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Abstract

Let GG be a graph with an edge k-coloring v : F(G) — {1,...,k} (not necessarily proper). A path
is called a rainbow path if all of its edges have different colors. The map v is called a rainbow
coloring if any two vertices can be connected by a rainbow path. The map + is called a strong
rainbow coloring if any two vertices can be connected by a rainbow geodesic. The smallest £ for
which there is a rainbow k-coloring (resp. strong rainbow k-coloring) on G is called the rainbow
connection number (resp. strong rainbow connection number) of GG, denoted r¢(G) (resp. src(G)).
In this paper we generalize the notion of ”color codes” that was originally used by Chartrand et al.
in their study of the rc and src of complete bipartite graphs, so that it now applies to any connected
graph. Using color codes, we prove a new class of lower bounds depending on the existence of sets
with common neighbours. Tight examples are discussed, involving the amalgamation of complete
graphs, generalized wheel graphs, and a special class of sequential join of graphs.
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1. Introduction

In 2008, Chartrand et al. introduced rainbow colorings, as a way to strengthen connectedness.
A coloring on a graph G refers to any map v : E(G) — {1,...,k}, which is also called edge-

coloring or k-coloring. We write z—y to say xy € F(G) and v(xy) = i. A path is called rainbow
if all of its edges have different color. A coloring is called rainbow if any two vertices can be
connected by a rainbow path. A trivial way to produce a rainbow coloring on any connected graph
is using | E/(G)| colors to give each individual edge its own color. This may not be efficient. For
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example, two colors are enough to rainbow-color Cy (put 1 and 2 alternately). The smallest k for
which there is a rainbow k-coloring on G is called the rainbow connection number of GG, denoted
re(G). A coloring is called strong rainbow if any two vertices can be connected by a rainbow
geodesic. The smallest k£ for which there is a strong rainbow k-coloring on G is called the strong
rainbow connection number of G, denoted src(G). Chartrand et al. [1] noted the following chain.

diam(G) < re(GQ) < sre(G) < |E(G)| (1.1)

Li and Sun [5] tightened the upper bound to src¢(G) < |E(G)|— 2t, where ¢ is the number of edge-
disjoint triangles. Schiermeyer [7] improved the lower bound to 7¢(G) > max{diam(G),n,(G)}
where n; is the number of vertices of degree one. The reader is referred to [6] for a detailed survey.

In this paper, we prove some lower bounds based on the presence of sets with common neigh-
bours. For a non-empty Q C V(G), its common neighborhood is denoted

CN(Q) = (N(v) (12)
vEQR

A new graph Q* (called the CN-graph of Q) is defined with V(Q*) = @ such that v,w € @ are
adjacent in Q* if and only if they are already adjacent in G, or CN (v, w) # C'N(Q). In Section
2.1 we prove that if CN(Q) # () then

Q| }ICN<Q)I (13)

w(Q*)

where [ is the vertex-independence number, and w is the clique number. These parameters are
described e.g. in [4]. We also prove a version of (1.3) for multiple sets. In Section 2.2 we prove
similar bounds for rc. In Section 2.3 we discuss some miscellaneous bounds that will be useful
in our discussion of tight examples involving the amalgamation of complete graphs, generalized
wheel graphs, and a class of sequential join.

We use color codes. This notion was used in [1] as a tool to study the rc and src of complete bi-
partite graphs. Now we adapt it to any connected graph. Given a coloring v : E(G) — {1,...,k}
(not necessarily rainbow) and a non-empty set ) C V' (G) with non-empty common neighborhood
CN(Q) = {t1,...,tp}, we define the color code of a vertex v € () as follows,

5re(G) > max {Bo(Q*),

code(v) = (y(vt1),7(vta), -, y(vty)) (1.4)
The tuple code(v) depends on the set () that we consider v a member of, as illustrated in Figure 1.
For accuracy, we also refer to the tuple (y(vty),y(vts),- - ,v(vty)) as the code of v with respect

to {t1,...,t}. Let code(Q) = {code(v)|v € Q}. Since every code is a b-tuple, we have

|code(Q)| < K (1.5)

Lemma 1.1. Let 7y be a coloring on G, and Q C V(G) with CN(Q) # 0. Then there is a rainbow
geodesic between two non-adjacent vertices in Q* if and only if their color codes are different.

2



Color code techniques in rainbow connection | F Septyanto, K. A. Sugeng.

