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Abstract: A total coloring of a graph G is an assignment of colors to the elements of
the graph G such that no adjacent vertices and edges receive the same color. The total
chromatic number of a graph G, denoted by χ′′(G), is the minimum number of colors
that suffice in a total coloring. Behzad and Vizing conjectured that for any graph G,
∆(G) + 1 ≤ χ′′(G) ≤ ∆(G) + 2, where ∆(G) is the maximum degree of G. In this paper,
we prove the Behzad and Vizing conjecture for Indu - Bala product graph, Skew and
Converse Skew product graph, Cover product graph, Clique cover product graph and
Comb product graph.
Keywords: Total coloring; Indu-Bala Product; Skew and Converse Skew product; Cover
Product; Clique Cover Product; Comb product.

1 Introduction

All the graph should be considered here are finite, simple and undirected. Let G =
(V (G), E(G)) be a graph with the sets of vertices V (G) and edges E(G) respectively.
A total coloring of G is a mapping f : V (G) ∪ E(G) → C, where C is a set of colors,
satisfying the following three conditions (a)-(c):

(a) f(u) 6= f(v) for any two adjacent vertices u, v ∈ V (G)
(b) f(e) 6= f(e′) for any two adjacent edges e, e′ ∈ E(G) and
(c) f(v) 6= f(e) for any vertex v ∈ V (G) and any edge e ∈ E(G) incident to v.

The total chromatic number of a graph G, denoted by χ′′(G), is the minimum number
of colors that suffice in a total coloring. It is clear that χ′′(G) ≥ ∆(G) + 1, where ∆(G)
is the maximum degree of G. Behzad [2] and Vizing [20] conjectured (Total Coloring
Conjecture (TCC)) that for every graph G, ∆(G)+ 1 ≤ χ′′(G) ≤ ∆(G)+ 2. If a graph G

is total colorable with ∆(G) + 1 colors then the graph is called Type - I, and if it is total
colorable with ∆(G) + 2 colors but not ∆(G) + 1 colors, then it is Type - II. A graph
G is said to be total colorable if the elements of G are colored with at most ∆(G) + 2
colors. This conjecture was verified by Rosenfeld [14] and Vijayaditya [19] for ∆(G) = 3
and by Kostochka [10, 11] for ∆(G) ≤ 5. For planar graphs, the conjecture was verified
by Borodin [3] for ∆(G) ≥ 9. In 1992, Yap and Chew [21] proved that any graph G has
a total coloring with at most ∆(G) + 2 colors if ∆(G) ≥ |V (G)| − 5, where |V (G)| is
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the number of vertices in G. The adjacent vertex distinguishing index by sums in total
proper colorings[13]. In 1993, Hilton and Hind [6] proved that any graph G has a total
coloring with at most ∆(G) + 2 colors if ∆(G) ≥ 3

4
|V (G)|. In particular, Mc Diarmid

and Arroyo [4] proved that the problem of determining the total coloring of µ-regular
bipartite graph is NP-hard, µ ≥ 3. Direct product, cartesian product, strong product
and lexicographic product graphs given by Imrich[8] et la. Recently, Vignesh et al. [18]
verified TCC for certain classes of deleted lexicogaphic product graphs. In [17], they also
proved that Vertex, Edge and Neighborhood corona products of graphs are type-I graphs.

The following theorem is due to Yap [22].

Theorem 1.1. Let Kn be the complete graph. Then χ′′(Kn) =

{

n, if n is odd

n+ 1, if n is even.

2 Indu - Bala Product Graph

Let G and H be two connected graphs with m and n vertices, respectively. The join
of G and H is a graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H) ∪
{{i, j} : i ∈ V (G), j ∈ V (H)}. It is denoted by G ∨H.

The Indu-Bala Product of G and H [9], is denoted by GHH and is obtained from
two disjoint copies of the join G ∨ H of G and H by joining the corresponding vertices
in the two copies of H. The Indu-Bala product is not commutative. That is GHH 6≃
HHG. If G and H are two connected graphs with m and n vertices, respectively then
the maximum degree is ∆ (GHH) = max {∆(G) + n,∆(H) +m+ 1} .

