A Note on the Generator Subgraph of a Graph

Neil M. Mame ${ }^{\text {a }}$, Severino V. Gervacio ${ }^{\text {b,1 }}$
${ }^{a}$ College of Arts and Sciences, Batangas State University, Batangas City, Philippines
${ }^{b}$ Mathematics Department, De La Salle University, Taft Avenue, Manila, Philippines
${ }^{c}$ Malayan Colleges Laguna, Cabuyao, Laguna, Philippines
mameneil10@yahoo.com, svgervacio@yahoo.com

Abstract

Graphs considered in this paper are finite simple graphs. Let $G=(V(G), E(G))$ be a graph with $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$, for some positive integer m. The edge space of G, denoted by $\mathscr{E}(G)$, is a vector space over the field \mathbb{Z}_{2}. The elements of $\mathscr{E}(G)$ are all the subsets of $E(G)$. Vector addition is defined as $X+Y=X \Delta Y$, the symmetric difference of sets X and Y, for $X, Y \in \mathscr{E}(G)$. Scalar multiplication is defined as $1 \cdot X=X$ and $0 \cdot X=\emptyset$ for $X \in \mathscr{E}(G)$. Let H be a subgraph of G. The uniform set of H with respect to G, denoted by $E_{H}(G)$, is the set of all elements of $\mathscr{E}(G)$ that induces a subgraph isomorphic to H. The subspace of $\mathscr{E}(G)$ generated by $E_{H}(G)$ shall be denoted by $\mathscr{E}_{H}(G)$. If $E_{H}(G)$ is a generating set, that is $\mathscr{E}_{H}(G)=\mathscr{E}(G)$, then H is called a generator subgraph of G. This study determines the dimension of subspace generated by the set of all subsets of $E(G)$ with even cardinality and the subspace generated by the set of all k - subsets of $E(G)$, for some positive integer $k, 1 \leq k \leq m$. Moreover, this paper determines all the generator subgraphs of star graphs. Furthermore, it gives a characterization for a graph G so that star is a generator subgraph of G.

Keywords: Edge Space, Even Edge Space, Edge-Induced Subgraph, Uniform Set, Generator Subgraph 2010 Mathematics Subject Classification: 05C25

1. Introduction

Graphs considered in this paper are finite simple graphs, which has no loops and multiple edges. For $x, y \in V(G)$, we denote by $[x, y]$ if and only if x and y are adjacent in G. For other basic concepts in graph theory, reader may refer to the book written by Chartrand \& Zhang [1].

Let G be a graph with $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$, for some positive integer m. The edge space of G, denoted by $\mathscr{E}(G)$, is a vector space over the field $\mathbb{Z}_{2}=\{0,1\}$. The elements of $\mathscr{E}(G)$ are all the subsets of $E(G)$. Vector addition is defined as $X+Y=X \Delta Y$, the symmetric difference of sets X and Y, for $X, Y \in \mathscr{E}(G)$. Scalar multiplication is defined as $1 \cdot X=X$ and $0 \cdot X=\emptyset$ for $X \in \mathscr{E}(G)$. The set $S \subseteq \mathscr{E}(G)$ is called a generating set if every element of $\mathscr{E}(G)$ is a linear combination of the elements of S.

It can be verified that the set $\mathscr{A}=\left\{\left\{e_{1}\right\},\left\{e_{2}\right\}, \ldots,\left\{e_{m}\right\}\right\}$ forms a basis of $\mathscr{E}(G)$. Hence, $\operatorname{dim} \mathscr{E}(G)=m$, the size of G. Valdez, Gervacio and Bengo [4] called this set the natural basis for the edge space of G.

For a non-empty set $X \subseteq E(G)$, the smallest subgraph of G with edge set X is called the edge-induced subgraph of G, which we denote by $G[X]$. In this paper, when we say induced subgraph, we mean an edge-induced subgraph of a graph.

Let H be a subgraph of G. The uniform set of H with respect to G, denoted by $E_{H}(G)$, is the set of all elements of $\mathscr{E}(G)$ that induces a subgraph isomorphic to H. The subspace of $\mathscr{E}(G)$ generated by $E_{H}(G)$ shall be denoted by $\mathscr{E}_{H}(G)$. If $E_{H}(G)$ is a generating set, that is $\mathscr{E}_{H}(G)=\mathscr{E}(G)$, then H is called a generator subgraph of G.