Figure 1. If we consider a € {a, d}, code(a) is a 3-tuple. It is a 2-tuple if we consider a € {a,d, f}.

Proof. Letv,w € Q butvw ¢ E(Q*). Any v—w geodesic has the form v—t—w with t € CN(Q).
So there is a rainbow v—w geodesic if and only if there is a t € C'N(Q) with y(vt) # y(wt). O

A set is called co-neighboring if any two of its vertices have precisely the same (non-empty)
neighborhood. An independent set has any two of its vertices non-adjacent.

Lemma 1.2. Let 7y be a coloring on G, QQ C V(G) co-neighboring, and C N(Q) independent. If
v, w € Q and code(v) = code(w), then the length of any rainbow path between them is at least 4.

Proof. Since () is co-neighboring, vw ¢ G and N(v) = N(w) = CN(Q). So vw ¢ E(Q*). By

Lemma 1.1 there are no rainbow v—w geodesics. Let L : v—z— - - - —y—w be a rainbow path with
x € N(v)andy € N(w). Then z,y € CN(Q) and x # y (since L is not geodesic). So, the length
of Lis at least 2 + dg(x,y) > 4 because x, y are non-adjacent. O

Lemma 1.3. Let v be a coloring on G, and QQ C V(G) with CN(Q) # 0. If

|code(Q)| < max {50(62*): w|(§2|*)} ; (1.6)

then there are non-adjacent vertices in (Q* with the same color code.

Proof. Letb = |CN(Q)|. If |code(Q)| < Bo(Q*), let X C @ be an independent set in * with
| X | = Bo(QF); since | X | > |code(Q)]|, some two v, w € X have the same code.
If |code(Q)] < %, then |code(Q)|w(Q*) < |@] so at least w(Q)*) + 1 vertices in ) have the

*

same code; if X is a set of such vertices, then some v, w € X are non-adjacent in ()*. L]

Later we deal with multiple subsets. The problem is how to compare the codes in different
subsets. Let us call two disjoint sets ()1, Q2 C V(G) CN-bridged if for every v € ()1 and w € Q)2
we have v and w non-adjacent in (G, and any geodesic between them has the form v—x— - - - —y—w
withz € CN(Q,) and y € CN(Q2). A diagonal tuple has the form (7,4, ..., 7).

Lemma 1.4. Let Q1,...,Q, C V(G), p > 2, and v be a k-coloring on G. If r € N satisfies

r<k</} ]1) (7"— 1+;max{ﬁo(62;*), %}) (1.7)

then one of the following holds :




Color code techniques in rainbow connection | F Septyanto, K. A. Sugeng.

(1) Forsomei € {1,...,p}, there are non-adjacent vertices in Q)} with the same code.
(2) Forsomei,j € {1,...,p} withi # j, there is a diagonal tuple in code((Q);) N code(Q);).

Proof. Suppose (1) fails to hold. Let A and B be the set of diagonal and non-diagonal tuples

respectively. Then |A| = k and |B| = k® — k. We need to show code(Q;) N code(Q;) N A # () for
some ¢ # j. Assuming otherwise, for all 7 # 7 we have

0 = |code(Q);) Ncode(Q;) N Al > |code(Q

> |code(

= |code(

i) NA| + |code(Q;) N A| — |A|

i) = |B| + |code(Q;)| — | B — [A]
i)| + [code(Q;)] — 2k" + k
(

$0 2k? — k > |code(Q;)| + |code(Q;)|. Summed up, (7) (2k° — k) > (p—1) >_7_, |code(Q;)] hence

Q
Q

1 & k_r
Kb — = de(Q)| > = > = 1.8
2 leode(@)] 2 5 2 5 (18)
Since (1) fails, we have |code(Q;)| > max {BO(Qf), |(Q|)} for 1 <7 < pby Lemma 1.3. So
r 1< 1< Qi r—1
—<kb-—Z code(Q;)| <k’ — = max{ﬁ Q7), : }S (1.9
Nk T
This contradicts p > 2. L]
2. Main Results
2.1. Lower bounds for src
Theorem 2.1. Let G be a connected graph and QQ C V(G) with CN(Q) # 0. Then
1
src(G) > max{ﬁo(Q*); il }lCN(Q)l (2.1)
w(Q*)
Proof. Let b = |[CN(Q)|. Suppose sre(G) < k, where k = [\b/max {BO(Q*), lg)}—‘ — 1.
Under a strong rainbow k-coloring on G, we have |code(Q)| < kb < max { Bo(Q*), ‘(Zl) } So
Lemma 1.3 applies, and we get a contradiction with Lemma 1.1. 0
If we have several subsets Q1,...,Q, € V(G), then an application of Theorem 2.1 to each
individual set gives p lower bounds, which can be averaged to
sre(G) > lzp: ’ max{ﬁo(Qf), M} (2.2)
P w(Q7)