In [9], they obtained the distance spectrum of GHH in terms of the adjacency spectra
of G and H. Also they prove that the class of graphs KnHKn+1 has integral distance
spectrum. In this section, we prove the Behzad - Vizing conjecture for Indu - Bala prod-
uct of some classes of the graphs.

Theorem 2.1. Let G be total colorable graph with m vertices and H be any graph with

n vertices respectively. If ∆(G) > ∆(H) and n ≥ m then χ′′(GHH) ≤ ∆(GHH) + 2.

Proof. The maximum degree ∆ (GHH) = {∆(G) + n}. Since G is total colorable, we
color the elements of G with ∆(G) + 2 colors. Assign colors to the edges of H using the
same ∆(G) + 2 colors. Color all the edges between G and H with n colors other than
∆(G) + 2 colors.

Here, the vertices between G and H may have the same colors. To avoid this, we
start recoloring the vertices in H and some join edges between G and H in the following
way:

Since ∆(G) > ∆(H), there will be at least one color at each vertex in H, which is
common to the missing colors at the vertices of G. Remove the colors of n matching
edges (having different colors) between G and H in G ∨H and recolor these edges with
the missing colors. Color all the vertices of H with the removed colors.
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Fig. 2: P3HP2 6≃ P2HP3

For the second copy of G∨H in GHH, give the same color assignment as in the first
copy for all the elements of G and edges of H. Now for the edges between G and H in the
second copy of G∨H, assign the color c → (c+1) and take n+1 as 1. Remove the colors
of the same n edges with different colors in G ∨ H and give the removed colors to the
vertices, missing colors to the edges. Note that the corresponding vertices of H in GHH

will receive the different vertex coloring. Since ∆(G) > ∆(H), there will be some more
colors (at least one) that are not assigned to any of the edges incident with H in both
the copies. Assign these missing colors to the edges between the corresponding vertices
of H. We use only ∆(GHH) + 2 colors. Hence the graph GHH is total colorable.

Theorem 2.2. Let H be total colorable graph with n vertices and G be any graph with

m vertices respectively. If ∆(H) > ∆(G) and m ≥ n then χ′′(GHH) ≤ ∆(GHH) + 2.

Proof. The maximum degree is ∆(GHH) = ∆(H) + m + 1. Since H is total colorable,
we color the elements of H using ∆(H) + 2 colors. Color all the edges of G with the
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same ∆(H) + 2 colors. Color the join edges between G and H with m colors. Similar
to the previous case, we remove the colors of m matching edges (having different colors)
between G and H and assign these removed colors to the vertices of G, and assign the
missing colors at the vertices of H to these m edges.

For the second copy of GHH, assign the same coloring of H with c → (c + 1) and
take ∆(H)+ 3 as 1 to the second copy of G and H. Now for the edges between G and H

in G ∨H, assign the m colors other than ∆(H) + 2 colors. Remove the colors of the m

matching edges (having different colors) in G ∨H and give these removed colors to the
vertices of G, assign the missing colors to these m edges. Note that the corresponding
vertices of H in GHH will receive the different vertex coloring.

Since ∆(H) > ∆(G), there will be some more colors (at least one) that are not
assigned to any of the edges incident with H in both the copies. Assign these missing
colors to the edges between the corresponding vertices of H. We use only ∆(GHH) + 2
colors. Hence the graph GHH is total colorable.

We have verified the total coloring conjecture in the above theorem for some classes
of GHH. In the following theorems, we prove the tight bound of the total coloring con-
jecture for certain classes of GHH.

Theorem 2.3. Let G be any graph with m vertices and H be a Type -I graph with n

vertices. If ∆(G) ≤ ∆(H) and m > n then χ′′(GHH) = ∆(GHH) + 1.

Proof. The maximum degree ∆(GHH) = ∆(H) +m+ 1.
Color all the elements of H using ∆(H) + 1 colors. Assign the edge coloring of H to
the edges of G with the same ∆(H) + 1 colors. Let C = {c1, c2, ..., cm} be a color set
with m colors. Color the vertices of G from the color set C. Consider a vertex in G,
one color from C is already assigned to that vertex and there are m− 1 colors available.
Similarly, at each vertex in G, there are m − 1 different available colors. Color the join
edges between the vertices G and H with these m− 1 available colors in a cyclic way.

