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Abstract

A Moore (r, z, k)-mixed graph G has every vertex with undirected degree r, directed in- and out-
degree z, diameter k, and number of vertices (or order) attaining the corresponding Moore bound
M(r, z, k) for mixed graphs. In the case when the order of G is close to M(r, z, k) vertices, we
refer to it as an almost Moore graph. The first part of this paper is a survey about known Moore
(and almost Moore) general mixed graphs that turn out to be Cayley graphs. Then, in the second
part of the paper, we give new results on the bipartite case. First, we show that Moore bipartite
mixed graphs with diameter three are distance-regular, and their spectra are fully characterized.
In particular, an infinity family of Moore bipartite (1, z, 3)-mixed graphs is presented, which are
Cayley graphs of semidirect products of groups. Our study is based on the line digraph technique,
and on some results about when the line digraph of a Cayley digraph is again a Cayley digraph.
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Figure 1. The Bosák (3, 1)-graph with diameter k = 2 and N = 18 vertices.

1. Preliminaries

Mixed graphs can be suitable models for networks having both bidirectional and unidirectional
links. Thus, a mixed graph G = (V,E,A) has a set V = V (G) of vertices, a set E = E(G) of
edges, and a set A = A(G) of arcs or directed edges. For a given vertex u ∈ V , its undirected
degree r(u) is the number of edges incident to vertex u. Moreover, its out-degree z+(u) is the
number of arcs emanating from u, whereas its in-degree z−(u) is the number of arcs going to u.
If z+(u) = z−(u) = z and r(u) = r, for all u ∈ V , then G is said to be an (r, z)-regular mixed
graph or, simply, an (r, z)-mixed graph, with whole degree d = r + z.

The distance from vertex u to vertex v is denoted by dist(u, v). Notice that, when z 6= 0,
dist(u, v) is not necessarily equal to dist(v, u). If the mixed graph G has diameter k, its distance
matrix Ai, for i = 0, 1, . . . , k, has entries (Ai)uv = 1 if dist(u, v) = 1, and (Ai)uv = 0 otherwise.
So, A0 = I (the identity matrix) and A1 = A (the adjacency matrix of G).

The mixed graphs were first considered by Bosák [1] in the context of the degree/diameter
problem. Similarly, in the case of regular graphs or digraphs, the (r, z, k) problem for mixed
graphs consists of finding the largest possible number of vertices N(r, z, k) in a mixed graph with
maximum undirected degree r, maximum directed out-degree z, and diameter k. For more results
on this problem on graphs (and mixed graphs), see the comprehensive survey by Miller and Širáň
[15]. For more results on mixed graphs, see Buset, López, and Miret [4], Dalfó [5], Dalfó, Fiol,
López [6], Erskine [9], Jørgensen [13], López, Pérez-Rosés, and Pujolàs [14], Nguyen, Miller, and
Gimbert [19], and Tuite and Erskine [20].

An example of a (3, 1)-regular mixed graph is shown in Figure 1. It was proposed by Bosák
[1], as an example of mixed graph with maximum number of vertices (that is, attaining the corre-
sponding Moore bound) for r = 3, z = 1, and diameter k = 2.

Given a finite group Ω with generating set ∆ ⊆ Ω, the Cayley graph Cay(Ω,∆) has vertices
representing the elements of Ω, and arcs from ω to ωδ for every ω ∈ Ω and δ ∈ ∆. Notice that,
if δ, δ−1 ∈ ∆, then we have an edge (a digon or two opposite arcs) between ω and ωδ. Thus, if
∆ = ∆1∪∆2 where ∆1 = ∆−11 and ∆2∩∆−12 = ∅, the Cayley graph Cay(Ω,∆) is an (r, z)-mixed
graph with undirected degree r = |∆1| and directed degree z = |∆2|.

We use the line digraph technique. Recall that, given a digraph G, its line digraph LG has
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vertices representing the arcs of G, and vertex uv of LG (corresponding to the arc u→ v in G) is
adjacent to the vertices vw for any w adjacent from v in G. See Fiol, Yebra, and Alegre [11].

