The Italian bondage and reinforcement numbers of digraphs

Kijung Kim

Abstract


An Italian dominating function on a digraph D with vertex set V(D) is defined as a function f : V(D) → {0, 1, 2} such that every vertex v ∈ V(D) with f(v) = 0 has at least two in-neighbors assigned 1 under f or one in-neighbor w with f(w) = 2. The weight of an Italian dominating function f is the value ω(f) = f(V(D)) = ∑u∈V(D) f(u). The Italian domination number of a digraph D, denoted by γI(D), is the minimum taken over the weights of all Italian dominating functions on D. The Italian bondage number of a digraph D, denoted by bI(D), is the minimum number of arcs of A(D) whose removal in D results in a digraph D′ with γI(D′) > γI(D). The Italian reinforcement number of a digraph D, denoted by rI(D), is the minimum number of extra arcs whose addition to D results in a digraph D′ with γI(D′) < γI(D). In this paper, we initiate the study of Italian bondage and reinforcement numbers in digraphs and present some bounds for bI(D) and rI(D). We also determine the Italian bondage and reinforcement numbers of some classes of digraphs.

Keywords


Italian domination number, Italian bondage number, Italian reinforcement number, domination number

Full Text:

PDF

DOI: http://dx.doi.org/10.5614/ejgta.2025.13.2.9

References

K. Carlson and M. Develin, On the bondage number of planar and directed graphs, Discrete Math. 306 (2006) 820–826.

G. Chartrand, F. Harary, and B.Q. Yue, On the out-domination and in-domination numbers of a digraph, Discrete Math. 197/198 (1999) 179–183.

M. Chellali, T.W. Haynes, S.T. Hedetniemi, and A.A. McRae, Roman {2}-domination, Discrete Appl. Math. 204 (2016) 22–28.

G. Hao, S.M. Sheikholeslami, and S. Wei, Italian reinforcement in graphs, IEEE Access 7 (2019) 184448–184456.

M.A. Henning and W.F. Klostermeyer, Italian domination in trees, Discrete Appl. Math. 217 (2017) 557–564.

J. Huang, J.W. Wang, and J.M. Xu, Reinforcement numbers of digraphs, Discrete Appl. Math. 157 (2009) 1938–1946.

H. Gao, P. Wang, E. Liu, and Y. Yang, More results on Italian domination in Cn □ Cm, Mathematics 8 (2020) 465.

H. Gao, T.T. Xu, and Y.S. Yang, Bagging approach for Italian domination in Cn □ Pm, IEEE Access 7 (2019) 105224–105234.

K. Kim, The Italian domination numbers of some products of directed cycles, Mathematics 8 (2020) 1472.

Z.P. Li, Z.H. Shao, and J. Xu, Weak {2}-domination number of Cartesian products of cycles, J. Comb. Optim. 35 (2018) 75–85.

A. Moradi, D.A. Mojdeh, and O. Sharifi, Roman {2}-bondage number of a graph, Discuss. Math. Graph Theory 40 (2020) 255–268.

L. Ouldrabah, M. Blidia, and A. Bouchou, Roman domination in oriented trees, Electron. J. Graph Theory Appl. 9 (2021) 95–103.

V.D. Samodivkin, Upper bounds on the bondage number of a graph, Electron. J. Graph Theory Appl. 6 (2018) 1–16.

Z. Stepien, A. Szymaszkiewicz, L. Szymaszkiewicz, and M. Zwierzchowski, 2-Rainbow domination number of Cn □ C5, Discrete Appl. Math. 107 (2014) 113–116.

A. Rahmouni and M. Chellali, Independent Roman {2}-domination in graphs, Discrete Appl. Math. 236 (2018) 408–414.

L. Volkmann, Italian domination in digraphs, J. Combin. Math. Combin. Comput., 111 (2019) 269–278.

L. Volkmann, The Italian domatic number of a digraph, Commun. Comb. Optim. 4 (2019) 61–70.


Refbacks

  • There are currently no refbacks.


ISSN: 2338-2287

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View EJGTA Stats