For the second copy of G∨H in GHH, assign the color c → (c+1) and take ∆(H)+2
as 1 and cm+1 as c1. In this coloring assignment, the corresponding vertices of H in both
the copies will receive different colors. Assign a new color to the edges between the two
copies of H. Therefore, χ′′(GHH) = ∆(GHH) + 1.

Theorem 2.4. Let Km be a complete graph and H be any graph with n vertices. If

∆(H) < m− 1 < n then χ′′(KmHH) = ∆(KmHH) + 1.

Proof. Here, ∆(KmHH) = m+ n− 1.

Case (i). m is odd.

From the Theorem 1.1, we know that Km requires m colors. Color the elements of Km

with m colors. Let C = {c1, c2, ..., cn−1, cn} be a set of n new colors. Color the vertices in
H using all the n colors. Now, based on the vertex coloring of H, color the edges between
Km and H from C with a cyclic way. Color the edges in H using the same m colors such
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that the adjacent edges receive different colors.

For the second copy of Km ∨ H in KmHH, we use the same m + n colors from the
first copy to color the elements of Km and the join edges between Km and H. Change
the color c to c + 1 to color the elements of Km and the join edges between Km and H,
here, the color m + 1 is taken as 1 and the color cn+1 is taken as c1. According to this
coloring assignment, color the vertices of H and the edges of H in such a way that there
is a common missing color between the corresponding vertices of the two copies of H.
Now, we give these missing colors to the edges between the two copies of H.

Case 2: m is even.

From the Theorem 1.1, we know that Km requires m + 1 colors. Color the elements
of Km with m + 1 colors. Let C = {xi, c1, c2, ..., cn−1} be a set of colors, where xi is the
missing color at the ith vertex in Km and c1, ..., cn−1 are the new colors. Consider a set
of matching edges between Km and H and assign the missing colors xi to the matching
edges, which are incident with ith vertex in Km. Color the remaining join edges between
Km and H from C with a cyclic way. Color the vertices in H using the colors n− 1 new
colors and a color that is not assigned to any of the vertices in Km. Now, based on the
vertex coloring of H, color the edges in H using the same m + 1 colors such that the
adjacent edges receive the different colors.

For the second copy of Km ∨ H in KmHH, similar to the previous case, we use the
colors from the first copy to color the elements of Km and the join edges between Km and
H. Change the color c to c + 1 to color the elements of Km and the join edges between
Km and H, here, the color m+2 is taken as 1 and the color cn is taken as c1. According
to this coloring assignment, color the vertices of H and the edges of H in such a way that
there is a common missing color between the corresponding vertices of two copies of H.
Now, we give these missing colors to the edges between the two copies of H. Hence, in
both the cases, we used ∆(KmHH) + 1 colors for a total coloring of KmHH.

Theorem 2.5. Let Kn be a complete graph and G be any graph with m vertices. If

∆(G) < n− 1 < m then χ′′(GHKn) = ∆(GHKn) + 1.

Proof. Here, ∆(GHKn) = (n− 1) +m+ 1.
Case (i). n is odd.

Color the elements of Kn with n colors. Let C = {c1, c2, ..., cm} be a set of new m

colors. Color the vertices of G using m colors from the color set C. Now, based on the
vertex coloring, color the join edges between Kn and G from C with a cyclic way. Using
the colors of Kn, we assign the colors to the edges of G such that there is no same coloring
assignment to the adjacent edges.

For the second copy of G∨Kn in GHKn, assign the color c → (c+1) to the elements,
where c is a color in the first copy and take n+ 1 as 1 and cm+1 as c1.
In this coloring assignment, the corresponding vertices of two copies of Kn will receive
different colors. We give a new color to the edges between the two copies of Kn.
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Case (ii). n is even.

Color the elements of Kn with n + 1 colors. Let C = {xi, c1, c2, ..., cm−1} be a set of
colors, where xi is the missing color at the ith vertex in Kn and c1, ..., cm−1 are new colors.
Consider a set of matching edges between Kn and G and assign the missing colors xi to
the matching edges, which are incident with ith vertex in Kn. Color the remaining join
edges between Kn and G from C with a cyclic way. Color the vertices in G using the
colors in C colors and a color that is not assigned to any of the vertices in Kn. Now,
based on the vertex coloring of G, color the edges in G using the same n+ 1 colors such
that the adjacent edges receive the different colors.

