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Abstract

Graphs considered in this paper are finite simple graphs. Let G = (V (G), E(G))
be a graph with E(G) = {e1, e2, . . . , em}, for some positive integer m. The
edge space of G, denoted by E (G), is a vector space over the field Z2. The
elements of E (G) are all the subsets of E(G). Vector addition is defined as
X +Y = X ∆ Y, the symmetric difference of sets X and Y, for X, Y ∈ E (G).
Scalar multiplication is defined as 1 · X = X and 0 · X = ∅ for X ∈ E (G).
Let H be a subgraph of G. The uniform set of H with respect to G, denoted
by EH(G), is the set of all elements of E (G) that induces a subgraph isomor-
phic to H. The subspace of E (G) generated by EH(G) shall be denoted by
EH(G). If EH(G) is a generating set, that is EH(G) = E (G), then H is called
a generator subgraph of G. This study determines the dimension of subspace
generated by the set of all subsets of E(G) with even cardinality and the
subspace generated by the set of all k − subsets of E(G), for some positive
integer k, 1 ≤ k ≤ m. Moreover, this paper determines all the generator sub-
graphs of star graphs. Furthermore, it gives a characterization for a graph
G so that star is a generator subgraph of G.

Keywords: Edge Space, Even Edge Space, Edge-Induced Subgraph,
Uniform Set, Generator Subgraph
2010 Mathematics Subject Classification: 05C25

1. Introduction

Graphs considered in this paper are finite simple graphs, which has no
loops and multiple edges. For x, y ∈ V (G), we denote by [x, y] if and only if
x and y are adjacent in G. For other basic concepts in graph theory, reader
may refer to the book written by Chartrand & Zhang [1].

Preprint submitted to August 9, 2018



Let G be a graph with E(G) = {e1, e2, . . . , em}, for some positive integer
m. The edge space of G, denoted by E (G), is a vector space over the field
Z2 = {0, 1}. The elements of E (G) are all the subsets of E(G). Vector
addition is defined as X + Y = X ∆ Y, the symmetric difference of sets X
and Y, for X, Y ∈ E (G). Scalar multiplication is defined as 1 · X = X and
0 ·X = ∅ for X ∈ E (G). The set S ⊆ E (G) is called a generating set if every
element of E (G) is a linear combination of the elements of S.

It can be verified that the set A = {{e1}, {e2}, . . . , {em}} forms a basis
of E (G). Hence, dim E (G) = m, the size of G. Valdez, Gervacio and Bengo
[4] called this set the natural basis for the edge space of G.

For a non-empty set X ⊆ E(G), the smallest subgraph of G with edge set
X is called the edge-induced subgraph of G, which we denote by G[X]. In this
paper, when we say induced subgraph, we mean an edge-induced subgraph
of a graph.

Let H be a subgraph of G. The uniform set of H with respect to G,
denoted by EH(G), is the set of all elements of E (G) that induces a subgraph
isomorphic to H. The subspace of E (G) generated by EH(G) shall be denoted
by EH(G). If EH(G) is a generating set, that is EH(G) = E (G), then H is
called a generator subgraph of G.

Clearly, EH(G) ⊆ E (G). To show that a subgraph H is a generator sub-
graph of G, it is sufficient to show that E (G) ⊆ EH(G). That is, the basis
{{e1}, {e2}, . . . , {em}} ⊆ EH(G). Equivalently, we have the following remark.

Remark 1. Let H be a subgraph of G. Then H is a generator subgraph of
G if and only if for every e ∈ E(G) the singleton {e} ∈ EH(G).

For example, let G = K4, a complete graph of order 4, where E(K4) =
{e1, e2, . . . , e6} as shown in Figure 1. Let H = P4, a path of order 4. We
show that P4 is a generator subgraph of K4.
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Figure 1: The labeling of K4
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First, we identify the elements of EP4(K4). Let A1 = {e2, e4, e5}. Then
A1 ∈ EP4(K4) since G[A1] is isomorphic to P4, as shown in Figure 2.
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Figure 2: The graph G[A1]

By enumerating all the elements of EP4(K4), we have the following:
A1 = {e2, e4, e5}; A7 = {e3, e4, e5}
A2 = {e2, e4, e6}; A8 = {e1, e3, e6}
A3 = {e1, e2, e6}; A9 = {e2, e3, e4}
A4 = {e2, e3, e5}; A10 = {e1, e2, e4}
A5 = {e1, e5, e6}; A11 = {e1, e4, e6}
A6 = {e3, e5, e6}; A12 = {e1, e3, e5}

Next, we show that each singleton is an element of EP4(K4). By trial and
error, we have

A1 + A2 + A5 = (A1 + A2) + A5

= (A1∆A2)∆A5

= ({e2, e4, e5}∆{e2, e4, e6})∆{e1, e5, e6}
= {e5, e6}∆{e1, e5, e6}
= {e1}.