Clearly, $\mathscr{E}_{H}(G) \subseteq \mathscr{E}(G)$. To show that a subgraph H is a generator subgraph of G, it is sufficient to show that $\mathscr{E}(G) \subseteq \mathscr{E}_{H}(G)$. That is, the basis $\left\{\left\{e_{1}\right\},\left\{e_{2}\right\}, \ldots,\left\{e_{m}\right\}\right\} \subseteq \mathscr{E}_{H}(G)$. Equivalently, we have the following remark.

Remark 1. Let H be a subgraph of G. Then H is a generator subgraph of G if and only if for every $e \in E(G)$ the singleton $\{e\} \in \mathscr{E}_{H}(G)$.

For example, let $G=K_{4}$, a complete graph of order 4, where $E\left(K_{4}\right)=$ $\left\{e_{1}, e_{2}, \ldots, e_{6}\right\}$ as shown in Figure 1. Let $H=P_{4}$, a path of order 4. We show that P_{4} is a generator subgraph of K_{4}.

Figure 1: The labeling of K_{4}

First, we identify the elements of $E_{P_{4}}\left(K_{4}\right)$. Let $A_{1}=\left\{e_{2}, e_{4}, e_{5}\right\}$. Then $A_{1} \in E_{P_{4}}\left(K_{4}\right)$ since $G\left[A_{1}\right]$ is isomorphic to P_{4}, as shown in Figure 2 .

Figure 2: The graph $G\left[A_{1}\right]$
By enumerating all the elements of $E_{P_{4}}\left(K_{4}\right)$, we have the following:

$$
\begin{array}{ll}
A_{1}=\left\{e_{2}, e_{4}, e_{5}\right\} ; & A_{7}=\left\{e_{3}, e_{4}, e_{5}\right\} \\
A_{2}=\left\{e_{2}, e_{4}, e_{6}\right\} ; & A_{8}=\left\{e_{1}, e_{3}, e_{6}\right\} \\
A_{3}=\left\{e_{1}, e_{2}, e_{6}\right\} ; & A_{9}=\left\{e_{2}, e_{3}, e_{4}\right\} \\
A_{4}=\left\{e_{2}, e_{3}, e_{5}\right\} ; & A_{10}=\left\{e_{1}, e_{2}, e_{4}\right\} \\
A_{5}=\left\{e_{1}, e_{5}, e_{6}\right\} ; & A_{11}=\left\{e_{1}, e_{4}, e_{6}\right\} \\
A_{6}=\left\{e_{3}, e_{5}, e_{6}\right\} ; & A_{12}=\left\{e_{1}, e_{3}, e_{5}\right\}
\end{array}
$$

Next, we show that each singleton is an element of $\mathscr{E}_{P_{4}}\left(K_{4}\right)$. By trial and error, we have

$$
\begin{aligned}
A_{1}+A_{2}+A_{5} & =\left(A_{1}+A_{2}\right)+A_{5} \\
& =\left(A_{1} \Delta A_{2}\right) \Delta A_{5} \\
& =\left(\left\{e_{2}, e_{4}, e_{5}\right\} \Delta\left\{e_{2}, e_{4}, e_{6}\right\}\right) \Delta\left\{e_{1}, e_{5}, e_{6}\right\} \\
& =\left\{e_{5}, e_{6}\right\} \Delta\left\{e_{1}, e_{5}, e_{6}\right\} \\
& =\left\{e_{1}\right\} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\left\{e_{2}\right\} & =A_{2}+A_{6}+A_{7} \\
\left\{e_{3}\right\} & =A_{5}+A_{7}+A_{11} \\
\left\{e_{4}\right\} & =A_{2}+A_{4}+A_{6} \\
\left\{e_{5}\right\} & =A_{8}+A_{11}+A_{12} \\
\left\{e_{6}\right\} & =A_{1}+A_{5}+A_{10}
\end{aligned}
$$

This shows that P_{4} is a generator subgraph of K_{4} by Remark 1 .
The problem on generator subgraph of a graph was introduced by Gervacio in 2008. There are some researchers who worked on the generator subgraph problem. They investigated the generator subgraphs of a particular
graph. In [2], a characterization of the generator subgraphs of the complete graph was established. Ruivivar [7] identified some generator subgraphs of the complete bipartite graph $K_{m, n}$. Valdez Bengo, and Gervacio [4] identified some generator subgraphs of wheels and fans.