The following is a better bound that incorporates all the subsets simultaneously, under the addi-
tional assumption that the sets are pairwise CN-bridged. Moreover, the bound can also make use
of a previously known lower bound for src, to possibly improve it to a sharper bound.
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Theorem 2.2. Let G be a connected graph, p > 2, and Q1,...,Q, C V(G) be pairwise CN-
bridged sets with |[CN (Q;)| = b > 0for 1 <i < p. If src(G) > r for some r € N, then

sre(G) > 1+ |} ]19 (r -1+ ;max{ﬁo(Qj), J(LQZJ*)}) . (2.3)

Proof. Suppose src(G) < k, where k is the right hand side minus 1. Let 7 be a strong rainbow
k-coloring on (G. Note that (1.7) holds, so one of the options (1) or (2) in Lemma 1.4 holds. If
(1) holds, Lemma 1.1 is contradicted. So (2) holds. Let v € ); and w € (); have the same
diagonal tuple as their code. By CN-bridging, any v—w geodesic has the form v—x— - - - —y—w
withz € CN(Q;) and y € CN(Q2). But v(vz) = y(wy), so this geodesic is not rainbow. O

Remark 2.1. With r = 1 the bound is already stronger than (2.2). This is because of 1 + |z | > =
and Jensen’s inequality for the concave function f(z) = /z onz > 0.

2.2. Lower bounds for rc

We consider analogous version of the previous bounds for rainbow connection number.

Theorem 2.3. Let G be a connected graph and Q C V(G) a co-neighboring set, with C N (Q)
independent. Then

re(G) > min {4, Q| \CNl(QN } . (2.4)

Proof. Letb = |CN(Q)|. Suppose rc¢(G) < k, where k = min{3, [{/|Q| | — 1}. Then there is a
rainbow k-coloring v on G. Since |code(Q)| < kb < |Q|, some two v, w € @ have the same code.
This contradicts Lemma 1.2, since & < 3. O

Two sets 01, ()2 are called adjacent if some vertex in () is adjacent to some vertex in ().

Theorem 2.4. Let G be a connected graph, p > 2, and Q1, ...,Q, C V(G) be co-neighboring
pairwise non-adjacent sets, with |CN(Q;)| = b > 0 and CN(Q;) independent for 1 < i < p. Let
re(G) > r for some r € N. Then

P
re(G) >minq 4, 1+ |/ % (T -1+ Z |Q,|) : (2.5)
i=1

Proof. Suppose rc(G) < k, where is the right hand side minus 1. Let y be a rainbow k-coloring on
(. Note that (1.7) holds, so one of the options (1) or (2) in Lemma 1.4 holds. If (1) holds, Lemma
1.2 is contradicted because £ < 3. So (2) holds. Let v € (); and w € (); have the same diagonal

tuple as their code, with ¢ # j. In any path v—x— - - - —y—w, we have x € N(v) = CN(Q;) and
y € N(w) = CN(Q);) since @); and (); are co-neighboring sets. Since v, w are non-adjacent, the
length of this path is at least two. But y(vz) = u = y(wy), so the path is not rainbow. O
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2.3. Miscellaneous Bounds

Now we prove some additional bounds that will be useful in our discussion in Section 3. We
call G an s-strong graph if GG is connected and every rainbow s-coloring on G is strong rainbow.
For example, any connected graph is 1-strong, and any tree is s-strong for every s € N.

Theorem 2.5. Let G be an s-strong graph. Then
re(G) > min{s + 1, src(G)} (2.6)
with equality if and only if rc¢(G) < s+ 1.

Proof. Suppose r¢(G) < k, where k = min{s, src¢(G) — 1}. Then there is a rainbow k-coloring
on G. Since k < s, 7y is a strong rainbow coloring. This contradicts k < src(G).

If equality occurs, then 7¢(G) = min{s + 1, sr¢(G)} < s+ 1. Conversely, if r¢(G) < s + 1,
since 7c(G) < sre(G) then we have re(G) < min{s + 1, sre(G)}, so equality occurs. O

Later we need 2-strong and 3-strong graphs.
Theorem 2.6. Any connected graph is 2-strong. Therefore,
re(G) > min{3, sre(G)} (2.7)
for any connected graph G, with equality if and only if rc¢(G) < 3.