For the second copy of G∨Kn in GHKn, assign the color c → (c+1) to the elements
of G ∨Kn, where n + 2 is taken as 1 and cm is taken as c1. In this coloring assignment,
the corresponding vertices of the two copies of Kn will receive different colors. We give a
new color to the edges between the two copies of Kn.

Therefore, χ′′(GHKn) = ∆(GHKn) + 1.

3 Skew Product and Converse Skew Product

The Skew product and the Converse skew product graphs were introduced by Shibata
and Kikuchi [15].

Let G and H be two connected graphs.
The Skew product of G and H, denoted by G∆H, has the vertex set V (G)×V (H) and

the edge set E(G∆H) = {((u1, v1), (u2, v2)) | u1 = u2 and v1v2 ∈ E(H) or u1u2 ∈ E(G)
and v1v2 ∈ E(H)}.

The Converse Skew Product of G and H, denoted by G∇H, has the vertex set V (G)×
V (H) and the edge set E(G∇H) = {((u1, v1), (u2, v2)) | v1 = v2 and u1u2 ∈ E(G) or
u1u2 ∈ E(G) and v1v2 ∈ E(H)}.

In [5] Ziming Duan, et al. considered the skew product and the converse skew product
for L(2, 1) - labeling. They obtained upper bounds for the L(2, 1) - labeling number, which
improves the upper bound obtained by Shao and Zhang [16] in many cases.

In this section, we study the total coloring of skew and converse skew product graphs.
Figure 3 shows the graph P3∆C4.

P3

C
4

Fig. 3: P3∆C4

6



Theorem 3.1. If H is a total colorable graph then Pm∆H is also total colorable.

Proof. Let H be any total colorable graph with n vertices. The graph Pm∆H can be
viewed as m copies H1, H2, ..., Hm of H with direct product edges E(Pm ×H). We know
that ∆(Pm∆H) = ∆(Pm)×∆(H) + ∆(H) = 3∆(H). First, we color all the copies of H
with ∆(H) + 2. Each vertex v in Hi is adjacent to d(v) vertices in Hi+1 and Hi−1. Note
that there is no edges between the corresponding vertices in Hi+1 and Hi−1. Now, assign
the ∆(H) colors to edges between the odd and even copies of H and assign another ∆(H)
colors to the even and odd copies H colors. Therefore, Pm∆H satisfies TCC.

The above theorem gives only upper bound. In the following corollary and theorem,
we prove the tight bound of the total coloring conjecture.

Corollary 3.1. If H is any Type - 1 graph then χ′′(Pm∆H) = ∆(Pm∆H) + 1.

If H is a Type - 2 graph then Pm∆Kn may be Type - 1 or Type - 2. For example,
P2∆P2 ≃ C4 is a Type-2 graph. In the following theorem, we prove that P3∆Kn is always
Type - 1 for all n.

Theorem 3.2. χ′′(P3∆Kn) = ∆(P3∆Kn) + 1.

Proof. Let Kn be a complete graph with n vertices. If n is odd then from the above
corollary, it is easy to see that P3∆Kn is a Type - 1 graph. Let n = 2k, k ≥ 2. Here
∆ (P3∆Kn) = 3(n−1). We give a total coloring ofKn as in [7]. c′′n(i, j) ≡ (τi(j)+τj(i)+2)
mod (n+ 1), i 6= j, i, j ∈ [n]0 defines a special (n+ 1)-edge coloring of Kn with p colors
and color (p+ 1) mod p are missing in the line p ∈ [n]0, where τp is the transposition of
p and n− 1. The vertices are colored by the canonical vertex-coloring to obtain a special
total coloring of Kn. We give this total coloring of the first copy of Kn in this way. For
the second copy we give the same edge coloring as in the first copy of Kn. In this edge
coloring, the color p and the color (p+ 1) mod p are missing in the line p ∈ [n]0 (at the
vertex p ∈ [n]0). Assign one of these missing colors to the edge between the first and
second copy. Color the vertices in the second copy of Kn with new n− 1 colors and color
n + 1 (which is not assigned to any of the vertices in the first copy). Now for the edges
between the first and second copy, we need n − 2 colors. At each of the vertices in the
second copy there will be n − 2 colors, we assign these colors to the edges between the
two copies. For the edges between the second and third copy, we use the another set of
missing colors at the vertices in each of the copies of Kn and new n− 2 colors. Color Kn

in the third layer with same color as first layer.
This gives a total coloring of P3∆Kn as 3n− 2.