Prior to the introduction of the generator subgraph problem, Gervacio and Mame [5], introduced the universal and primitive graphs. The study focused on the determination whether the given graph G is a universal graph or a primitive graph. It is related to the problem on generator subgraphs in the sense that the term universal graphs later became the generator graphs described in [2], and at present called the generator subgraph of complete graphs [3]. A characterization of the primitive graphs was found. There is no characterization for universal graphs but one significant result found was a necessary condition for universal graphs. It was shown that if G is universal then the size of G is odd. This result gives rise to the fundamental theorem on generator subgraph that any generator subgraph has an odd number of edges. Since then, in identifying generator subgraphs of a graph G, we only consider the subgraphs with odd number of edges. Formally, we have the following theorem.

Theorem 1. Let H be a subgraph of the graph G. If H is a generator subgraph of G, then $|E(H)|$ is odd.

For a nonempty graph G and considering the path P_{2}, it can be observed that $E_{P_{2}}(G)$ is precisely the set of all singletons in $\mathscr{E}(G)$, which is a basis of $\mathscr{E}(G)$. Consequently, we have the following theorem.

Theorem 2. Let G be a graph with $|E(G)|=m>0$. Then the path P_{2} is a generator subgraph of G.

Let G be a graph and consider a subgraph H of G that contain an isolated vertex. It is obvious that $E_{H}(G)=\emptyset$. Thus, $\mathscr{E}_{H}(G)=\emptyset$. A useful remark is stated below.

Remark 2. If H is a generator subgraph of G, then H contains no isolated vertex.

The next theorem is equivalent to the known theorem in linear algebra about dimension of a subspace of a vector space over a field.

Theorem 3. Let G be a graph with $|E(G)|=m$. If H is a generator subgraph of G, then $\left|E_{H}(G)\right| \geq m$.

The converse of the above theorem is not true. For instance, let $G=W_{4}$, a wheel of order 5 and $H=S_{3}$, a star graph of order 4 . It can be shown that $\left|E_{S_{3}}\left(W_{4}\right)\right|=8=\operatorname{dim} \mathscr{E}\left(W_{4}\right)$. It can be verified that the subspace generated by $E_{S_{3}}\left(W_{n}\right)$ has dimension 7 . Hence, $E_{S_{3}}\left(W_{n}\right)$ does not span $\mathscr{E}\left(W_{4}\right)$ so S_{3} is not a generator subgraph of W_{4}.

2. Results

First we investigated the subspace of $\mathscr{E}(G)$ generated by some classes of subsets of $E(G)$.

2.1. Even Edge Space of a Graph

By $\mathscr{E}^{*}(G)$, we mean the set of all subsets of $E(G)$ with even cardinality. The first result gives a relation between $\mathscr{E}^{*}(G)$ and $\mathscr{E}(G)$.

Theorem 4. Let G be a graph with $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. Then $\mathscr{E}^{*}(G)$ is a subspace $\mathscr{E}(G)$. Moreover, $\operatorname{dim} \mathscr{E}^{*}(G)=m-1$.

Proof. Clearly, $\mathscr{E}^{*}(G)$ is a subset of $\mathscr{E}(G)$ and $\mathscr{E}^{*}(G)$ is not empty since $\emptyset \in \mathscr{E}^{*}(G)$. Let $X_{1}, X_{2} \in \mathscr{E}^{*}(G)$, then $X_{1}+X_{2} \in \mathscr{E}^{*}(G)$ since $\left|X_{1}+X_{2}\right|=$ $\left|X_{1} \Delta X_{2}\right|=\left|X_{1}\right|+\left|X_{2}\right|-2\left|X_{1} \cap X_{2}\right|$ is even. Further, let $c \in \mathbb{Z}_{2}$ and $X \in \mathscr{E}^{*}(G)$, then either $c \cdot X=\emptyset$ or $c \cdot X=X$. In both cases, $|c \cdot X|$ is even so $c \cdot X \in \mathscr{E}^{*}(G)$. Hence, $\mathscr{E}^{*}(G)$ is a subspace of $\mathscr{E}(G)$.

