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1. Introduction

The concept of a perfect m-coloring plays an important role in graph theory, algebraic combi-
natorics, and coding theory (completely regular codes). There is another term for this concept in
the literature as ”equitable partition” (see[8] ).
The existence of completely regular codes in graphs is a historical problem in mathematics. Com-
pletely regular codes are a generalization of perfect codes. In 1973, Delsarte conjectured the non-
existence of nontrivial perfect codes in Johnson graphs. Therefore, some effort has been done on
enumerating the parameter matrices of some Johnson graphs, including J(4, 2), J(5, 2), J(6, 2),
J(6, 3), J(7, 3), J(8, 3), J(8, 4), and J(v, 3) (v odd) (see [1, 2, 3, 7]).
Fon-Der-Flass enumerated the parameter matrices (perfect 2-colorings) of n-dimensional hyper-
cube Qn for n < 24. He also obtained some constructions and a necessary condition for the exis-
tence of perfect 2-colorings of the n-dimensional cube with a given parameter matrix (see [4, 5, 6]).
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2. Definition and Concepts

In this section, we give some basic definitions and concepts. In this paper all garaphs are
assumed simple, connected and undirected. Let G = (V,E) be an undirected graph. Two vertices
u, v ∈ V (G) are adjacent if there exists an edge e = {u, v} ∈ E(G) to which they are both
incident. The adjacent will be shown u ↔ v.

a cubic graph is a 3-regular graph. In [11], it is shown that the number of connected cubic
graphs with 10 vertices is 19. Each graph is described by a drawing as shown in Figure 1.

Figure 1. Connected cubic graphs of order 10

Definition 2.1. For a graph G and an integer m, a mapping T : V (G) → {1, · · · ,m} is called
a perfect m-coloring with matrix A = (aij)i,j∈{1,··· ,m}, if it is surjective, and for all i, j, for every
vertex of color i, the number of its neighbors of color j is equal to aij . The matrix A is called the
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parameter matrix of a perfect coloring. In the case m = 3, we call the first color white, the second
color black, and the third color red. In this paper, we generally show a parameter matrix by

A =

a b c
d e f
g h i

 .

Remark 2.2. In this paper, we consider all perfect 3-colorings, up to renaming the colors; i.e, we
identify the perfect 3-coloring with the matricesa c b

g i h
d f e

 ,

e d f
b a c
h g i

 ,e f d
h i g
b c a

 ,

 i h g
f e d
c b a

 ,

 i g h
c a b
f d e

 ,

obtained by switching the colors with the original coloring.

3. Preliminaries and Analysis

In this section, we present some results concerning necessary conditions for the existence of
perfect 3-colorings of a cubic connected graph of order 10 with a given parameter matrix A =a b c
d e f
g h i

.

The simplest necessary condition for the existence of perfect 3-colorings of a cubic connected

graph with the matrix

a b c
d e f
g h i

 is

a+ b+ c = d+ e+ f = g + h+ i = 3.

Also, it is clear that we cannot have b = c = 0, d = f = 0, or g = h = 0, since the graph is
connected. In addition, b = 0, c = 0, f = 0 if d = 0, g = 0, h = 0, respectively.
The next proposition gives a formula for calculating the number of white, black and red vertices,
in a perfect 3-coloring.

Lemma 3.1. [10] If T is a perfect coloring of a graph G in m colors, then any eigenvalue of T is
an eigenvalue of G.

Proposition 3.1. Let T be a perfect 3-coloring of a graph G with the matrix A =

a b c
d e f
g h i

.
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1. If b, c, f ̸= 0, then

|W | = |V (G)|
b

d
+ 1 +

c

g

, |B| = |V (G)|
d

b
+ 1 +

f

h

, |R| = |V (G)|
h

f
+ 1 +

g

c

.

2. If b = 0, then

|W | = |V (G)|
c

g
+ 1 +

ch

fg

, |B| = |V (G)|
f

h
+ 1 +

fg

ch

, |R| = |V (G)|
h

f
+ 1 +

g

c

.

3. If c = 0, then

|W | = |V (G)|
b

d
+ 1 +

bf

dh

, |B| = |V (G)|
d

b
+ 1 +

f

h

, |R| = |V (G)|
h

f
+ 1 +

dh

bf

.