Similarly,
{e2} = A2 + A6 + A7

{e3} = A5 + A7 + A11

{e4} = A2 + A4 + A6

{e5} = A8 + A11 + A12

{e6} = A1 + A5 + A10

This shows that P4 is a generator subgraph of K4 by Remark 1.
The problem on generator subgraph of a graph was introduced by Ger-

vacio in 2008. There are some researchers who worked on the generator sub-
graph problem. They investigated the generator subgraphs of a particular
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graph. In [2], a characterization of the generator subgraphs of the complete
graph was established. Ruivivar [7] identified some generator subgraphs of
the complete bipartite graph Km,n. Valdez Bengo, and Gervacio [4] identified
some generator subgraphs of wheels and fans.

Prior to the introduction of the generator subgraph problem, Gervacio
and Mame [5], introduced the universal and primitive graphs. The study
focused on the determination whether the given graph G is a universal graph
or a primitive graph. It is related to the problem on generator subgraphs in
the sense that the term universal graphs later became the generator graphs
described in [2], and at present called the generator subgraph of complete
graphs [3]. A characterization of the primitive graphs was found. There is no
characterization for universal graphs but one significant result found was a
necessary condition for universal graphs. It was shown that if G is universal
then the size of G is odd. This result gives rise to the fundamental theorem
on generator subgraph that any generator subgraph has an odd number of
edges. Since then, in identifying generator subgraphs of a graph G, we only
consider the subgraphs with odd number of edges. Formally, we have the
following theorem.

Theorem 1. Let H be a subgraph of the graph G. If H is a generator
subgraph of G, then |E(H)| is odd.

For a nonempty graph G and considering the path P2, it can be observed
that EP2(G) is precisely the set of all singletons in E (G), which is a basis of
E (G). Consequently, we have the following theorem.

Theorem 2. Let G be a graph with |E(G)| = m > 0. Then the path P2 is a
generator subgraph of G.

Let G be a graph and consider a subgraph H of G that contain an isolated
vertex. It is obvious that EH(G) = ∅. Thus, EH(G) = ∅. A useful remark is
stated below.

Remark 2. If H is a generator subgraph of G, then H contains no isolated
vertex.

The next theorem is equivalent to the known theorem in linear algebra
about dimension of a subspace of a vector space over a field.

Theorem 3. Let G be a graph with |E(G)| = m. If H is a generator subgraph
of G, then |EH(G)| ≥ m.
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The converse of the above theorem is not true. For instance, let G = W4,
a wheel of order 5 and H = S3, a star graph of order 4. It can be shown that
|ES3(W4)| = 8 = dim E (W4). It can be verified that the subspace generated
by ES3(Wn) has dimension 7. Hence, ES3(Wn) does not span E (W4) so S3 is
not a generator subgraph of W4.

2. Results

First we investigated the subspace of E (G) generated by some classes of
subsets of E(G).

2.1. Even Edge Space of a Graph

By E ∗(G), we mean the set of all subsets of E(G) with even cardinality.
The first result gives a relation between E ∗(G) and E (G).

Theorem 4. Let G be a graph with E(G) = {e1, e2, . . . , em}. Then E ∗(G) is
a subspace E (G). Moreover, dim E ∗(G) = m− 1.

Proof. Clearly, E ∗(G) is a subset of E (G) and E ∗(G) is not empty since
∅ ∈ E ∗(G). Let X1, X2 ∈ E ∗(G), then X1 + X2 ∈ E ∗(G) since |X1 + X2| =
|X1∆X2| = |X1| + |X2| − 2|X1 ∩ X2| is even. Further, let c ∈ Z2 and
X ∈ E ∗(G), then either c ·X = ∅ or c ·X = X. In both cases, |c ·X| is even
so c ·X ∈ E ∗(G). Hence, E ∗(G) is a subspace of E (G).