Proof. Any path of length two between non-adjacent vertices must be a geodesic. So, any rainbow
2-coloring is strong rainbow. [

Theorem 2.7. Any connected (Cs, Cs)-free graph is 3-strong. Therefore, if G is connected and
(Cs, C5)-free (for example when G is bipartite) then

re(G) > min{4, sre(G)} (2.8)
with equality if and only if rc(G) < 4.

Proof. Suppose there is a rainbow 3-coloring on G that is not strong rainbow. Let v,w € V(G)
be non-adjacent vertices without any rainbow geodesics. Let L be a rainbow v—w path. If the
length of L is two or dg(v,w) = 3, then L will be a geodesic. So the length of L is three and
dg(v,w) = 2. Suppose L : v—x1—xo—w, and let v—x3—w be a geodesic. If x3 € {1, 22}, then
G contains a Cs. If x3 & {z1, 2}, then G contains a Cs. o

3. Tight Examples

3.1. Amalgamation of Complete Graphs
Our first example is one in which the 3, lower bound in Theorem 2.1 is stronger than the w
lower bound. The amalgamation of (disjoint) complete graphs K,,,, ..., K,,,, denoted

Amal(Kp,, ..., Km,) 3.1)

is a new graph obtained by choosing one vertex from each k&, and identifying those vertices as a
single vertex (called the central vertex). The rainbow connection number of Amal(K,,,, ..., K,,)
when m; = --- = m; > 3 was studied by Fitriani and Salman [2]. Now we settle the general case.

6
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Theorem 3.1. Ifmy,...,my,t > 2 and u is the number of i € {1,. ..t} with m; = 2, then
(1) sre(Amal(Kyy, ..., Kp,)) = t.

2, ift=2,

2 Amal(K,,,, ..., Kp,)) =
(2) re(Amal( ) {max{B,u} otherwise.

Proof. Let G = Amal(K,,,, ..., K, ). Note that

t
G = (U Km”) + K. (3.2)

=1

Let A = |J._, Kn,1 and Q = V(A). Then 5,(Q*) = t and w(Q*) = max{my,...,m;}, so
by Theorem 2.1 we have src(G) > t. A strong rainbow ¢-coloring is easily obtained by giving
v(e) =iife € K,,.

It remains to compute the rc. Since G is not complete, rc(G) > 2. If t = 2, then re(G) <
sre(G) =t =2.Now lett > 3. If u = ¢, then G is atree and r¢(G) = |E(G)| = v = max{3, u}.

Now let ¢ > 3 and u < t. By Theorem 2.6, r¢(G)) > min{3,¢} = 3. By Schiermeyer’s lower
bound, r¢(G) > ny(G) = u. So re(G) > max{3,u}. A rainbow max{3,u}-coloring on G can
be produced as follows. First, give all u vertices of degree 1 in GG different colors. Put the color 3
on all edges in K,,,,_; with m; > 3. For each 7 with m; > 3, assign color 1 to half the edges from
K,,,—1 to K, and assign color 2 on the remaining edges from K,,,_; to K;. This way, any two
vertices in A can be connected by a 1-2 path or a 1-3-2 path. [

3.2. Generalized Wheel Graphs

This is an example in which the w lower bound in Theorem 2.1 is sharper than S,. The join of
a cycle with any graph, i.e. C,, + H, is called the generalized wheel graphs. This class of graph
has been studied under various labelling schemes [3]. Now we consider the rc and src.

Theorem 3.2. Let n > 3 and H be any graph. Then
(1) re(Cp + H) = min{3, sre(C,, + H) }.
Q) If|V(H)| < [2], then sre(C,, + H) = [(g)ﬁmq

Proof. (1) First, note that a rainbow 3-coloring on G = C,, + H can be produced as follows. Put
the color 3 on all edges in C,,. Let the cycle be v{—vy— - - - —v,—v; be in this order. If 7 is odd,
assign color 1 to all v;—H edges. If 7 is even, assign color 2 to all v;—H edges. In this way, any
two vertices in [ can be connected by a 1-3-2 path, and any two non-adjacent vertices in (), can
be connected by a 1-2 path or 1-3-2 path. Hence r¢(G) < 3. So by Theorem 2.6 we have (1).

