### Change ringing and Hamiltonian cycles: The search for Erin and Stedman triples

#### Abstract

#### Keywords

#### Full Text:

PDFDOI: http://dx.doi.org/10.5614/ejgta.2019.7.1.5

#### References

D.L. Applegate, R.B. Bixby, V. Chava ́tal and W.J. Cook. Concorde TSP Solver: http://www.tsp.gatech.edu/concorde/index.html, (2015), accessed October 12th 2016.

P. Baniasadi, V. Ejov, J.A. Filar, M. Haythorpe and S. Rossomakhine. Deterministic “Snakes and Ladders” Heuristic for the Hamiltonian cycle problem. Math. Program. Comput. 6 (1) (2014), 55-75.

A. Chalaturnyk. A Fast Algorithm For Finding Hamiltonian Cycles. Ph.D Thesis, University of Manitoba (2008).

V. Ejov, M. Haythorpe and S. Rossomakhine. A linear-size conversion of HCP to 3HCP. Austral. J. Combin. 62 (1) (2015), 45–58.

D. Eppstein. The traveling salesman problem for cubic graphs. In Frank Dehne, Jo ̈rg-Ru ̈diger Sack, and Michiel Smid, editors, Algorithms and Data Struct., volume 2748 of Lecture Notes in Computer Science, pages 307–318. Springer Berlin (2003).

D. Glynn, M. Haythorpe and A. Moeini. Directed in-out graphs of optimal size. Austral. J. Combin. 72 (2) (2018), 405–420.

M. Haythorpe. FHCP Challenge Set: The first set of structurally difficult instances of the Hamiltonian cycle problem. Bull. ICA 83 (2018), 98–107.

M. Haythorpe. Constructing arbitrarily large graphs with a specified number of Hamiltonian cycles. Electron. J. Graph Theory Appl. 4 (1) (2016), 18–25.

K. Helsgaun. An effective implementation of Lin-Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126 (2000), 106–130.

A. Johnson. Bobs-only Stedman Triples made easy. http://myweb.tiscali.co.uk/saddleton/stedman/10part.html, (1995).

A. Johnson and P.A.B. Saddleton. Peals of Stedman Triples with bobs only. http://myweb.tiscali.co.uk/saddleton/stedman/ajart.htm, (1995).

R.M. Karp. Reducibility among Combinatorial Problems, Springer, New York, (1972).

C.H. Papadimitriou and K. Steiglitz. Some examples of difficult traveling salesman problems, Oper. Res. 26 (3) (1978), 434-443.

B.D. Price. Mathematical groups in campanology. The Math. Gazette 53 (384) (1969), 129–133.

B.D. Price. The Composition of Peals in Parts. http://www.ringing.info/bdp/peals-in-pats/parts-0.html, accessed October 12th 2016.

R.A. Rankin. A campanological problem in group theory. Proc. Cambridge Philos. Soc. 44 (1948), 17–25.

R.A. Rankin. A campanological problem in group theory II. Proc. Cambridge Philos. Soc. 62 (1966), 11–18.

R.G. Swan. A simple proof of Rankin’s campanological theorem. Am. Math. Mon. 106 (2) (1999), 159–161.

W.H. Thompson. A Note on Grandsire Triples, 1886, reprinted in Grandsire, JW Snowdon, London, (1905).

A.T. White. Ringing the cosets. Am. Math. Mon. 94 (8) (1987), 721–746.

A.T. White. Ringing the cosets II. Math. Proc. Cambridge 105 (1) (1989), 53–65.

C.J.E. Wyld. A 250-year-old problem solved. The Ringing World, p.197, (1995).

### Refbacks

- There are currently no refbacks.

ISSN: 2338-2287

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.