Now, we find the dimension of $\mathscr{E}^{*}(G)$. Let $\mathscr{E}^{\prime}(G)=\{X \in \mathscr{E}(G):|X|$ is odd\}. We know that $\mathscr{E}(G)$ is the power set of a non-empty set $E(G)$. Klasar [6] showed that if S is a non-empty set and $\mathscr{P}(S)$ is the power set of S then the number of elements of $\mathscr{P}(S)$ with even cardinality is equal to the number of elements of $\mathscr{P}(S)$ with odd cardinality. Thus, $\left|\mathscr{E}^{*}(G)\right|=\left|\mathscr{E}^{\prime}(G)\right|=\frac{1}{2}|\mathscr{E}(G)|=2^{m-1}$. Now, let $\operatorname{dim} \mathscr{E}^{*}(G)=k$ and let $\mathscr{B}=\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$ be a basis for $\mathscr{E}^{*}(G)$. Then any vector in $\mathscr{E}^{*}(G)$ is of the form

$$
c_{1} X_{1}+c_{2} X_{2}+\ldots+c_{k} X_{k}
$$

and every vector is uniquely expressible in this form. Since c_{i} is either 0 or 1 for each i, the total number of vectors in $\mathscr{E}^{*}(G)$ must be 2^{k}. Since $\left|\mathscr{E}^{*}(G)\right|=2^{m-1}$, it follows that $k=m-1$.

In this paper, we shall call the vector space $\mathscr{E}^{*}(G)$ the even edge space of a graph G.

The following remark is a known result in linear algebra.

Remark 3. If $A \subseteq \mathscr{E}^{*}(G)$, then the set of all linear combinations of the elements of A is a subspace of $\mathscr{E}^{*}(G)$.

Consequently, we have the next theorem.
Theorem 5. Let H be a subgraph of G. If $|E(H)|$ is even, then $\mathscr{E}_{H}(G) \subseteq$ $\mathscr{E} *(G)$.

Proof. Since $|E(H)|$ is even, each $A \in E_{H}(G)$ has even cardinality. Thus $E_{H}(G) \subseteq \mathscr{E}^{*}(G)$. By Remark 3, $\mathscr{E}_{H}(G) \subseteq \mathscr{E}^{*}(G)$.

We now identify a basis for $\mathscr{E}^{*}(G)$. Let G be a graph with $E(G)=$ $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ and define $\mathscr{B}=\left\{X_{1}, X_{2}, \ldots, X_{m-1}\right\}$, where $X_{1}=\left\{e_{1}, e_{2}\right\}, X_{2}=$ $\left\{e_{1}, e_{3}\right\}, \ldots, X_{m-1}=\left\{e_{1}, e_{m}\right\}$. Since $X \in \mathscr{E}^{*}(G)$ can be expressed as a union of disjoint sets $\left\{e_{i}, e_{j}\right\}=\left\{e_{1}, e_{i}\right\} \Delta\left\{e_{1}, e_{j}\right\}$, where $1 \leq i, j \leq m$, then \mathscr{B} spans $\mathscr{E}^{*}(G)$. Since $|\mathscr{B}|=m-1=\operatorname{dim} \mathscr{E}^{*}(G)$, it follows that \mathscr{B} forms a basis for $\mathscr{E}^{*}(G)$.

It is easily seen that $\mathscr{E}^{*}(G)$ is a maximal proper subspace of $\mathscr{E}(G)$.

2.2. The $\mathscr{E}_{k}(G)$ Subspace

Here we determine the dimension of the subspace of $\mathscr{E}(G)$ generated by the set of all k-subsets of $E(G)$.

Definition 1. Let G be graph with $m>0$ edges. For a positive integer k, denote by $E_{k}(G)$ the set of all k-subsets of $E(G)$ and let $\mathscr{E}_{k}(G)$ denote the subspace of $\mathscr{E}(G)$ generated by $E_{k}(G)$.