() LetQ =V(C,),b=|V(H)|,and k = [%]. Then Q* = C2. If n = 3 then |V (H)| = 1 and
G = K,. Now let n > 4, so G is not complete and src(G) > 2. The following claim simplifies
our computation.

Claim: [{/% ] = [VET.
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Since % < k, we have R’/gw < [V/k]. On the other hand, from [\b/gw > {/% we have R)/?V >
2 and so H/gwb > k. Thus [/ ] > vk, hence R’/?W > [V/k]. The Claim is proved.

If4 <n <6, thenk = 2and |V(H)| € {1,2}, so [v/k] = 2 and in this case src(G) = 2.

Now let n > 7. It is not hard to see that 3,(C) = %] and w(C};) = 3. So by Theorem 2.1 we

have src(G) > [3/5 | = [v/k 7. For the upper bound, we quote Theorem 2.3 in [8] stating that

w H (3.3)

where i(A) is the independent domination number of A, which is the smallest cardinality of a set
of independent (pairwise non-adjacent) vertices that are also dominating (i.e. any other vertex is
adjacent with at least one of them). We apply this with A = C,, and B = H. The following figure
shows that i(C,,) < k. O

sre(A+ B) < max { A(A), [@(A)ﬁ 1. [Ivim)

3k —5

n = 0(mod 3) n = 1(mod 3) n = 2(mod 3)

Figure 2. The marked vertices form an independent dominating set of cardinality k.

Remark 3.1. Regardless of the structure of H, we have r¢(C,, + H) = 3 when n is sufficiently
large, specifically when 2 > 2|V,

3.3. Sequential Join

This example shows the tightness of Theorem 2.2, and some further use of color codes. The
sequential join of disjoint graphs G+, ..., G, denoted G; + G5 + - - - + G is defined as the union
(G1 + G2) U---U (Gy—1 + Gy) of graph joins (see e.g. [3]). We focus on a sequential join of the
form mK; 4+ bKy + Ky + mK;. When b = 1 the graph is a tree. So we assume b > 2.

Theorem 3.3. Let G,,,, = mK; +bK, +bK, +mKy, wherem > 1,b > 2. Let n = |\/m]. Then
(1) re(Gmp) = min{4, sre(Gp) }-
2) n+1 < sre(Gmp) <n—+3.
At least two of the values, namely n + 1 and n + 2, can be attained by the src. In fact,
@) Ifm <n®—n+ |2| (2" 1), then src(Gpyp) =n + 1.
(i) Ifm > min {(b—1)", (n+ 1)* — (n+ 1)}, then src(Gmyp) < n+ 2.
(i) If m > (n+1)" — 2, then src(Gpp) = n + 2.

8
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Proof. Note that n® < m < (n+ 1)°. Let Q; = {vy,...,v,} and Qo = {wy, ..., w,,} be the
vertex set of the left and right m K, with CN(Q1) = {t1,...,t} and CN(Q2) = {u1, ..., up}.

(1) Since G, is bipartite, by Theorem 2.7 it is enough to show r¢(G,,;) < 4. We construct a
rainbow 4-coloring 7y on G,, 5, as follows. Define y in such a way so that code(v;) = (1,2,2,...,2)
with respect to {t1,...,%,}, and code(w;) = (1,4,4,...,4) with respect to {uy,...,u}, for all
i € {1,...,m}. The middle part of G, i.e. the subgraph induced by CN(Q;) U CN(Q3), is
a complete bipartite graph bK; + 0K, = K;;, whose src is according to [1] equal to (\%} =2
(because 1 < b < 2° for b > 2). Put a rainbow 2-coloring on the middle part by using the colors 1
and 3. We modify the coloring in the middle part such that y(t1u1) = 1, y(tauy) = 2, y(taus) = 3,
and ~y(t1ue) = 4, without destroying rainbow connectivity. Now we prove that 7 is rainbow. Let
z,y € V(G,p) be non-adjacent.

Case I: x,y € Q1 (or by symmetry z,y € ()s).
The path mitlimitgzy is rainbow.

Case 2: x € Q1 and y € CN(Q2) (or by symmetry x € CN(Q) and y € @)»).
The path :cztgiuinliul 1s rainbow, and so is xztg—ui fori € {2,...,b}.

Case 3: x,y € CN(Q1) (or by symmetry z,y € CN(Q2)).
By construction, there is a rainbow path from z to y.

Case4: v € )y and y € Qs
The path l’ztg iuQ iy is rainbow. This completes the proof of (1).