Above theorems are also true for Converse Skew Product.

4 Cover, Clique Cover and Comb Products

The cover product of two graphs G and H (introduced by Llamas and Bernal [12]) with
fixed vertex covers C(G) and C(H) is a graph G⊛H with vertex set V (G) ∪ V (H) and
edge set E(G)∪E(H)∪{{i, j} : i ∈ C(G), j ∈ C(H)}. The cover product is commutative
but not symmetric. Figure 4 shows the graph G ⊛ H. In [12], Llamas and Bernal de-
scribed the Betti polynomial of G⊛H in terms of those of G and H. The cover product
of two graphs is a generalization of the join of two graphs.
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G H

C(G)
C(H)

Fig. 4: G⊛H

Theorem 4.1. Let G and H be two total colorable graphs. Let k1 and k2 be the vertex

covering numbers of G and H, respectively. If either ∆(H) ≤ ∆(G) and k1 ≤ k2 or

∆(G) ≤ ∆(H) and k2 ≤ k1 then χ′′(G⊛H) ≤ ∆(G⊛H) + 2.

Proof. Let G and H be two total colorable graphs. Let C(G) and C(H) be the minimal
vertex cover sets of G andH, respectively and assume that the vertices with maximum de-
grees of G and H are in C(G) and C(H) respectively. Let #C(G) = k1 and #C(H) = k2.
The maximum degree ∆(G⊛H) = max {∆(G) + k2,∆(H) + k1}.
Case:1 Suppose ∆(H) ≤ ∆(G) and k1 ≤ k2.

In this case, ∆(G ⊛ H) = ∆(G) + k2. Assign the ∆(G) + 2 colors to the elements
of G and H. Remove the colors of the vertices in C(H) and assign the k2 colors to the
k2 vertices in C(H). Each vertex in C(H) is incident with k1 vertices in C(G). Since
k1 ≤ k2, take the k2 colors and assign to the edges between C(G) and C(H) with a cyclic
way.

Case:2 Suppose ∆(G) ≤ ∆(H) and k2 ≤ k1.
In this case, ∆(G⊛H) = ∆(H)+k1. Assign the ∆(H)+2 colors to the elements of G and
H. Remove the colors of the vertices in C(G) and assign the k1 colors to the k1 vertices
in C(G). Each vertex in C(G) is incident with k2 vertices in C(H). Since k2 ≤ k1, take
the k1 colors and assign to the edges between C(G) and C(H) with a cyclic way.

In both cases, we use only ∆(G⊛H) + 2 colors. Hence the theorem.

Corollary 4.1. Let G and H be two Type-I graphs. Let k1 and k2 be the vertex covering
numbers of G and H, respectively. If either ∆(H) ≤ ∆(G) and k1 ≤ k2 or ∆(G) ≤ ∆(H)
and k2 ≤ k1 then χ′′(G⊛H) = ∆(G⊛H) + 1.

Let G and H be two graphs. Let C = {C1, C2, ..., Cq} be a clique cover of G and U

be a subset of V (H). A new graph operation called clique cover product (introduced by
Bao-Xuan Zhu) [23], denoted by GC ⋆HU , as follows: for each clique Ci ∈ C , add a copy
of the graph H and join every vertex of Ci to every vertex of U .