For instance, let G be a graph with $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ for some positive integer m. Then $E_{1}(G)=\left\{\left\{e_{1}\right\},\left\{e_{2}\right\}, \ldots,\left\{e_{m}\right\}\right\}$. Note that $E_{1}(G)$ is the natural basis for $\mathscr{E}(G)$ so $\mathscr{E}_{1}(G)=\mathscr{E}(G)$. Thus, $\operatorname{dim} \mathscr{E}_{1}(G)=m$. The set $E_{m}(G)$ contains exactly one element, the edge set of G. Since $E(G)$ is non-empty, $\operatorname{dim} \mathscr{E}_{m}(G)=1$.

The following result shows the relation between $\mathscr{E}_{k}(G)$ and $\mathscr{E}^{*}(G)$.
Lemma 1. Let G be a graph with size $m>0$ and let k be a positive integer where $1 \leq k \leq m-1$. Then $\mathscr{E}^{*}(G) \subseteq \mathscr{E}_{k}(G)$.

Proof. Let G be a graph with $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ and let k be a positive integer where $1 \leq k \leq m-1$. Clearly, $\mathscr{E}^{*}(G) \subseteq \mathscr{E}_{1}(G)$ so we may assume that $k>1$. Let e_{i} be an element of $E(G)$ for some $i, 1 \leq i \leq m$. Let $A \in E_{k}(G)$ such that $e_{i} \in A$. Since $k<m$, there exists $e_{j} \in E(G)$ such
that $e_{j} \notin A$ for some $j, 1 \leq j \leq m$ and $j \neq i$. Define $B=\left\{e_{j}\right\} \cup A \backslash\left\{e_{i}\right\}$. Obviously, $B \in E_{k}(G)$. Thus, $\left\{e_{i}, e_{j}\right\}=A \Delta B \in \mathscr{E}_{k}(G)$. In particular, the set $\mathscr{B}=\left\{\left\{e_{1}, e_{2}\right\},\left\{e_{1}, e_{3}\right\}, \ldots,\left\{e_{1}, e_{m}\right\}\right\}$ is a subset of $\mathscr{E}_{k}(G)$. Since \mathscr{B} forms a basis for $\mathscr{E}^{*}(G)$, it follows that $\mathscr{E}^{*}(G) \subseteq \mathscr{E}_{k}(G)$.

The next result gives the dimension of $\mathscr{E}_{k}(G)$ for all values of k.
Theorem 6. Let G be a graph with size $m>0$ and let k be a positive integer where $1 \leq k \leq m$. Then

$$
\operatorname{dim} \mathscr{E}_{k}(G)= \begin{cases}1 & \text { if } k=m, \\ m-1 & \text { if } k \text { is even, and } \\ m & \text { if } k \text { is odd } .\end{cases}
$$

Proof. Let $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ and let k be an integer where $1 \leq k \leq m$. We know earlier that $\operatorname{dim} \mathscr{E}_{k}(G)=1$ if $k=m$ and $\operatorname{dim} \mathscr{E}_{k}(G)=m$ if $k=1$. We now assume that $1<k \leq m-1$. Consider the two cases: Case $1, k$ is even. Then $E_{k}(G)$ consists of sets with even cardinality. Thus, $\mathscr{E}_{k}(G) \subseteq \mathscr{E}^{*}(G)$ in view of Remark 3. By Lemma 1, $\mathscr{E}^{*}(G) \subseteq \mathscr{E}_{k}(G)$. Therefore $\mathscr{E}_{k}(G)=\mathscr{E}^{*}(G)$. It follows that $\operatorname{dim} \mathscr{E}_{k}(G)=m-1$. Case $2, k$ is odd. Let $e_{i} \in E(G), 1 \leq i \leq m$. Then there exists $A \in E_{k}(G)$ such that $e_{i} \in A$. Define $B=A \backslash\left\{e_{i}\right\}$. Since $|A|=k$ is odd, $|B|$ is even so $B \in \mathscr{E}^{*}(G)$. By Lemma 1, $B \in \mathscr{E}_{k}(G)$. Now, $\left\{e_{i}\right\}=A \Delta B \in \mathscr{E}_{k}(G)$. Meaning, $E_{k}(G)$ is a generating set for $\mathscr{E}(G)$. Hence, $\mathscr{E}(G) \subseteq \mathscr{E}_{k}(G)$. But we know that $\mathscr{E}_{k}(G) \subseteq \mathscr{E}(G)$. Therefore $\mathscr{E}_{k}(G)=\mathscr{E}(G)$. It follows that $\operatorname{dim} \mathscr{E}_{k}(G)=m$.