2. Moore mixed graphs

The following result gives the maximum possible number of vertices, or Moore bound, of an
(r, z)-mixed graph with diameter k.

Theorem 2.1 (Buset, El Amiri, Erskine, Miller, and Pérez-Rosés [3]). The Moore bound for an
(r, z)-regular mixed graph with diameter k is

M(r, z, k) = A
uk+1
1 − 1

u1 − 1
+B

uk+1
2 − 1

u2 − 1
, (1)

where

u1 =
z + r − 1−

√
v

2
, u2 =

z + r − 1 +
√
v

2
,

A =

√
v − (z + r + 1)

2
√
v

, B =

√
v + (z + r + 1)

2
√
v

,

v = (z + r)2 + 2(z − r) + 1.

The largest value of M(r, z, k) is obtained when r = 0 and z = d (a d-regular digraph), which
is

M(0, d, k) =
dk+1 − 1

d− 1
.

Nguyen, Miller, and Gimbert [19] proved that the Moore bound M(r, z, k) cannot be attained for
diameter k ≥ 3. In the case of diameter 2, we have the following result, which was proved by
using matrix and eigenvalue techniques.

Theorem 2.2 (Bosák, 1979). Let G be an (r, z)-mixed graph with diameter k = 2. Apart from the
trivial cases (z, r) = (1, 0), (0, 2), there must be a positive odd integer c such that

c | (4z − 3)(4z + 5) and r =
1

4
(c2 + 3).

In fact, the upper bound of Theorem 2.1 can be slightly improved, as shown in the next theorem.

Theorem 2.3 (Dalfó, Fiol, and López [8]). The order N of an (r, z)-regular mixed graph G with
diameter k ≥ 3 satisfies

N ≤M(r, z, k)− r,
where M(r, z, k) is the Moore bound given in (1).

For the case of diameter two, we get:

N ≤M(r, z, 2) = (r + z)2 + z + 1.

Moreover, by using a simple parity argument (namely, when r is odd, N must be even), we get
the following.
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(a) (b) (c)

Figure 2. The unique three non-isomorphic (1, 1)-regular mixed graphs with diameter k = 3 and order N = 10.

Figure 3. The (1, 1)-regular mixed graph with diameter k = 3 and order N = 10 as the line digraph of the directed
cycle C5.

Proposition 2.1 (Dalfó, Fiol, and López [8]). Let G be an (r, z)-regular mixed graph of diameter
k ≥ 3 with order N . If r and z are odd and k ≡ 2 (mod 3), then

N ≤M(r, z, k)− r − 1.

For optimal (1, 1)-regular mixed graphs with diameter 3, we have the following result.

Proposition 2.2 (Dalfó, Fiol, and López [8]). Let G be a (1, 1)-regular mixed graph with diameter
k = 3 and maximum order N = 10 = M(1, 1, 3) − 1. Then G is isomorphic to one of the three
mixed graphs in Figure 2 satisfying the following properties:

• The mixed graph (a) is the line digraph of the cycle C5 (seen as a digraph, with five digons),
and can be seen as the Cayley digraph of the dihedral groupD5 = 〈r, s | r5 =s2 =(rs)2 =1〉.
That is,

LC5
∼= Cay(D5, {r, s}).

• The mixed graphs (a), (b), and (c) are isomorphic to their converse digraphs and cospectral,

with spectrum
{

2,
(
−1

2
+
√
5
2

)2
, 05,

(
−1

2
−
√
5
2

)2 }
= sp(C5) + {05}.
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3. Moore Cayley mixed graphs

It is quite natural to wonder what d-regular Cayley digraphs G have that their respective line
digraph LG also is a Cayley digraph.

A decomposition into permutations (arc-coloring) Π of K+
d (∆) (the complete symmetric di-

graph with loops, and vertex set ∆ with cardinality d) is normal if, for some δ1 ∈ ∆, the following
conditions hold:

(i) πδ1 = e (the identity).

(ii) πδ1(δ) ≡ δ1 � δ for all δ ∈ ∆.