To prove (2) and the remaining statements, we need the following claim.
Claim: Let ¢ € N satisfy m < ¢® — ¢+ | £] (2° — 1). Then src(Gynp) < ¢+ d, where
. 1, ifmZ‘Cb—COI‘CZb, (3.4)
2, otherwise.

We prove this by constructing a strong rainbow (c + d)-coloring v on G, 5. Let m’ > m be
suchthat ® —c+ [§] <m' < —c+ |£] (2° — 1). Construct H = Gy, from G, ;, by adding
new vertices, extending @); into @} for all i € {1, 2}. First, we define y as a coloring on H. Later,
we will erase the new vertices and restrict 7y to Gy, p.

We begin by coloring the middle part, i.e. bX; + b/, whose src is 2. If d = 2, put a strong
rainbow 2-coloring on this part with the colors c+1 and c¢+2. If d = 1, then we put y(t;u;) = c+1
instead for all 7, j € {1, 2}.

Now we color the left wing. Including v, choose any ¢ — ¢ vertices in Q') to form a set Q1.
The edges adjacent to ()1, are colored in such a way so that, with respect to {t1,...,%,}, the set
code(Q)11) consists of all non-diagonal b-tuples with entries from {1, ..., c}. If ¢ > b, we also put
code(v1) = (1,2,3,...,b). Analogously, we form (Q5; C )} and put the coloring in the same way.

Next, for each i € {1,2}, choose any || vertices from Q\@;; and let them form a set Q;o.
Put the coloring on edges adjacent to ;> so that code((Q)12) and code(()22) are disjoint and their
union consists of all diagonal tuples with entries taken from {1,...,2 [£]} € {1,...,c}.
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Finally, for each i € {1,2}, let Q;3 = Q;\(Qi1 U Qs2). If Q;3 = () we are done. Otherwise,
put the coloring on edges incident to ;3 in a way so that code(();3) consists of permutations of
(a,a,...,a,c+1,c+1,...,c+1),wherea € {1,...,c} with (a,q,...,a) € code(Q;2) is repeated
Jj times, for some j € {1,...,b}. The number of such a tuple (a;, as, ..., ap) is precisely

b—1
c b c
- = =] (2°-2). .
2 () -
]_
The condition m’ < ¢® — ¢+ [£] (2° — 1) implies that

C Cc

Qi = m' — (|Qu]| + |Qia]) =m0/ — & + ¢ — bJ < bJ (20— 2) (3.6)

Therefore, all vertices of ;3 can be allocated such tuples.
After erasing all the new vertices, we end the definition of 7. Now we prove that v is strong
rainbow. Let ,y € V(G,, ;) be non-adjacent.

Case I: x,y € Q1 orx,y € Q2
For each ¢ € {1, 2}, all vertices in ); have distinct codes. We are done by Lemma 1.1.

Case 2: x € )y and y € CN(Q2) (or by symmetry z € CN(Q1) and y € Qs).
There is i € {1,...,b} such that y(zt;) < c¢. Then z—t;—y is a rainbow geodesic.

Case 3: x,y € CN(Q1) (or by symmetry z,y € CN(Q2)).
Sayx =t;andy =t; with1 <14 < 5 <b.

Subcase 3.1: m > ¢’ — c.
In this subcase the set code(()11) contains all off-diagonal tuples with entries from {1,...,c}, so
there is v € ()17 such that the :’th component of code(v) is different than the j’th component. Then
r—v—7y 1s a rainbow geodesic.

Subcase 3.2: ¢ > b.
In this subcase code(vy) = (1,2, ...,b), so z—v; -y is a rainbow geodesic.

Subcase 3.3: d = 2.
In this subcase there is a rainbow geodesic between = and y in the middle part (bK; + bK}).

In the remaining cases we consider x € (), and y € ()s.

Case4: x € Q11 and y € Q1.
If code(x) with respect to {t1,...,%,} is equal to code(y) with respect to {us, ..., u,}, choose
i,j € {1,...,b} with i # j and (zt;) # v(xt;) = v(yu;). Then the geodesic z—t;—u;—y is
rainbow. Now suppose that code(x) # code(y), say they differ at the i’th component. Then the
geodesic z—t;—u;—y is rainbow.

Case 5: x € Q11 and y € Q22 U Qo3 (or by symmetry, x € Q12 U Q13 and y € Qa1).
There is j € {1,...,b} with y(yu;) < c. Since code(z) is non-diagonal, there is i € {1,...,b}
with y(zt;) # v(yu;). Then the geodesic x—t;—u;—y is rainbow.