The next result determines another basis for the edge space of G.
Theorem 7. Let G be a graph with size $m>0$. If m is even, then the set $E_{m-1}(G)$ forms a basis for $\mathscr{E}(G)$.

Proof. Let $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. Let $A_{i}=E(G) \backslash\left\{e_{i}\right\}$ where $1 \leq i \leq m$. Then $E_{m-1}(G)=\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$. Since m is even, $m-1$ is odd. By Lemma 1. $\mathscr{E}_{m-1}(G)=\mathscr{E}(G)$. Thus, $E_{m-1}(G)$ spans $\mathscr{E}(G)$. Since $\left|E_{m-1}(G)\right|=m=$ $\operatorname{dim} \mathscr{E}(G)$, it follows that $E_{m-1}(G)$ forms a basis for $\mathscr{E}(G)$.

Corollary 1. Let G be a graph with size $m>0$. If m is odd, then the set $E_{m-1}(G)$ is a linearly dependent set.

2.3. Generator Subgraphs of Stars

By a star of order $n+1$, denoted by S_{n}, we mean a graph which consists of an independent set of n vertices each of which is adjacent to a common vertex called the central vertex. The size of S_{n} is n. Hence $\operatorname{dim} \mathscr{E}\left(S_{n}\right)=n$ and $\operatorname{dim} \mathscr{E}^{*}\left(S_{n}\right)=n-1$. Here we determine all generator subgraphs of star graphs.

Let $E\left(S_{n}\right)=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$. For a positive integer q, we can view $E_{S_{q}}\left(S_{n}\right)$ as $E_{q}\left(S_{n}\right)$, the set of all q-subsets of $E\left(S_{n}\right)$, since for each $A \in E_{q}\left(S_{n}\right)$, $S_{n}[A] \simeq S_{q}$. In fact, it is easy to verify that $E_{S_{q}}\left(S_{n}\right)=E_{q}\left(S_{n}\right)$. However, this equality holds only for some graphs.

First we establish a relation between $\mathscr{E}_{S_{q}}\left(S_{n}\right)$ and $\mathscr{E}^{*}\left(S_{n}\right)$.
Lemma 2. Let S_{q} be a subgraph of S_{n} for some positive integers q and n. If $q<n$, then $\mathscr{E}^{*}\left(S_{n}\right) \subseteq \mathscr{E}_{S_{q}}\left(S_{n}\right)$.
Proof. Let S_{q} be a subgraph of S_{n} where $q<n$. We know earlier that $\mathscr{E}_{S_{q}}\left(S_{n}\right)=\mathscr{E}_{q}\left(S_{n}\right)$. Thus, by Lemma 1, $\mathscr{E}^{*}\left(S_{n}\right) \subseteq \mathscr{E}_{S_{q}}\left(S_{n}\right)$.

The next theorem gives a family of generator subgraphs of S_{n}.
Theorem 8. For positive integers q and n where $q<n$, the star S_{q} is a generator subgraph of S_{n} if and only if q is odd.

Proof. The necessary condition of the theorem follows directly from Theorem 1. Conversely, assume that q is odd. We know that $\mathscr{E}_{S_{q}}\left(S_{n}\right)=\mathscr{E}_{q}\left(S_{n}\right)$. Thus, by Theorem 6, $\mathscr{E}_{S_{q}}\left(S_{n}\right)=\mathscr{E}\left(S_{n}\right)$. Therefore S_{q} is a generator subgraph of S_{n}.

The following theorem is a special case of Theorem 6.
Theorem 9. Let S_{q} be a subgraph of S_{n} for some positive integers q and n where $q<n$. If q is even, then $\operatorname{dim} \mathscr{E}_{S_{q}}\left(S_{n}\right)=n-1$.

