Bounds on Erdos - Faber - Lovász conjecture - the uniform and regular cases
Abstract
Keywords
Full Text:
PDFDOI: http://dx.doi.org/10.5614/ejgta.2025.13.1.8
References
C. Berge, On two conjectures to generalize Vizing’s theorem, Matematiche (Catania), 45(1) (1990), 15–23.
W.I. Chang and E.L. Lawler, Edge coloring of hypergraphs and a conjecture of Erdös, Faber, Lovász, Combinatorica, 8(3) (1988), 293–295.
P. Erds, Problems and results in graph theory and combinatorial analysis, Proc. British Combinatorial Conj., 5th, (1975), 169–192.
P. Erds, On the combinatorial problems which I would most like to see solved, Combinatorica, 1 (1981), no. 1, 25–42.
V. Faber, The Erdos-Faber-Lovász conjecture—the uniform regular case, J. Comb., 1(2) (2010), 113–120.
V. Faber, Linear hypergraph edge coloring - generalizations of the EFL conjecture, Bulletin of Mathematical Sciences and Applications, 17 (2016), 1–9.
S.M. Hegde and S. Dara, Further results on Erds–Faber–Lovász conjecture, AKCE Int. J. Graphs Comb., 17(1) (2020), 614–631.
B. Jackson, G. Sethuraman, and C. Whitehead, A note on the Erdos-Farber-Lovász conjecture, Discrete Math., 307(7-8) (2007), 911–915.
J. Kahn, Coloring nearly-disjoint hypergraphs with n + o(n) colors, J. Combin. Theory Ser. A, 59(3) (1992), 31–39.
V. Paul and K.A. Germina, On edge coloring of hypergraphs and Erdös-Faber-Lovász conjecture, Discrete Math. Algorithms Appl., 4(1) (2012), 1250003.
R. Zhang and F.M. Dong, Problems on chromatic polynomials of hypergraphs, Electron. J. Graph Theory Appl., 8(2) (2020), 241–246.
Refbacks
- There are currently no refbacks.
ISSN: 2338-2287

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.