Case 6: v € Q1 and y € Q9.

Since code(Q12) N code(Q22) = B, code(x) and code(y) are distinct diagonal tuples with entries
from {1, ..., c}. So the geodesic z—t;—uj—y is rainbow.
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Case 7: x € Q12 and y € Qo3 (or by symmetry, z € ()13 and y € Q22).
Let code(x) = (a,a,...,a) and code(y) = (wq,...,wp). Leti € {1,...,b} be such that
(wi, wi, - .., w;) € code(Qaa). Then a # w; since code(Q12) N code(Qq2) = 0, so the geodesic
xitl—ui%y 1s rainbow.

Case 8: v € Q3 and y € (Qa3.
Let code(x) = (v1,...,v) and code(y) = (wy,...,wy). Leti,j € {1,...,b} be such that
(Vi V4, ..., v;) € code(Qq2) and (w;, wy, ..., w;j) € code(Qa2). Then v; # w; since code(RQ12) N

code(RQ22) = ), so the geodesic xﬁti—ujlijy is rainbow. This completes the proof of the Claim.

(2) From Theorem 2.1 with Q = @1 U {u1}, we have src(Gpp) > vVm + 1 > n. So we get
the lower bound sr¢(G,, ;) > n+ 1. Let ¢ = n + 1. Note that %] (28 — 1) > 3 | 28| > n+ 1.
Soc® —c+ [£](2"—1) > = (n+1)" > m, and the Claim gives src(Gy,p) < c+2=n+ 3.

() If m < nP—n+| %] (2°—1), use the Claim with ¢ = nand d = 1 to obtain sr¢(G ) < n+1.
This and the lower bound src(G,,,) > n + 1 prove (i).

(ii) If m > min {(b — 1)°, (n + 1)® — (n + 1)}, then the Claim with ¢ = n+1 and d = 1 gives
srce(Gmp) <n+ 2.

(iii) Now suppose m > (n + 1) — Z. Then m > (n + 1)’ — (n + 1), so by (ii) we have
src(Gump) < n+2. Next we use Theorem 2.2 with () and (), with the initial estimate src(Gyy, ) >

n+ 1toobtain src(Gpp) > 14+ [¢/m+ 2] > 1+ [/ (n+1)°] =n+2. O

Remark 3.2. As a result, we have rc¢(G,,) = 4 when m is sufficiently large compared to b,
specifically when m > 3°.

When b = 2, we have a complete solution for the rc.

3, ifl<m<5H

Theorem 3.4. rc(G,,2) = ;
’ 4, ifm > 6.

Proof. We continue to use the same notation as in the proof of previous theorem. If 1 < m < 3,
then by Theorem 3.3(2) we have rc(G,,2) < src(Gma) < [vV/m] +2 = 3. If 4 < m < 5, then
Theorem 3.3(1) gives rc(Gp,2) < sre(Gp2) = [v/m| +1 = 3. Now let m > 6 and suppose
rc(Gpm2) < 3. Then there is a rainbow 3-coloring v on G, 5.

Claim 1: For any ¢ € {1,2}, all vertices in code(®;) U {u;} have different codes with respect to
{t1,t2}. Also, all vertices in code((Q)2) U {t;} have different codes with respect to {s1, s2}.

A path between vertices in ()1 U {u; } not passing through ¢; or ¢, has length at least 4. So, any
rainbow path between vertices in ()1 U {u;} must be of the form z—¢;—y. This proves Claim 1.
Claim 2: There is at least one diagonal tuple in code(()), and at least one in code(Qs).

Assume otherwise. Suppose code(Q)7) has no diagonal tuple. Since there are only six non-
diagonal tuples, we have m = 6 and code(Q,) = {(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)}. By
Claim 1, the codes of u; and uy with respect to {¢1, t2} are both diagonal. If code(u,) # code(us),
say code(u;) = (1,1) and code(us) = (2,2), then there are no rainbow path from the vertex in
(@1 with code (1,2) to any vertex in (J5. Now suppose code(u;) = code(us), say (1,1). There
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is some x € y with code(z) € {(1,2),(1,3),(2,1),(3,1)}, because otherwise code(Qs) C
{(1,1),(2,2),(3,3),(2,3),(3,2)}. Lety € Q2 with code(y) = code(x). Then there are no rain-
bow paths between x and y. The proof of Claim 2 is complete.