In other words, all loops get the same color πδ1 , and the arc (δ1, δ) is colored by πδ.
It is convenient to take normal decompositions for uniformly induced colorings.

Theorem 3.1 (Fiol, Fiol, and Yebra [10]). Let G = Cay(Ω,∆) be a Cayley digraph, and Π a
normal decomposition into permutations ofK+

d (∆). Then the line digraph LG is a Cayley digraph
if and only if Π is a group of automorphisms of Ω. In this case, LG is a Cayley digraph on the
semidirect product Ω o Π.

The Kautz digraph K(d, 2), with degree d and diameter k = 2, can be defined as the line
digraph of the complete graph on d+ 1 vertices with every edge being a digon (two opposite arcs),
that is,

K(d, 2) = LKd+1.

Proposition 3.1 (Brunat, Espona, Fiol, and Serra [2]). The Kautz digraph K(d, 2) is a Cayley
graph if and only if d+ 1 is a prime power.

Proof. For completitud, we add the sufficiency. If d+1 = pm, with p a prime, let Ω be the additive
group of the finite field Fd+l. For every δ ∈ ∆ = F∗d+1 = Fd+1\{0}, let πd be the automorphism of
Fd+l defined by πδ(x) = δx. Then, Π = {πδ : δ ∈ ∆} is a normal decomposition into permutations
of K+

d (∆) with δ1 = 1, and it is a group of automorphisms of Fd+l. Thus, by Theorem 3.1,
K(d, 2) = LKd+1

∼= Cay(Ω,∆) is a Cayley digraph with Ω = (Fd+1,+) and ∆ = F∗d+1.

Therefore, the vertices of K(d, 2) correspond to the pairs (g, µ), and the arcs correspond to the
pairs (1, δ), for δ ∈ ∆ and

(g, µ)� (1, δ) = (g + πµ(1), πµ ◦ πδ) = (g + µ, µδ).

In Figure 4, we show the case r = z = 1. Namely, the Kautz digraph K(2, 2) as the Cayley graph
of the semidirect product (F3,+) o F∗3. For instance, from vertex (1, 2) through the arc (1, 1), we
get the vertex (1, 2)� (1, 1) = (1 + 2, 2 · 1) = (0, 2).

For the case r = 3 and z = 1, the following result is known.

Proposition 3.2 (López, Pérez-Rosés, and Pujolàs [14]). The Bosák graph is a mixed Cayley graph
that can be obtained from either S3 × Z3 or (Z3 × Z3) o Z2.
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Figure 4. Left: The Kautz digraph K(2, 2) as the Cayley graph of the semidirect product (F3,+) o F∗
3. Right: The

Kautz digraph K(2, 2) as the Cayley graph of the dihedral group D3 = 〈a, b | a3 = b2 = (ab)2 = e〉.

Besides, for the case (r, z, 2), Erskine [9] gave the next theorem.

Theorem 3.2 (Erskine [9]). The only Moore Cayley (r, z, 2)-mixed graphs with order N ≤ 485
are the following:

• r = 1 and z ≤ 20, where z + 2 is a prime power (Kautz graphs).

• r = 3 and z = 1 (Bosák’s graph [1]).

• r = 3 and z = 7 (the two Jørgensen’s graphs [13]).

Recall that Bosák’s graph is shown in Figure 1,

4. The bipartite case

For the bipartite mixed graphs, the following result gives a new upper bound.

Theorem 4.1 (Dalfó, Fiol, and López [7]). With A,B, u1, u2 defined after (1), the Moore bound
for (r, z)-regular bipartite mixed graphs is

MB(r, z, k) = 2

(
A
uk+1
1 − u1
u21 − 1

+B
uk+1
2 − u2
u22 − 1

)
, r > 0.

The following result was also proved in [7].

Proposition 4.1 (Dalfó, Fiol, and López [7]). Bipartite mixed Moore graphs do not exist for any
r ≥ 1, z ≥ 1, and k = 2 or k ≥ 4.
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4.1. The case of diameter 3
Now we concentrate on the case of diameter three. Let G be a Moore bipartite (r, z, 3)-mixed

graph with adjacency matrix

A =

(
0 A1

A2 0

)
.

