On Radenković and Gutman conjecture for some classes of trees of diameter 5
Abstract
Keywords
Full Text:
PDFDOI: http://dx.doi.org/10.5614/ejgta.2025.13.2.4
References
A.T. Balaban, Applications of Graph Theory in Chemistry, Journal of Chemical Information and Modeling, 45 (1) (2005), 11-21.
A.E. Brouwer and W.H. Haemers, A lower bound for the Laplacian eigenvalues of a graph-proof of a conjecture by Guo, Linear Algebra Appl., 429 (8-9) (2008), 2131-2135.
D.M. Cvetkovic, P. Rowlison, and S. Simic, An introduction to the theory of graph spectra, Theory and application, London Mathematical Society student Text, 75. Cambridge University Press, Inc. UK, 2010.
A. Chang and B. Deng, Regarding the Laplacian energy of trees with perfect matchings, MATCH Communications in Mathematical and in Computer Chemistry, 68 (2012), 767-776.
E. Fritscher, C. Hoppen, I. Rocha, and V. Trevisan, On the sum of the Laplacian eigenvalues of a tree, Linear Algebra Appl., 435 (2011), 371-399.
I. Gutman, Acyclic structure possessing extreme Huckel π-electron energy, Theoretical Chemistry Accounts, 45 (1977), 79-87.
I. Gutman, The energy of a graph, Berichte der Mathematisch-Statistischen Sektion im Forschungszentrum Graz, 103 (1978), 1-22.
I. Gutman and B. Zhou, Laplacian energy of a graph, Linear Algebra Appl., 414 (2006), 29-37.
H. A. Ganie, S. Pirzada, and E.T. Baskoro, On energy, Laplacian energy and p-fold graphs. Electron. J. Graph Theory Appl., 3 (1)(2015), 94-107.
H.A. Ganie, S. Pirzada, B.A. Rather and V. Trevisan, Additional improvements about the sum of Laplacian eigenvalues of graphs, based on Brouwer's conjecture, Linear Algebra Appl., 588 (2020), 1-18.
H.A. Ganie, B.A. Rather, and S. Pirzada, On a conjecture of Laplacian energy of trees, Discrete Math. Algorithms Appl., 14 (06) (2022), 2250009.
R. Horn and C. Johnson, Analyzing Matrix, Cambridge University Press, 2012.
D.P. Jacobs and V. Trevisan, Finding a tree's eigenvalues, Linear Algebra Appl. 434 (2011), 81-88.
D.P. Jacobs and V. Trevisan, Building the adjacency matrix's characteristic polynomial for a tree, Congr. Numer., 134 (1998), 139-145.
D.P. Jacobs, V. Trevisan and F. Tura, Computing the characteristic polynomial of threshold graphs, J. Graph Algorithms Appl., 18 (5) (2014), 709-719.
X. Li, Y. Shi, and M. Trinks, Polynomial reconstruction of the matching polynomial. arXiv preprint arXiv:1404.3469. (2014).
S.A. Mojallal and P. Hansen, Regarding the disparity in energy between a graph and its corresponding graph, Linear Algebra Appl., 595 (2020), 1-12.
V. Nikiforov, Beyond graph energy: norms of graphs and matrices, Linear Algebra Appl. 506 (2016), 82-138.
S. Pirzada, An Overview of Graph Theory, Universities Press, Orient BlackSwan, Hyderabad, 2012.
S. Pirzada, H.A. Ganie, B.A. Rather, and R.U. Shaban, Regarding universal distance energy of graphs, Linear Algebra Appl., 603 (2020), 1-19.
J. Ul Rahman, U. Ali, and M. Rehman, The Laplacian energy of diameter 4 tree, J. Discrete Math. Sci. Cryptogr., 24 (1) (2021), 119-128.
S. Radenkovic and I. Gutman, Laplacian energy and total π-electron energy: Exploring the extent of the analogy?, Journal of the Serbian Chemical Society, 72 (12) (2007), 1343-1350.
C. Sin, Regarding the number of a tree's Laplacian eigenvalues that are smaller than the mean degree, Discrete Math., 343 (2020), 111986.
D. Stevanovic, Spectra of Graphs: Theory and Applications, Elsevier, (2011).
V. Trevisan, J.B. Carvalho, R.R. Del Vecchio, and C.T. Vinagre, Laplacian energy of diameter 3 trees, Appl. Math. Lett., 24 (6) (2011), 918-923.
L. Zhou, B. Zhou, and Z. Du, On the quantity of Laplacian eigenvalues of a tree that are less than two, Taiwanese J. Math., 19 (2015), 65-75.
M. Fiedler, Laplacian of Graphs and Algebraic Connectivity, Banach Center Publications, 1 (25) (1989), 57-70.
Refbacks
- There are currently no refbacks.
ISSN: 2338-2287

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