4. If f = 0, then

|W | = |V (G)|
b

d
+ 1 +

c

g

, |B| = |V (G)|
d

b
+ 1 +

cd

bg

, |R| = |V (G)|
g

c
+ 1 +

bg

cd

.

Proof. (1): Consider the 3-partite graph obtained by removing the edges uv such that u and v are
the same color. By counting the number of edges between parts, we can easily obtain |W |b = |B|d,
|W |c = |R|g, and |B|f = |R|h. Now, we can conclude the desired result from |W |+ |B|+ |R| =
|V (G)|.
The proof of (2), (3), (4) is similar to (1).

In this section, without restriction of generality, we assume |W | ≤ |B| ≤ |R|.
In the next lemma, under the condition |W | = 1, we enumerate all matrices that can be a parameter
matrix for a cubic connected graph.

Lemma 3.2. Let G be a cubic connected graph. If T be a perfect 3-coloring with the matrix A,
and |W | = 1, then A should be one of the following matrices,

A1 =

0 3 0
1 1 1
0 1 2

 , A2 =

0 3 0
1 0 2
0 1 2

 , A3 =

0 3 0
1 0 2
0 2 1

 , A4 =

0 0 3
0 1 2
1 1 1

 ,

A5 =

0 0 3
0 0 3
1 1 1

 , A6 =

0 0 3
0 0 3
1 2 0

 , A7 =

0 1 2
1 1 1
1 1 1

 , A8 =

0 2 1
1 0 2
1 1 1

 ,

A9 =

0 1 2
1 2 0
1 0 2

 , A10 =

0 1 2
1 0 2
1 1 1

 , A11 =

0 1 2
1 0 2
1 2 0

 .
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Proof. Let A =

a b c
d e f
g h i

 be a parameter matrix with |W | = 1. Consider the white vertex. It is

clear that none of its adjacent vertices are white; i.e, a = 0. Therefore, we have two cases below.

(1) The adjacent vertices of the white vertex are the same color.
If they are black, then b = 3 and c = 0. From c = 0, we get g = 0. Also, since the graph is
connected, f, h ̸= 0. Hence, we obtain the following matrices:0 3 0

1 1 1
0 1 2

 ,

0 3 0
1 0 2
0 1 2

 ,

0 3 0
1 0 2
0 2 1

 ,

0 3 0
1 1 1
0 2 1

 ,

0 3 0
1 0 2
0 3 0

 ,

0 3 0
1 1 1
0 3 0

 .

If the adjacent vertices of the white vertex are red, then c = 3, b = 0. From b = 0, we
get d = 0. Also, since the graph is connected, f, h ̸= 0. Hence, we obtain the following
matrices:0 0 3

0 1 2
1 1 1

 ,

0 0 3
0 1 2
1 2 0

 ,

0 0 3
0 2 1
1 1 1

 ,

0 0 3
0 2 1
1 2 0

 ,

0 0 3
0 0 3
1 1 1

 ,

0 0 3
0 0 3
1 2 0

 .

Finally, by using Remark 2.2 and the fact that |W | ≤ |B| ≤ |R|, it is obvious that there are
only six matrices in (1), as shown A1, A2, A3, A4, A5, A6.

(2) The adjacent vertices of the white vertex are different colors.
It immediately gives that b, c ̸= 0. Also, it can be seen that d = g = 1. An easy computation,
As in (1), shows that there are only five matrices that can be a parameter matrix in this case,
as shown A7, A8, A9, A10, A11.

The next lemma is useful to obtain the other parameter metrices.

Lemma 3.3. Let G be a cubic connected graph of order 10. Then
1. If T is a perfect 3-coloring with the matrix A, and |W | = |B| = 2, |R| = 6, then A should

be one of the following matrices0 0 3
0 0 3
1 1 1

 ,

1 2 0
1 0 2
0 1 2

 ,

0 3 0
1 1 1
0 1 2

0 3 0
1 0 2
0 2 1

 .

2. If T is a perfect 3-coloring with the matrix A, and |W | = 2, |B| = 3, |R| = 5, then A should
be one of the following matrices1 0 2

0 1 2
1 1 1

 ,

0 0 3
0 0 3
2 1 0

 ,

0 0 3
0 0 3
1 2 0

 ,

0 3 0
1 0 2
0 1 2

2 1 0
2 0 1
0 3 0

 .