The next result determines the dimension of the subspace generated by the uniform sets of the subgraphs of star S_{n}.
Theorem 10. Let H be a subgraph of $S_{n}, n>0$. If H contains an isolated vertex then $\operatorname{dim} \mathscr{E}_{H}\left(S_{n}\right)=0$. Moreover, if H does not contain an isolated vertex, then

$$
\operatorname{dim} \mathscr{E}_{H}\left(S_{n}\right)= \begin{cases}1 & \text { if }|E(H)|=n \\ n-1 & \text { if }|E(H)| \text { is even, and } \\ n & \text { if }|E(H)| \text { is odd. }\end{cases}
$$

Proof. Let H be a subgraph of S_{n}. Then either H contains an isolated vertex or H does not contain an isolated vertex. Suppose H contains an isolated vertex, then $E_{H}\left(S_{n}\right)=\emptyset$ in view of Remark 2. It follows that $\operatorname{dim} \mathscr{E}_{H}\left(S_{n}\right)=0$. If H does not contain an isolated vertex, then $H \simeq S_{q}$ for some positive integer q where $1 \leq q \leq n$. Consider the following three cases: Case $1,1 \leq q<n$ and q is odd. By Theorem 8, H is a generator subgraph of S_{n} so $\operatorname{dim} \mathscr{E}_{H}\left(S_{n}\right)=n$. Case $2,1 \leq q<n$ and q is even. By Theorem 9, $\operatorname{dim} \mathscr{E}_{H}\left(S_{n}\right)=n-1$. Case $3, q=n$. Then $E_{H}\left(S_{n}\right)$ contains exactly one element, the edge set of S_{n}. Hence, $\operatorname{dim} \mathscr{E}_{H}\left(S_{n}\right)=1$.

2.4. Star as a Generator Subgraph of Some Graphs

This section determines some properties of graphs wherein star is one of its generator subgraphs.

Theorem 11. Let $p>0$ be an odd integer. If G is a graph such that for every edge $[a, b]$ in G either $\operatorname{deg}(a)>p$ or $\operatorname{deg}(b)>p$, then star S_{p} is a generator subgraph of G.

Proof. Let $[a, b]$ be an edge of G. We show that $\{[a, b]\} \in \mathscr{E}_{S_{p}}(G)$. Without loss of generality, assume that $\operatorname{deg}(a)=r>p$ for some integer r. Let $A=$ $\left\{e_{1}, e_{2}, \ldots, e_{r}\right\}$ be the set of all edges in G incident with a. Let $B \subseteq A$ with $|B|=p$. Then $G[A] \simeq S_{r}$ and $G[B] \simeq S_{p}$. Since p is odd, $G[B]$ is a generator subgraph of $G[A]$ in view of Theorem 8. Thus, $\left\{e_{i}\right\} \in \mathscr{E}_{S_{p}}(G[A]) \subseteq \mathscr{E}_{S_{p}}(G)$ for all $i, 1 \leq i \leq r$. Since $[a, b]$ is one of the $e_{i}^{\prime} s$, it follows that $\{[a, b]\} \in \mathscr{E}_{S_{p}}(G)$. Therefore S_{p} is a generator subgraph of G.

Below is an immediate consequence of Theorem 11.
Corollary 2. Let $p>0$ be odd. If G is k-regular and $k>p$ then star S_{p} is a generator subgraph of G.

The converse of Theorem 11 is not true for $p=1$ since a star $S_{1} \simeq P_{2}$ is a generator subgraph of the graph $G=k P_{2}$, a graph consisting of k vertexdisjoint copies of P_{2}. If $p \neq 1$, we have the following result.

Theorem 12. Let $p>1$ be odd. Then S_{p} is a generator subgraph of G if and only if for every edge $[a, b]$ in G, either $\operatorname{deg}(a)>p$ or $\operatorname{deg}(b)>p$.

