ≤
(

1
n

n−1∑
i=1

iα
) 1

α

. The upper bound is obtained for G = Sn.

Let us define by UT (G) a graph obtained by successive elimination of transitive edges, i.e. by
the following algorithm:

1. Let G1 = G, i = 1, proceed=true

2. While proceed

2.1. If there are vertices u1, u2, . . . , uk ∈ V (G1) such that u1u2, u2u3, . . . , uk−1uk ∈ E(Gi)
and u1uk ∈ E(Gi) then

2.1.1. Gi+1 = Gi − u1uk and i = i+ 1

2.2. Else

2.2.1. proceed=false

3. UT (G) = Gi

Note that if graph G is weakly connected, then graph UT (G) is also weakly connected. Also,
if graph G is strongly connected, then graph UT (G) is also strongly connected. Let ut(G) be
underlying (unoriented) graph of graph UT (G). Note that UT (G) is connected.
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Theorem 3.6. Let G be a directed graph of type B with n ≥ 2 vertices. It holds

2n− 3

n
≤ s1(G).

The lower bound is obtained for disoriented path.

Proof. We prove the claim by induction on n. For n = 2, the claim is obvious. Now suppose that
we have proved the claim for all graphs with n− 1 vertices, n ≥ 3, and let G have n vertices. Let
vertex u be a non-cut vertex of graphUT (G) (i.e. such vertex thatUT (G)−u is weakly connected).
From the induction hypothesis it follows that s1(G− u) ≥ 2n−5

n−1 . If d+G(u) + d−G(u) ≥ 2, then there
are at least two new arcs in G when compared to G − u. Let q be the permutation that minimizes
s1p(G) and r permutation that minimizes s1p(G− u). It holds that:

s1(G) = s1q(G) ≥
2 + (n− 1)s1q/(V (G)−u)(G− u)

n
≥ 2 + (n− 1)s1r(G− u)

n

≥ 2 + (2n− 5)

n
=

2n− 3

n
.

Hence, d+G(u) + d−G(u) = 1. Let us distinguish two cases: uv ∈ E(G) and vu ∈ E(G). We
shall prove the theorem for uv ∈ E(G), the other case is analogous. If uv ∈ E(G) it follows that
there is a vertex w such that wv ∈ E(UT (G)). Let q be a permutation that minimizes s1q(G). If
q(v)− q(u) ≥ 2, then it holds

s1q(G) ≥
[q(v)− q(u)] + (n− 1) · s1q/V (G)−u(G)

n
≥ 2 + (n− 1) · s1(G)

≥ 2 + 2n− 5

n
=

2n− 3

n
.

If q(v)− q(u) = 1 then let us denote r : V (G)→ • function defined by:

r(x) =

{
q(x), if q(x) < q(u),
q(x)− 1, if q(x) > q(u).

Note that for every edge x1x2 ∈ E(G) it holds r(x2)−r(x1) ≤ q(x2)−q(x1) and that r(v)−r(w) ≤
q(v)− q(w)− 1. Hence,

s1q(G) ≥
[q(v)− q(u)] + (n− 1) · s1q/G−u(G)

n
≥

1 + (n− 1) ·
(
s1r(G) +

1
n−1

)
n

≥
1 + (n− 1) ·

(
s1(G) + 1

n−1

)
n

≥
1 + (n− 1) ·

(
2n−5
n−1 + 1

n−1

)
n

=
2n− 3

n
.

This proves the inequality. It is simple to check that equality holds for disoriented path.

Theorem 3.7. Let G be a directed graph of type B with n ≥ 5 vertices. It holds

n− 1

n
≤ m1(G).

The lower bound is obtained for G = Tn.

575



www.ejgta.org

Evaluating topological ordering in directed acyclic graphs | S. Antunović and D. Vukičević

Proof. Let G be a directed graph of type B with n ≥ 5 vertices and let p be a bijection that
minimizes m1

p(G). Graph G has at least n− 1 arcs. It holds:

m1
p(G) =

1

n

∑
v∈V (G)

mp,G(v) ≥
1

n

∑
v∈V (G)

d−G(v) ≥
e(G)

n
≥ n− 1

n
.

Theorem 3.8. Let G be a directed graph of type B with n ≥ 5 vertices. It holds 1
2
≤ a1(G). The

lower bound is obtained for G = Tn.

Proof. Let G be a directed graph of type B with n ≥ 5 vertices and let p be a bijection that
minimizes a1p(G). Graph G has at least n− 1 arcs. It holds:

a1p(G) =
1

n

∑
v∈V (G)

ap,G(v) ≥
1

n

∑
v∈V (G)

d−G(v)6=0


d−G(v)∑
i=1

i

d−G(v)

 ≥ 1

n

∑
v∈V (G)

d−G(v)6=0

(
d−G(v) + 1

2

)
.

Let x ∈ {1, . . . , n− 1} be the number of vertices v such that d−G(v) 6= 0. It holds:

1

n

∑
v∈V (G)

d−G(v)6=0

(
d−G(v) + 1

2

)
≥ n− 1 + x

2n
≥ n− 1 + 1

2n
=

1

2
.

Theorem 3.9. Let G be a directed graph of type B with n > 5 vertices. It holds 4 ≤ s∞(G). The
lower bound is obtained for disoriented path.