In this case, we get
MB(r, z, 3) = 2

[
(r + z)2 − r + 1

]
. (2)

In particular, MB(1, z, 3) = 2(1 + z)2 and MB(r, 1, 3) = 2r2 + 3(r + 1).
By analogy with the case of graphs, we say that a digraph or mixed graph G, with diameter

k and adjacency matrix A, is distance-regular if there exist polynomials p0(x), p1(x), . . . , pk(x),
with deg pi = i, that applied to A give the corresponding distance matrices Ai = pi(A) for
i = 0, 1, . . . , k. In the following result, we show that this is the case for Moore bipartite mixed
graphs of diameter three.

Lemma 4.1. The Moore bipartite mixed graph with diameter 3 is distance-regular.

Proof. Let G be a Moore bipartite (r, z, 3)-mixed graph with adjacency matrix A. Let us prove
that its distance polynomials are the following.

p0(x) = 1,

p1(x) = x,

p2(x) = x2 − r,

p3(x) =
x3 − (r − 1)x

r + z
− x.

The first two polynomials are trivial because of A0 = I and A1 = A. In the expression of p2(x),
we must consider that there are r paths from every vertex to itself. Concerning p3(x), notice that,
since the k = 3, there should exist just one path of length 0 or 2 from any vertex u to any other
vertex v of its partite set. Such paths correspond to the 1’s of the matrix A0+A2 = p0(A)+p2(A).
Therefore, there are exactly r + z paths of length 1 or 3 from u to any vertex w of the other partite
set. Hence, A1+A3 = 1

r+z
(A0+A2)A and, A3 = p3(A) with the claimed polynomial p3(x).

From this last lemma, we can derive the spectra of Moore bipartite mixed graphs of diameter
3.

Proposition 4.2. The spectrum of a Moore bipartite (r, z, 3)-mixed graph G with order n given by
(2) is

spG =
{
± (r + z),±

√
r − 1

n−2
2

}
.

Proof. The eigenvalue r + z is due to the regularity of G. Moreover, the sum of the distance
polynomials equals the Hoffman polynomial H that applied to A gives the all-1 matrix J (see
Hoffman and McAndrew [12]):

H(A) =
3∑
i=0

pi(A) =
1

r + z
A3 + A2 +

1− r
r + z

A− (r − 1)I = J .
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Figure 5. A Moore bipartite (2, 1, 3)-mixed graph.

Note that J has eigenvalues n with multiplicity 1 and 0 with multiplicity n − 1. Then, the other
eigenvalues of G are the roots of the polynomial H(x) = 1

r+z
x3 + x2 + 1−r

r+z
x + 1 − r, namely,

−(r+z),±
√
r − 1. In fact, the eigenvalue r+z can also be obtained as the solution of H(x) = n.

Since G is partite, its spectrum is symmetric around 0. So, since the multiplicity of ±(r + z) is 1,
the one of ±

√
r − 1 is n−2

2
.

For instance, for the Moore mixed graph of Figure 5 with r = 2, z = 1, diameter 3, and
16 vertices, the distance polynomials are p0 = 1, p1 = x, p2 = x2 − 2, and p3 = 1

3
(x3 −

4x), and its spectrum is {±3,±17}. This mixed graph can be constructed as the Cayley graph
Cay(Ω, {α, β, γ}), where Ω is the direct product of the dihedral group with 8 elements with the
cyclic group of 2 elements, with standard presentation

D8 × Z2 = 〈a, b, c | a4 = b2 = c2 = e, bab−1 = a−1, ac = ca, bc = cb〉,

and generators α = a, β = b, and γ = abc (in Figure 5, they give rise to arcs, solid edges, and
dotted edges, respectively).

Observe that, according to Proposition 4.2, the Moore bipartite mixed graphs of diameter 3
could exist for any value of r and z. Instead, in the case of general Moore mixed graphs of
diameter 2, some conditions must be satisfied for their existence (see Theorem 1).