Now, we find the dimension of E ∗(G). Let E ′(G) = {X ∈ E (G) : |X|
is odd}. We know that E (G) is the power set of a non-empty set E(G).
Klasar [6] showed that if S is a non-empty set and P(S) is the power
set of S then the number of elements of P(S) with even cardinality is
equal to the number of elements of P(S) with odd cardinality. Thus,
|E ∗(G)| = |E ′(G)| = 1

2
|E (G)| = 2m−1. Now, let dim E ∗(G) = k and let

B = {X1, X2, . . . , Xk} be a basis for E ∗(G). Then any vector in E ∗(G) is of
the form

c1X1 + c2X2 + . . . + ckXk

and every vector is uniquely expressible in this form. Since ci is either 0
or 1 for each i, the total number of vectors in E ∗(G) must be 2k. Since
|E ∗(G)| = 2m−1, it follows that k = m− 1.

In this paper, we shall call the vector space E ∗(G) the even edge space of
a graph G.

The following remark is a known result in linear algebra.
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Remark 3. If A ⊆ E ∗(G), then the set of all linear combinations of the
elements of A is a subspace of E ∗(G).

Consequently, we have the next theorem.

Theorem 5. Let H be a subgraph of G. If |E(H)| is even, then EH(G) ⊆
E ∗(G).

Proof. Since |E(H)| is even, each A ∈ EH(G) has even cardinality. Thus
EH(G) ⊆ E ∗(G). By Remark 3, EH(G) ⊆ E ∗(G).

We now identify a basis for E ∗(G). Let G be a graph with E(G) =
{e1, e2, . . . , em} and define B = {X1, X2, . . . , Xm−1}, where X1 = {e1, e2}, X2 =
{e1, e3}, . . . , Xm−1 = {e1, em}. Since X ∈ E ∗(G) can be expressed as a union
of disjoint sets {ei, ej} = {e1, ei}∆{e1, ej} , where 1 ≤ i, j ≤ m, then B
spans E ∗(G). Since |B| = m − 1 = dim E ∗(G), it follows that B forms a
basis for E ∗(G).

It is easily seen that E ∗(G) is a maximal proper subspace of E (G).

2.2. The Ek(G) Subspace

Here we determine the dimension of the subspace of E (G) generated by
the set of all k-subsets of E(G).

Definition 1. Let G be graph with m > 0 edges. For a positive integer k,
denote by Ek(G) the set of all k-subsets of E(G) and let Ek(G) denote the
subspace of E (G) generated by Ek(G).

For instance, let G be a graph with E(G) = {e1, e2, . . . , em} for some
positive integer m. Then E1(G) = {{e1}, {e2}, . . . , {em}}. Note that E1(G)
is the natural basis for E (G) so E1(G) = E (G). Thus, dim E1(G) = m. The
set Em(G) contains exactly one element, the edge set of G. Since E(G) is
non-empty, dim Em(G) = 1.

The following result shows the relation between Ek(G) and E ∗(G).

Lemma 1. Let G be a graph with size m > 0 and let k be a positive integer
where 1 ≤ k ≤ m− 1. Then E ∗(G) ⊆ Ek(G).

Proof. Let G be a graph with E(G) = {e1, e2, . . . , em} and let k be a positive
integer where 1 ≤ k ≤ m − 1. Clearly, E ∗(G) ⊆ E1(G) so we may assume
that k > 1. Let ei be an element of E(G) for some i, 1 ≤ i ≤ m. Let
A ∈ Ek(G) such that ei ∈ A. Since k < m, there exists ej ∈ E(G) such
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that ej /∈ A for some j, 1 ≤ j ≤ m and j 6= i. Define B = {ej} ∪ A\{ei}.
Obviously, B ∈ Ek(G). Thus, {ei, ej} = A∆B ∈ Ek(G). In particular, the set
B = {{e1, e2}, {e1, e3}, . . . , {e1, em}} is a subset of Ek(G). Since B forms a
basis for E ∗(G), it follows that E ∗(G) ⊆ Ek(G).

The next result gives the dimension of Ek(G) for all values of k.

Theorem 6. Let G be a graph with size m > 0 and let k be a positive integer
where 1 ≤ k ≤ m. Then

dim Ek(G) =


1 if k = m,
m− 1 if k is even, and
m if k is odd.

