Bounds for graph energy in terms of vertex covering and clique numbers

Hilal A. Ganie, U. Samee, S. Pirzada, Ahmad M. Alghamadi


Let G be a simple graph with n vertices, m edges and having adjacency eigenvalues λ1, λ2, …, λn. The energy E(G) of the graph G is defined as E(G) = ∑i = 1nλi∣. In this paper, we obtain the upper bounds for the energy E(G) in terms of the vertex covering number τ, the clique number ω, the number of edges m, maximum vertex degree d1 and second maximum vertex degree d2 of the connected graph G. These upper bounds improve some of the recently known upper bounds.


graph energy, vertex covering number, clique number, maximum degree

Full Text:




A. Alhevaz, M. Baghipur and E. Hashemi, On distance signless Laplacian spectrum and energy of graphs, Electronic J. Graph Theory Appl. 6 (2) (2018) 326-340.

E. Andrade, M. Robbiano and B. San Martin, A lower bound for the energy of symmetric matrices and graphs, Linear Algebra Appl. 513 (2017) 264-275.

X. Chen, J. Li, Y. Fan, Note on an upper bound for sum of the Laplacian eigenvalues of a graph, Linear Algebra Appl. 541 (2018) 258-265.

D. Cvetkovic, M. Doob and H. Sachs, Spectra of graphs-Theory and Application, Academic Press, New York, 1980.

K.C. Das and S. Elumalai, On energy of graphs, MATCH Commun. Math Comput. Chem. 77 (2017), 3-8.

K. Fan, Maximum properties and inequalities for the eigenvalues of completely continuous operators, Proc. Natl. Acad. Sci. USA 37 (1951) 760-766.

E. Fritscher, V. Trevisan, Exploring symmetries to decompose matrices and graphs preserving the spectrum, SIAM J. Matrix Anal. Appl. 37 (1) (2016) 260-289.

H.A. Ganie, S. Pirzada, Rezwan Ul Shaban and X. Li, Upper bounds for the sum of Laplacian eigenvalues of a graph and Brouwer's conjecture, Discrete Math. Algorithms Appl. 11 (2) (2019) 195008 (15 pages).

H.A. Ganie, U. Samee and S. Pirzada, On graph energy, maximum degree and vertex cover number, Le Matematiche 74, 1 (2019) 163-172.

H.A. Ganie, S. Pirzada and V. Trevisan, Brouwer's conjecture for two families of graphs, preprint.

H.A. Ganie and S. Pirzada, On the bounds for signless Laplacian energy of a graph, Discrete Appl. Math. 228 (2017) 3-13.

H.A. Ganie, A.M. Alghamdi and S. Pirzada, On the sum of the Laplacian eigenvalues of a graph and Brouwer's conjecture, Linear Algebra Appl. 501 (2016) 376-389.

H.A. Ganie, B.A. Chat and S. Pirzada, Signless Laplacian energy of a graph and energy of a line graph, Linear Algebra Appl. 544 (2018) 306-324.

H.A. Ganie, S. Pirzada and E.T. Baskoro, On energy, Laplacian energy and p-fold graphs, Electronic J. Graph Theory Appl. 3 (1) (2015) 94-107.

H.A. Ganie, S. Pirzada and A. Iv'{a}nyi, Energy, Laplacian energy of double graphs and new families of equienergetic graphs, Acta Univ. Sapientiae, Informatica, 6 (1) (2014) 89-117.

I. Gutman, The energy of a graph: old and new results, in: A. Betten, A. Kohnert, R. Laue, A. Wassermann (Eds.), Algebraic Combinatorics and Applications, Springer-Verlag, Berlin, (2001) 196-211.

A. Jahanbani, Some new lower bounds for energy of graphs, Appl. Math.Comp. 296 (2017) 233-238.

X. Li, Y. Shi and I. Gutman, Graph Energy, Springer, New York, 2012.

V. Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl. 326 (2007) 1472-1475.

S. Pirzada, An Introduction to Graph Theory, Universities Press, OrientBlackswan, Hyderabad, (2012).

S. Pirzada and H.A. Ganie, Spectra, energy and Laplacian energy of strong double graphs, Springer Proceedings of Mathematics and Statistics, Mathematical Technology of Networks, D. Mugnolo (ed.) 128, pp 175-189.

S. Pirzada and H.A. Ganie, On the Laplacian eigenvalues of a graph and Laplacian energy, Linear Algebra Appl. 486 (2015) 454--468.

L. Wang and X. Ma, Bounds of graph energy in terms of vertex cover number, Linear Algebra Appl. 517 (2017) 207-216.

W. So, Commutativity and spectra of Hermitian matrices, Linear Algebra Appl. 212/213 (1994) 121-129.


  • There are currently no refbacks.

ISSN: 2338-2287

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View EJGTA Stats