Forbidden family of Ph-magic graphs

Tita Khalis Maryati, Fawwaz Fakhrurrozi Hadiputra, A. N. M. Salman


Let G be a simple, finite, and undirected graph and H be a subgraph of G. The graph G admits an H-covering if every edge in G belongs to a subgraph isomorphic to H. A bijection f : V(G)∪E(G)→[1, n] is a magic total labeling if for every subgraphs H′ isomorphic to H, the sum of labels of all vertices and edges in H′ is constant. If there exists such f, we say G is H-magic. A graph F is said to be a forbidden subgraph of H-magic graphs if F ⊆ G implies G is not an H-magic graph. A set that contains all forbidden subgraph of H-magic is called forbidden family of H-magic graphs, denoted by F(H). In this paper, we consider F(Ph), where Ph is a path of order h. We present some sufficient conditions of a graph being a member of F(Ph). Besides that, we show the uniqueness of a minimal tree which belongs to F(P3) and characterize P3-(super)magic trees.


magic labeling; covering; paths; trees

Full Text:




Darmaji, S. Wahyudi, Rinurwati, and S.W. Saputro, On the construction of super edge-magic total graphs, Electron. J. Graph Theory Appl. 10(1) (2022) 301–309.

H. Enomoto, A. Llado, T. Nakamigawa, and G. Ringel, Super edge magic graphs, SUT Journal of Mathematics 34(2) (1998) 105–109.

J.A. Gallian, A dynamic survey of graph labelings, Electron. J. Combin. 14 (2021) #DS6.

A. Gutiérrez and A. Lladó, Magic covering, J. Combin. Math. Combin. Comput. 55 (2005) 43–56.

R. Ichishima, F.A. Muntaner-Batle, and A. Oshima, The consecutively super edge-magic deficiency of graphs and related concepts, Electron. J. Graph Theory Appl. 8(1) (2020) 71–92.

T.K. Maryati, E.T. Baskoro, and A.N.M. Salman, Ph-supermagic labelings of some trees, J. Combin. Math. Combin. Comput. 65 (2008) 197–204.

T.K. Maryati, E.T. Baskoro, A.N.M. Salman, and Irawati, On the path-(super)magicness of a cycle with some pendants, Util. Math. 96 (2015) 319–330.

Y.F. Ashari, A.N.M. Salman, and R. Simanjuntak, On forbidden subgraphs of (K2, H)-sim-(super)magic graphs, Symmetry 13(8) (2021) 1346.

S. P. Subbiah and J. Pandimadevi, H-E-Super magic decomposition of graphs, Electron. J. Graph Theory Appl. 2(2) (2014) 115–128.


  • There are currently no refbacks.

ISSN: 2338-2287

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View EJGTA Stats