Proof. Let E(G) = {e1, e2, . . . , em} and let k be an integer where 1 ≤ k ≤ m.
We know earlier that dim Ek(G) = 1 if k = m and dim Ek(G) = m if k = 1.
We now assume that 1 < k ≤ m−1. Consider the two cases: Case 1, k is even.
Then Ek(G) consists of sets with even cardinality. Thus, Ek(G) ⊆ E ∗(G) in
view of Remark 3. By Lemma 1, E ∗(G) ⊆ Ek(G). Therefore Ek(G) = E ∗(G).
It follows that dim Ek(G) = m−1. Case 2, k is odd. Let ei ∈ E(G), 1 ≤ i ≤ m.
Then there exists A ∈ Ek(G) such that ei ∈ A. Define B = A\{ei}. Since
|A| = k is odd, |B| is even so B ∈ E ∗(G). By Lemma 1, B ∈ Ek(G). Now,
{ei} = A ∆ B ∈ Ek(G). Meaning, Ek(G) is a generating set for E (G). Hence,
E (G) ⊆ Ek(G). But we know that Ek(G) ⊆ E (G). Therefore Ek(G) = E (G).
It follows that dim Ek(G) = m.

The next result determines another basis for the edge space of G.

Theorem 7. Let G be a graph with size m > 0. If m is even, then the set
Em−1(G) forms a basis for E (G).

Proof. Let E(G) = {e1, e2, . . . , em}. Let Ai = E(G)\{ei} where 1 ≤ i ≤ m.
Then Em−1(G) = {A1, A2, . . . , Am}. Since m is even, m−1 is odd. By Lemma
1, Em−1(G) = E (G). Thus, Em−1(G) spans E (G). Since |Em−1(G)| = m =
dim E (G), it follows that Em−1(G) forms a basis for E (G).

Corollary 1. Let G be a graph with size m > 0. If m is odd, then the set
Em−1(G) is a linearly dependent set.
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2.3. Generator Subgraphs of Stars

By a star of order n+ 1, denoted by Sn, we mean a graph which consists
of an independent set of n vertices each of which is adjacent to a common
vertex called the central vertex. The size of Sn is n. Hence dim E (Sn) = n
and dim E ∗(Sn) = n− 1. Here we determine all generator subgraphs of star
graphs.

Let E(Sn) = {e1, e2, . . . , en}. For a positive integer q, we can view ESq(Sn)
as Eq(Sn), the set of all q-subsets of E(Sn), since for each A ∈ Eq(Sn),
Sn[A] ' Sq. In fact, it is easy to verify that ESq(Sn) = Eq(Sn). However, this
equality holds only for some graphs.

First we establish a relation between ESq(Sn) and E ∗(Sn).

Lemma 2. Let Sq be a subgraph of Sn for some positive integers q and n. If
q < n, then E ∗(Sn) ⊆ ESq(Sn).

Proof. Let Sq be a subgraph of Sn where q < n. We know earlier that
ESq(Sn) = Eq(Sn). Thus, by Lemma 1, E ∗(Sn) ⊆ ESq(Sn).

The next theorem gives a family of generator subgraphs of Sn.

Theorem 8. For positive integers q and n where q < n, the star Sq is a
generator subgraph of Sn if and only if q is odd.

Proof. The necessary condition of the theorem follows directly from Theorem
1. Conversely, assume that q is odd. We know that ESq(Sn) = Eq(Sn). Thus,
by Theorem 6, ESq(Sn) = E (Sn). Therefore Sq is a generator subgraph of
Sn.

The following theorem is a special case of Theorem 6.

Theorem 9. Let Sq be a subgraph of Sn for some positive integers q and n
where q < n. If q is even, then dim ESq(Sn) = n− 1.

The next result determines the dimension of the subspace generated by
the uniform sets of the subgraphs of star Sn.

Theorem 10. Let H be a subgraph of Sn, n > 0. If H contains an isolated
vertex then dim EH(Sn) = 0. Moreover, if H does not contain an isolated
vertex, then

dim EH(Sn) =


1 if |E(H)| = n,
n− 1 if |E(H)| is even, and
n if |E(H)| is odd.
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Proof. Let H be a subgraph of Sn. Then either H contains an isolated
vertex or H does not contain an isolated vertex. Suppose H contains an
isolated vertex, then EH(Sn) = ∅ in view of Remark 2. It follows that
dim EH(Sn) = 0. If H does not contain an isolated vertex, then H ' Sq for
some positive integer q where 1 ≤ q ≤ n. Consider the following three cases:
Case 1, 1 ≤ q < n and q is odd. By Theorem 8, H is a generator subgraph
of Sn so dim EH(Sn) = n. Case 2, 1 ≤ q < n and q is even. By Theorem
9, dim EH(Sn) = n − 1. Case 3, q = n. Then EH(Sn) contains exactly one
element, the edge set of Sn. Hence, dim EH(Sn) = 1.

2.4. Star as a Generator Subgraph of Some Graphs

This section determines some properties of graphs wherein star is one of
its generator subgraphs.

