Perfect coalition in graphs

Doost Ali Mojdeh, Mohammad Reza Samadzadeh

Abstract


A perfect dominating set in a graph G = (V, E) is a subset S ⊆ V such that each vertex in V \ S has exactly one neighbor in S. A perfect coalition in G consists of two disjoint sets of vertices V1 and V2 such that i) neither V1 nor V2 is a dominating set, ii) each vertex in V(G) \ V1 has at most one neighbor in V1 and each vertex in V(G) \ V2 has at most one neighbor in V2, and iii) V1 ∪ V2 is a perfect dominating set. A perfect coalition partition (abbreviated prc-partition) in a graph G is a vertex partition π = {V1, V2, …, Vk} such that for each set Vi of π, either Vi is a singleton dominating set or there exists a set Vj ∈ π that forms a perfect coalition with Vi. In this paper, we initiate the study of perfect coalition partitions in graphs. We obtain a bound on the number of perfect coalitions involving each member of a perfect coalition partition, in terms of maximum degree. The perfect coalition of some special graphs are investigated. Graphs with minimum degree one, triangle-free graphs and trees with large perfect coalition numbers are investigated.

Keywords


perfect coalition; perfect coalition partition; perfect dominating set

Full Text:

PDF

DOI: http://dx.doi.org/10.5614/ejgta.2025.13.2.8

References

S. Alikhani, D. Bakhshesh, H.R. Golmohammadi, and E.V. Konstantinova, Connected coalition in graphs, Discuss. Math. Graph Theory, inpress. https://doi.org/10.7151/dmgt.2509

D. Bakhshesh, M.A. Henning, and D. Pradhan, On the coalition number of trees, Bull. Malays. Math. Sci. Soc. 46 (2023), 95.

T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae, and R. Mohan, Coalition graphs of paths, cycles and trees, Discuss. Math. Graph Theory (2020), DOI:https://doi.org/10.7151/dmgt.2416.

T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae, and R. Mohan, Introduction to coalitions in graphs, AKCE Int. J. Graphs Comb. 17 (2020), 653–659, https://doi.org/10.1080/09728600.2020.1832874.

T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae, and R. Mohan, Self-coalition graphs, Opuscula Math. 43 (2) (2023), 173–183, https://doi.org/10.7494/OpMath.2023.43.2.173.

T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae, and R. Mohan, Upper bounds on the coalition number, Australas. J. Comb. 80 (3) (2021), 442–453.

T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, Domination in Graphs: Core Concepts Series: Springer Monographs in Mathematics, Springer, Cham, 2023. xx + 644 pp.

T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, (1998).

M A. Henning and D.A. Mojdeh, Double coalitions in graphs, Bull. Malays. Math. Sci. Soc. 48 (2025) no. 51.

M.A. Henning and D.A. Mojdeh, Double coalitions in regular graphs. Graph and Combin. 41 (2025), no. 74.

M.R. Samadzadeh and D.A. Mojdeh, Independent coalition in graphs: existence and characterization, Ars Math. Contemp. 24 (2024) # P3.09, doi:10.26493/1855-3974.3113.6f7.

M.R. Samadzadeh, D.A. Mojdeh, and R. Nadimi, Paired coalition in graphs, AKCE International Journal of Graphs and Combinatorics 22 (1) (2025), 43–54.


Refbacks

  • There are currently no refbacks.


ISSN: 2338-2287

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View EJGTA Stats