The distance polynomials are orthogonal with respect to the scalar product

〈f, g〉G =
1

n
tr[f(A)g(A)>],
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(a) (b)

Figure 6. The two bipartite (1, 1, 3)-mixed graphs attaining the Moore bound.

so that ‖pi‖2G = pi(r + z) = |Gi(u)| gives the number of vertices at distance i ∈ [0, k] from any
vertex u of G.

Next, we present an infinite family of Moore bipartite mixed graphs with diameter 3, and we
show that they are Cayley graphs of a semidirect product of groups. More precisely, we prove that
bipartite mixed Moore graphs with diameter k = 3 and r = 1, on 2(1 + z)2 vertices, exist for any
value of z ≥ 1. In particular, when z = 1, there exist two non-isomorphic (1, 1, 3)-mixed graphs.

Lemma 4.2. Let G be a (1, 1)-regular bipartite mixed graph with diameter k = 3 and maximum
order N = 8 = MB(1, 1, 3). Then G is isomorphic to one of the two bipartite mixed graphs shown
in Figure 6.

In fact, the first mixed graph of Figure 6 is a particular example of the infinite family described
in the following result.

Theorem 4.2. Let Dn = 〈a, b | an = b2 = (ab)2 = e〉 be the dihedral group with 2n elements, and
let Cn be the cycle group with elements in Zn. Then, the bipartite (1, z, 3)-mixed Moore graph G,
with z = n − 1 and 2n2 vertices, is the Cayley graph on the semidirect product Dn o Cn, with
generating elements (b, i) for i = 0, 1, . . . , n− 1:

G = LKn,n = Cay(Dn o Cn, {(b, 0), (b, 1), . . . , (b, n− 1)}).

Proof. The proof is based on the following steps:

1. The complete bipartite graph Kn,n can be seen as the Cayley graph of the dihedral group
Dn = 〈a, b | an = b2 = (ab)2 = e〉 with generating set

∆ = {δi = aib : i = 0, 1, . . . , n− 1}.

The independent sets of Kn,n are then V1 = {δi : i = 0, 1, . . . , n− 1} and V2 = V1b = ∆.
2. All generators are involutive. Indeed, since aba = b−1 = b, we have

δ2i = aibaib = ai−1bai−1b = · · · = abab = e.
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3=a

4=b2
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6=ab
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ab

2
ab

Figure 7. The complete bipartite graph K3,3 as the Cayley graph of the dihedral group D3 = 〈α = b, β = ab, γ =
a2b |α2 = β2 = γ2 = e〉.

3. The set of permutations πj , for j = 0, . . . , n− 1, of the elements of ∆, defined as

πj(δi) = δi+j, δi ∈ ∆

(with addition understood (mod n)) can be extended to the elements of V1 since, from ai =
aibb = δib = δiδ0, for i = 0, . . . , n− 1, we have

πj(a
i) = πj(δiδ0) := πj(δi)πj(δ0) = δi+jδj = ai+jbajb = aibb = ai.

4. Then, Π is a group automorphism Π of Dn, isomorphic to the cycle group, Π ∼= Cn, fixing
each element of V1.

5. Apply Theorem 3.1 to get the result.

By way of example, for r = 1 and z = 2, the Cayley graphs isomorphic to K3,3 and to the line
digraph LK3,3 are shown in Figure 7 and Figure 8, respectively.

By Proposition 4.2, these Moore bipartite (1, z, 3)-mixed graphs have distance polynomials
p0 = 1, p1 = x, p2 = x2 − 1, and p3 = 1

z+1
x3 − x, and spectrum {±(1 + z),±0n−2}.
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Figure 8. LK3,3 = Cay(D3 o C3, {(b, 0), (b, 1), (b, 2)}).
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[4] D. Buset, N. López, and J. M. Miret, The unique mixed almost Moore graph with parameters
k = 2, r = 2 and z = 1, J. Intercon. Networks 17 (2017), 1741005.
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[6] C. Dalfó, M. A. Fiol, and N. López, Sequence mixed graphs, Discrete Appl. Math. 219 (2017),
110–116.
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