Theorem 11. Let p > 0 be an odd integer. If G is a graph such that for
every edge [a, b] in G either deg(a) > p or deg(b) > p, then star Sp is a
generator subgraph of G.

Proof. Let [a, b] be an edge of G. We show that {[a, b]} ∈ ESp(G). Without
loss of generality, assume that deg(a) = r > p for some integer r. Let A =
{e1, e2, . . . , er} be the set of all edges in G incident with a. Let B ⊆ A with
|B| = p. Then G[A] ' Sr and G[B] ' Sp. Since p is odd, G[B] is a generator
subgraph of G[A] in view of Theorem 8. Thus, {ei} ∈ ESp(G[A]) ⊆ ESp(G) for
all i, 1 ≤ i ≤ r. Since [a, b] is one of the e′is, it follows that {[a, b]} ∈ ESp(G).
Therefore Sp is a generator subgraph of G.

Below is an immediate consequence of Theorem 11.

Corollary 2. Let p > 0 be odd. If G is k- regular and k > p then star Sp is
a generator subgraph of G.

The converse of Theorem 11 is not true for p = 1 since a star S1 ' P2 is
a generator subgraph of the graph G = kP2, a graph consisting of k vertex-
disjoint copies of P2. If p 6= 1, we have the following result.

Theorem 12. Let p > 1 be odd. Then Sp is a generator subgraph of G if
and only if for every edge [a, b] in G, either deg(a) > p or deg(b) > p.

Proof. Assume that Sp is a generator subgraph of G. Suppose, on the con-
trary, deg(a) ≤ p and deg(b) ≤ p for some [a, b] ∈ E(G). Partition E(G) into
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two sets A and B where A = {[a, b] ∈ E(G) : deg(a) ≤ p and deg(b) ≤ p}
and B = {[a, b] ∈ E(G) : deg(a) > p or deg(b) > p}. Clearly, ESp(G[A]) ∩
ESp(G[B]) = ∅ and ESp(G) = ESp(G[A]) ∪ ESp(G[B]). Now, let us consider
the subgraph G[A]. Partition V (G[A]) into two sets X and Y where X = {x ∈
V (G[A]) : deg(x) = p} and Y = {y ∈ V (G[A]) : deg(y) < p}. Observe that
|ESp(G[A])| = |X| and |X| is maximum if Y = ∅. Let us assume that Y = ∅.
Then G[A] is p-regular. Thus,

∑
v∈V (G[X]) deg(v) = p|X| = 2|E(G[A])|. Since

p > 1 is odd, |X| = |ESp(G[A])| < |E(G[A])| = dim E (G[A]). By Theorem 3,
Sp is not a generator subgraph of G[A]. Meaning, there exists e ∈ E(G[A]) ⊆
E(G) such that {e} /∈ ESp(G[A]). It follows that {e} /∈ ESp(G). This is a
contradiction to the fact that Sp is a generator subgraph of G. Therefore, for
every edge [a, b] in G, either deg(a) > p or deg(b) > p. For the converse of
the theorem, it follows by Theorem 11.

The following result determines all graphs whose generator subgraph is
the path P2 only.

Theorem 13. Let G be a graph with size m > 0. If m ≤ 3, then the only
generator subgraph of G is the path P2.

Proof. Let G be a graph with size m where 1 ≤ m ≤ 3. We know by Theorem
2 that P2 is a generator subgraph of G. Suppose there exists another generator
subgraph of G, say H. Then 1 ≤ |E(H)| ≤ 3. By Theorem 1, |E(H)| is
odd. Thus, either |E(H)| = 1 or |E(H)| = 3. Suppose |E(H)| 6= 1, then
|E(H)| = 3. This implies that the size of G is 3. Hence, EH(G) = {E(G)}.
It follows that dim EH(G) = 1 < 3 = dim E (G). This is a contradiction to
Theorem 3. Therefore |E(H)| = 1. But H does not contain isolated vertex
by Remark 2. It follows that H is isomorphic to P2.

Equivalently, we have the following remark.

Remark 4. Let G be a graph with size m. If G has a generator subgraph
which is not isomorphic to P2, then m ≥ 4.

3. Summary and Conclusion

All generator subgraphs of star graphs were identified and a character-
ization for a graph G so that star graph is a generator subgraph of G was
established. Moreover, the concept of even edge space was introduced here
and found to be a maximal proper subspace of the edge space of a graph.
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Finally, the dimension of even edge space and the dimension of the subspace
generated by k − subsets of E(G) were determined.
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