Proof. Assume that S_{p} is a generator subgraph of G. Suppose, on the contrary, $\operatorname{deg}(a) \leq p$ and $\operatorname{deg}(b) \leq p$ for some $[a, b] \in E(G)$. Partition $E(G)$ into
two sets A and B where $A=\{[a, b] \in E(G): \operatorname{deg}(a) \leq p$ and $\operatorname{deg}(b) \leq p\}$ and $B=\{[a, b] \in E(G): \operatorname{deg}(a)>p$ or $\operatorname{deg}(b)>p\}$. Clearly, $E_{S_{p}}(G[A]) \cap$ $E_{S_{p}}(G[B])=\emptyset$ and $E_{S_{p}}(G)=E_{S_{p}}(G[A]) \cup E_{S_{p}}(G[B])$. Now, let us consider the subgraph $G[A]$. Partition $V(G[A])$ into two sets X and Y where $X=\{x \in$ $V(G[A]): \operatorname{deg}(x)=p\}$ and $Y=\{y \in V(G[A]): \operatorname{deg}(y)<p\}$. Observe that $\left|E_{S_{p}}(G[A])\right|=|X|$ and $|X|$ is maximum if $Y=\emptyset$. Let us assume that $Y=\emptyset$. Then $G[A]$ is p-regular. Thus, $\sum_{v \in V(G[X])} \operatorname{deg}(v)=p|X|=2|E(G[A])|$. Since $p>1$ is odd, $|X|=\left|E_{S_{p}}(G[A])\right|<|E(G[A])|=\operatorname{dim} \mathscr{E}(G[A])$. By Theorem 3 , S_{p} is not a generator subgraph of $G[A]$. Meaning, there exists $e \in E(G[A]) \subseteq$ $E(G)$ such that $\{e\} \notin \mathscr{E}_{S_{p}}(G[A])$. It follows that $\{e\} \notin \mathscr{E}_{S_{p}}(G)$. This is a contradiction to the fact that S_{p} is a generator subgraph of G. Therefore, for every edge $[a, b]$ in G, either $\operatorname{deg}(a)>p$ or $\operatorname{deg}(b)>p$. For the converse of the theorem, it follows by Theorem 11 .

The following result determines all graphs whose generator subgraph is the path P_{2} only.

Theorem 13. Let G be a graph with size $m>0$. If $m \leq 3$, then the only generator subgraph of G is the path P_{2}.

Proof. Let G be a graph with size m where $1 \leq m \leq 3$. We know by Theorem 2 that P_{2} is a generator subgraph of G. Suppose there exists another generator subgraph of G, say H. Then $1 \leq|E(H)| \leq 3$. By Theorem 1, $|E(H)|$ is odd. Thus, either $|E(H)|=1$ or $|E(H)|=3$. Suppose $|E(H)| \neq 1$, then $|E(H)|=3$. This implies that the size of G is 3. Hence, $E_{H}(G)=\{E(G)\}$. It follows that $\operatorname{dim} \mathscr{E}_{H}(G)=1<3=\operatorname{dim} \mathscr{E}(G)$. This is a contradiction to Theorem 3. Therefore $|E(H)|=1$. But H does not contain isolated vertex by Remark 2. It follows that H is isomorphic to P_{2}.

Equivalently, we have the following remark.
Remark 4. Let G be a graph with size m. If G has a generator subgraph which is not isomorphic to P_{2}, then $m \geq 4$.

3. Summary and Conclusion

All generator subgraphs of star graphs were identified and a characterization for a graph G so that star graph is a generator subgraph of G was established. Moreover, the concept of even edge space was introduced here and found to be a maximal proper subspace of the edge space of a graph.

Finally, the dimension of even edge space and the dimension of the subspace generated by k - subsets of $E(G)$ were determined.

References

[1] G. Chartrand, and P. Zhang, Introduction to Graph Theory, Mc Graw Hill, Reading, Singapore, 2005.
[2] S. V. Gervacio, Generator Graphs, contributed paper, $4^{\text {th }}$ International Conference On Combinatorial Mathematics and Combinatorial Computing,U.A., New Zealand, Dec 15-19, 2008.
[3] S. V. Gervacio , Determination of Uniform Generating Sets of the Edge Space of Some Graphs, research project under URCO, De La Salle University-Manila, April 2009.
[4] S. V. Gervacio , M. T. C. Valdez, \& D. F. Bengo, Generator Subgraphs of Fans and Wheels, Proc., Osaka University - De La Salle University Academic Research Workshop, Manila, August 2008.
[5] S. V. Gervacio \& N. M. Mame, Universal and Primitive Graphs, Proc., Osaka University-De La Salle University Academic Research Workshop, Manila, August 2007, pp. 51-53.
[6] M. Klasar, Counting Even and Odd Partitions, The American Mathematical Monthly, vol.110, no.6, pp. 527-532.
[7] L. A. Ruivivar, Some Generator Subgraphs of the Complete Bipartite Graph, Proc., 5th Asian Mathematical Conference, Malaysia, 2009, pp. 516-520.