For example, consider the two graphs G and H with V (G) = {u1, ..., u6} and V (H) =
{v1, ...v5}. Let C = {K4 = {u1, u2, u5, u6} , K3 = {u5, u3, u4} , K2 = {u2, u3}} be a clique
cover of G and U = {v2, v3, v4} be a subset of V (H). Figure 5 shows an example of
GC ⋆HU . In [23], Bao-Xuan Zhu showed the clique cover product of some graphs preserves
symmetry, unimodality, log - concavity or reality of zeros of independence polynomials.
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Fig. 5: GC ⋆ HU

Theorem 4.2. Let G and H be two total colorable graphs with ∆(H) ≤ ∆(G). Then

GC ⋆ HU is also total colorable.

Proof. Let G and H be two total colorable graphs with ∆(H) ≤ ∆(G). Let k be the
clique number of G. Choose a subset U in V (H) such that |U | = r ≥ k.
Here , ∆(GC ⋆HU) = ∆(G)+ r. Let H1, H2, ..., Hk be the k copies of H corresponding to
the k cliques in G. Assign the ∆(G) + 2 colors to the elements of G and H1, H2, ..., Hk.
Consider the first clique and H1. Remove the colors of the vertices in U of H1 and assign
the r colors to the vertices in U of H1. Each vertex in U of H1 is incident with the first
clique in G. Since the clique size k ≤ r, take the r colors and assign to the edges between
U of H1 and the first clique in G with a cyclic way. The same procedure can be applied
to color the vertices of U in H2, ..., Hk and the join edges between the cliques and U in
H2, ..., Hk. Therefore χ′′(GC ⋆ HU) ≤ ∆(G) + r + 2.

The comb product graph was introduced by Accardi, Ghorbal and Obata [1]. Let
G and H be two graphs. The comb product of G and H with a distinguished vertex
o ∈ V (H) is by definition a graph obtained by grafting a copy of H at vertex o into each
vertex of G. This comb product is denoted by G ⊲o H.
In other words, G ⊲o H is a graph with V (G ⊲o H) = {(g, h)| g ∈ V (G) and h ∈ V (H)}
and
E(G ×H) = {((g, h), (g′, h′))| gg′ ∈ E(G) and h = h′ = o; or g = g′ and hh′ ∈ E(H)},
where o∈ V (H) is the distinguished vertex V (H). Figure 4 shows the graph G ⊲o H.

Theorem 4.3. If G and H are two total colorable graphs then G ⊲o H is also total

colorable.

9



G H

x

y

O

G H
o

(x, y)

Fig. 6: G ⊲o H

Proof. Let G be a total colorable graph with n vertices and H1, H2, ..., Hn be the n copies
of H. Let o ∈ V (H) be the distinguished vertex in H.
The maximum degree ∆(G ⊲o H) = max{∆(G) + ∆(H),∆(G) + deg(o),∆(H)} .
Case(i). Suppose ∆(G ⊲o H) = ∆(G) + ∆(H).
In this case, the distinguished vertex becomes the vertex of maximum degree.
Since G is total colorable, we give ∆(G) + 2 colors to the elements of G. Now, we have
to the color the elements of Hi, i = 1, 2, ..., n. Since the vertex o ∈ Hi is merged with
ith vertex in G, the vertex o is colored and there will be at least one missing color at
o. As H is total colorable, the ith copy Hi requires ∆(H) + 2 colors. Now, we use the
missing colors at o and the color of o with extra ∆(H) colors to color the elements of
Hi, i = 1, 2, ..., n.
Case(ii). Suppose ∆(G ⊲o H) = ∆(G) + deg(o).
Color the elements of G with ∆(G) + 2 colors. At the vertex o, there will be at least one
missing color. We use the color of o, the missing colors at o, the colors that are not used
to the edges of G incident at o and deg(o) colors to color the elements of Hi, i = 1, 2, ..., n.
Case(iii). Suppose ∆(G ⊲o H) = ∆(H).
In this case ∆(G) < ∆(H). First color the elements of G with ∆(H) + 2 colors. At the
vertex o, we have used at most ∆(G) + 1 colors to color the vertex o and edges incident
at o in G. Now, we color the elements of Hi with the vertex color o, missing colors at o
and the remaining colors.
In all cases, we use only ∆(G ⊲o H) + 2 colors to color the elements of G ⊲o H. Hence
G ⊲o H is total colorable.

Corollary 4.2. If G and H are Type-I graphs then G ⊲o H is also a Type-I graph.
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