5



www.ejgta.org

perfect 3-colorings of the cubic graphs of order 10 | Mehdi Alaeiyan et al.

3. If T is a perfect 3-coloring with the matrix A, and |W | = 2, |B| = |R| = 4, then A should
be one of the following matrices2 0 1

0 1 2
1 1 1

 ,

1 0 2
0 2 1
1 1 1

 ,

1 0 2
0 1 2
2 1 0

 ,

1 0 2
0 1 2
1 2 0

 ,

1 2 0
1 1 1
0 1 2

 ,

2 1 0
1 1 1
0 2 1

 ,

1 2 0
2 0 1
0 2 1

 ,

1 2 0
1 0 2
0 2 1

 .

4. If T is a perfect 3-coloring with the matrix A, and |W | = 3, |B| = 3, |R| = 4, then A should
be one of the following matrices0 1 2

3 0 0
1 0 2

 ,

0 2 1
1 2 0
3 0 0

 ,

2 0 1
0 1 2
1 1 1

 ,

1 0 2
0 2 1
1 1 1

 ,

1 0 2
0 1 2
1 2 0

 ,

1 0 2
0 1 2
2 1 0

 ,

0 3 0
1 0 2
0 1 2

 ,

2 1 0
2 0 1
0 3 0

 .

Proof. (1): First, suppose that b, c ̸= 0. As |W | = 2, by Proposition 3.1, it follows that
b

d
+

c

g
= 4.

Therfore b = c = 2, d = g = 1 and we get a contradiction of b+ c ≤ 3.
Second, suppose that b = 0 and, in consequence, d = 0. As |R| = 4, by Proposition 3.1, we have

g

c
+

h

f
=

2

3
. Therefore c = f = 3, g = h = 1, and consequently A =

0 0 3
0 0 3
1 1 1

.

Finally, suppose that c = 0 and, in consequence, g = 0. As |B| = 2, by Proposition 3.1, it follows

that
d

b
+

f

h
= 4. Therefore b = f = 2, d = h = 1, or b = 3, d = f = h = 1 or b = 3,d = 1,

f = h = 2. Hence A =

1 2 0
1 0 2
0 1 2

, or A =

0 3 0
1 1 1
0 1 2

, or A =

0 3 0
1 0 2
0 2 1

.

The proof of (2), (3), (4) is similar to (1).

By using the Lemma 3.3 and Proposition 3.1, it can be seen that only the following matrices
can be parameter ones.0 0 3

0 0 3
1 1 1

 ,

1 0 2
0 2 1
1 1 1

 ,

1 0 2
0 1 2
1 2 0

 ,

1 2 0
1 1 1
0 1 2

 ,

1 2 0
1 0 2
0 2 1

 ,

0 3 0
1 0 2
0 1 2

 .

By Remark 2.2, it is clear that the matrix

1 0 2
0 2 1
1 1 1

 is the same as the matrix

1 2 0
1 1 1
0 1 2

 and the
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matrix

1 0 2
0 1 2
1 2 0

 is the same as the matrix

1 2 0
1 0 2
0 2 1

 up to renaming the colors. Therfore, if T

is a perfect 3-coloring with the matrix A , then A should be one of the following matrices

A1 =

0 0 3
0 0 3
1 1 1

 , A2 =

1 0 2
0 2 1
1 1 1

 , A3 =

1 0 2
0 1 2
1 2 0

 , A4 =

0 3 0
1 0 2
0 1 2

 .

The next theorem can be useful to find the eigenvalues of a parameter matrix.

Theorem 3.1. If A =

a b c
d e f
g h i

 be a parameter matrix of a k-regular graph, then the eigenvalues

of A are

λ1,2 =
trA− k

2
±

√(
trA− k

2

)2

− detA

k
, λ3 = k.

Proof. By using the condition a + b + c = d + e + f = g + h + i = k, it is clear that one of the
eigenvalues is k. Therefore detA = kλ1λ2. From λ2 = trA− λ1 − k, we get

detA = kλ1(trA− λ1 − k) = −kλ2
1 + k(trA− k)λ1.

By solving the equation λ2 + (k − trA)λ+
detA

k
= 0, we obtain

λ1,2 =
trA− k

2
±

√(
trA− k

2

)2

− detA

k
.