Claim 3: There is at most one diagonal tuple in code((Q)1), and at most one in code(Q)s).

Assume otherwise. WLOG, let a,b € Q; with code(a) = (1, 1) and code(b) = (2, 2). If there
is some ¢ € Qo with code(c) € {(1,1),(2,2)}, then there are no rainbow paths between ¢ and a,
or between ¢ and b. So code(Q2) C {(3,3),(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)}.

Case 1: (3,3) € code(()s).
Suppose ¢ € Q2 with code(c) = (3,3). There is a rainbow path from «a to ¢, so y(t;u;) = 2 for
some i, j € {1,2}. By symmetry, we may assume y(t;u;) = 2. Consider code(u;) = (2,v(uitz))
with respect to {t1,t2}. By Claim 1, code(u;) & code(Q1). So code(ur) # (2,2).

Subcase 1.1: code(u,) = (2,1).
Since |code(@Q2)\{(3,3)}| > 5, at least one of (1,2) or (2,1) is in code(Qs). If x € Q2 with
code(x) = (1,2), then there are no rainbow path from x to b. If z € @y with code(z) = (2,1),
then there are no rainbow path from x to a.

Subcase 1.2: code(u,) = (2, 3).
There is a rainbow path from c to b, so either y(uat1) = 1 or y(ugts) = 1.

Subsubcase 1.2.1: y(usty) = 1.
Since |code(@Q2)\{(3,3)}| > 5, at least one of (1,2) or (2,1) is in code(Q2). If z € Q2 with
code(x) = (1,2), then because there is a rainbow path from x to a, we must have y(tous) = 3.
If © € () with code(z) = (2, 1), then because there is a rainbow path from z to b, we must have
v(tauz) = 3. In either case, code(t2) = (3, 3) with respect to {uy, us}, contradicting Claim 1.

Subsubcase 1.2.2: y(uqty) = 1.
Now code(ts) = (3,1) with respect to {uy, us}, so by Claim 1 and |code(Q2)\{(3,3)}| > 5 we
must have code(Q2) = {(3,3),(1,2),(2,1),(1,3),(2,3),(3,2)}. Let z € @y with code(x) =
(1, 3). There must be a rainbow path from x to a, so y(ust;) = 2. Then there are no rainbow paths
from a to the vertex in ()2 whose code is (1, 2).

Case 2: (3,3) ¢ code(Q)3).
Since m > 6, in this case code(Q2) = {(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)}. Let x € Q2 with
code(z) = (1, 3). There must be a rainbow path from z to a, so either y(uqt;) = 2 or y(uasts) = 2.
By symmetry, we may assume 7 (ustz) = 2. By Claim 1, code(ts) with respect to {uy, us} cannot
be an non-diagonal tuple, so code(ts) = (2, 2).

Now let y € Q2 with code(y) = (2, 1). There must be a rainbow path from y to b, so y(ust;) =
3. Because code(t;) with respect to {u;,us} cannot be an non-diagonal tuple, we must have
code(t1) = (3, 3). Then there are no rainbow paths from b to the vertex in (), whose code is (3,2).
This completes the proof of Claim 3.

Now, by Claim 2 and Claim 3, there is exactly one diagonal tuple in code((), ), and similarly in
code(Q)2). By Claim 1, this forces m < 7, each of code(();) and code(Q)2) can only miss at most
one non-diagonal tuple, and at most one non-diagonal tuple can occur as code(uy) or code(us).

WLOG, let us assume (1,1) € code(Q1), say x € () with code(z) = (1,1). If none of
code(uy ), code(uz) is equal to (2,2) or (3,3), then code(u;) = code(us) = (a,b) with a # b.
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But then code(t1) = (a,a) and code(ty) = (b,b). Therefore, exchanging the role of (); and Q) if
necessary, we may assume without loss of generality that (1, 1) € code(Q1) and code(u1) = (2, 2).
If (2,1) € code(Q-), then there are no rainbow paths from z to the vertex in (), whose code
is (2,1). So (2,1) ¢& code(Q)2). Hence, all non-diagonal tuples except (2,1) are in code(Q2). In
particular, there is some y € Q2 with code(y) = (1,2).
Because there is a rainbow path from z to y, we must have y(t,uy) = 3 or y(tauz) = 3. So
either code(t;) = (2, 3) or code(ts) = (2, 3), contradicting Claim 1 since (2, 3) € code(Q2). O
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