Proof. Let us suppose that there is a graphG of a typeB with n > 5 vertices such that s∞(G) < 4.
it is easy to see that s∞(G) > 2 hence we assume that s∞(G) = 3. Let us distinguish the following
cases. First, let us consider two cases as shown on Figure 3.

u1 u2 v
u1 v u2

Figure 3: Parts of graph G such that sp,G(v) = 3

Case 1. Let there be a directed path of length 2 in G
Let us denote vertices as seen on the left in Figure 3. If we denote p(v) = a then p(u2) = a − 1
and p(u1) = a − 2. Since for G it holds n > 5 there have to be at least three other vertices
u3, u4, u5 ∈ V (G). There can not be an arc which starts in u3 and ends in either u1, u2 or v

576



www.ejgta.org

Evaluating topological ordering in directed acyclic graphs | S. Antunović and D. Vukičević

because it would increase the value sp,G(v). There also can not be an arc that starts in u2 or v and
points to u3. In that case it would hold sp,G(u3) > sp,G(v). Thus, there must be an arc from u1 to
u3 and p(u3) = a + 1. Let us consider vertex u4. For previous reasons, there can only be an arc
between u3 and u4. If there is an arc u3u4, because of transitivity, there would also have to be an
arc u1u4 and it would hold sp,G(u4) > sp,G(v). If there is an arc u4u3, then sp,G(u3) > sp,G(v)
because p(u4) < a− 2. We have reached a contradiction.

Case 2. Let us assume that there is no directed path of lenght 2 in G and that there is a vertex
of in-degree 2
Let us denote vertices as seen on the right in Figure 3. We can assume, without the lost of gener-
ality, that it holds p(u1) = a − 2 and p(u2) = a − 1. There must be vertex u3 ∈ V (G) but there
can not be an arc which starts in u3 and ends in either u1, u2 or v because it would increase the
value sp,G(v). There must also not be an arc from v to u3 because it would create a directed path
of length 2. Let us consider two remaining possibilities: u1u3 ∈ E(G) or u2u3 ∈ E(G). Both
situations are depicted on Figure 4.

1. Let us suppose there is an arc u1u3. There has to be a vertex u4 ∈ V (G). There can not
be an arc u4v because it would increase the value sp,G(v). There also cannot be an arc u4u3
because p(u4) < a− 2. Thus, there must be an arc u2u4.

2. Let us suppose there is an arc u2u3. Analogous to previous considerations, there can only be
an arc u2u4.

u3 u1 v u2 u4

u4

u1 v u2 u3

Figure 4: Examples of graphs G with n = 5 vertices such that s∞(G) = 3

In both of these cases, there can not be any more vertices in V (G) in a way that s∞(G) =
sp,G(v) remains equal to 3.

Case 3. Let us assume that there is no directed path of lenght 2 and there is no vertex in V (G)
with in-degree greater than 1
Let us denote by u and v vertices such that p(u) = p(v) − 3 and uv ∈ E(G). Let us denote
p(v) = a. There must exist two vertices u1, u2 ∈ V (G) such that p(u1) = a− 1 and p(u2) = a− 2
and arcs uu1, uu2 ∈ E(G). Since n > 5 there also must exist a vertex u3 and an arc uu3. But
p(u3) = a+ 1 and thus sp,G(u3) > sp,G(v) which is again a contradiction.

The proofs for Theorems 3.10 and 3.11 follow directly from Theorem 3.9.

Theorem 3.10. Let G be a directed graph of type B with n > 5 vertices. It holds 2 ≤ a∞(G). The
lower bound is obtained for disoriented path.

Theorem 3.11. Let G be a directed graph of type B with n > 5 vertices. It holds 3 ≤ m∞(G).
The lower bound is obtained for disoriented path.
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Results for graphs of type B are summerized in Table 2.

Table 2: Extremal values for the graphs of type B

Measure Minimal Maximal

s∞(G) 4
n−1∑
i=1

i

a∞(G) 2 n− 1
m∞(G) 3 n− 1

sα(G) 2n−3
n

(*)

(
1
n

n∑
i=2

(
i−1∑
j=1

j

)α) 1
α

aα(G) 1
2

(*)
(

1
n

n−1∑
i=1

iα
) 1

α

mα(G) n−1
n

(*)
(

1
n

n−1∑
i=1

iα
) 1

α

Remark 3.1. Results marked (*) in Table 2 were stated and proven for α = 1, thus they remain an
open problem for further investigation.

Discussions and conclusions

If we consider topological ordering as a process of arranging the vertices in the best possible
way considering the constraints caused by the direction of edges, then it makes sense to try to
optimize it by minimizing the distances between vertices in the ordering. This allows for a process
that is represented by a directed acyclic graph to be more efficient (whether in execution time or in
minimizing any cost function defined on the graph). For this purpose, we define measures for single
vertices, generalize them to entire dags and bound their values over a set of all topological orderings
of given dag. The results can be found in Tables 1 and 2. Results marked (*) in Table 2 were stated
and proven for α = 1, thus they remain an open problem for further investigation. Potentially,
the proved bounds could be used to benchmark existing algorithms, devise new approximation
algorithms or branch–and–bound schemas for some scheduling problems which usually are of
hard computational complexity.
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