7



www.ejgta.org

perfect 3-colorings of the cubic graphs of order 10 | Mehdi Alaeiyan et al.

4. Main result

In this section we peresent the main theorem that shows the parameter matrices of all perfect
3-colorings of the cubic connected graphs of order 10.

Theorem 4.1. The parameter matrices of cubic graphs of order 10 are listed in the following table.

graphs matrix A1 matrix A2 matrixA3 matrix A4

1
√

×
√

×
2

√
×

√ √

3 × × × ×
4

√ √ √ √

5 × × × ×
6

√ √ √ √

7 × × × ×
8 × × × ×
9 × × × ×
10 × × × ×
11 × × × ×
12 × × × ×
13

√ √
×

√

14 × × ×
√

15 × × × ×
16 × × × ×
17 × × × ×
18 × ×

√ √

19 × ×
√ √

Table 1

Proof. As it shown in section 3, only matrices A1 , A2, A3 and A4 can be parameter matrices.
By using Theorem 3.1 we see that the connected cubic graphs with 10 vertices can have perfect
3-coloring with matrices A1, A2, A3 and A4 shown in the following table

graphs matrix A1 matrix A2 matrixA3 matrix A4

1
√ √ √ √

2
√ √ √ √

4
√ √

× ×
5

√ √ √ √

6
√ √ √ √

9
√ √ √ √

10
√ √ √ √

13 × ×
√ √

14 × ×
√ √

18
√ √ √ √

19 × ×
√ √
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Now we check which graphs have perfect 3-colorings with these matrices. The graph 1 has per-
fect 3-colorings with the matrices A1 and A3. The vertices of graph 1 are labeled clockwise with
a1, a2, ..., a10, respectively. Consider two mapping as follows,

T1(a1) = T1(a10) = 1, T1(a4) = T1(a7) = 2,
T1(a2) = T1(a3) = T1(a5) = T1(a6) = T1(a8) = T1(a9) = 3.
T2(a5) = T2(a6) = 1, T2(a2) = T2(a3) = T2(a8) = T2(a9) = 2,

T2(a1) = T2(a4) = T2(a7) = T2(a3) = 3,

it is clear that T1 and T2 are perfect 3-coloring with the matrices A1 and A3, respectively. Now we
show the graph 1 has no perfect 3-coloring with matrices A2 and A4.
According to the matrix A2, each vertex with white color has a neighbor with white color, so the
two vertices with white color are adjacent. In the case that a1 ↔ a2, a1 ↔ a3, a2 ↔ a4, a3 ↔ a4
and according to symmetry a7 ↔ a8, a7 ↔ a9, a8 ↔ a10 and a9 ↔ a10, they have Less than four
adjacent vertices, these vertices are red color, it causes contradiction. So a5 ↔ a6, a4 ↔ a5 and
its symmetric a6 ↔ a7 will be remain that are white color. In the case that a4 ↔ a5, the neighbors
of a4 and a5 are red color and vertex a1 that is their neighbor’s is also red color has two neighbors
with red color which it is not possible. If a5 and a6 are white color, adjacent vertices are red color
and other vertices are black color, so each black color is adjacent with another black color vertex,
that is a contradiction. So we conclude the graph 1 does not have a perfect 3-colring with matrix
A2.
According to the matrix A4, each vertex with white color has three adjacent with black color. If a1
is white color, then a2, a3, a5 are black color, which is a contradiction with second row of matrix
A4. If a2 is white color, then according to the matrix A4, a1, a3, a4 are black color, which is a
contradiction with second row of matrix A4. If a3 is white color, then according to the matrix A4,
a1, a2, a4 are black color, which is a contradiction with second row of matrix A4. If a4 is white
color, then according to the matrix A4, a2, a3, a5 are black color, which is a contradiction with
second row of matrix A4. If a5 is white color, then a3 is a vertex that is black color and has three
red color neighbors, which is a counteraction with second row of matrix A4. According to the
symmetric, vertices a6, a7, a8, a9, a10 can’t be white color. Therefore the graph 1 has no perfect
3-coloring with matrix A4.
As it is stated in the before paragraphs, the graph 1 has no perfect 3-coloring with matrices A2 and
A4.
Similary, we can prove the designed result.
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