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Abstract. For graphs G1, G2, · · · , Gk, the (generalized) size multipar-
tite Ramsey number mj(G1, G2, · · · , Gk) is the least natural number m
so that any colouring of the edges of Kj×m with k colours will yield a
copy of Gi in the ith colour for some i. In this note, we determine the ex-
act value of the size multipartite Ramsey number mj(Ps, Pt) for s = 2, 3
and all integers t ≥ 2, where Pt denotes a path on t vertices.

1 Introduction

Recently, Burger and van Vuuren [3] studied one of generalisations of the classical
Ramsey number as follows. Let Kn×l denote a complete, balanced, multipartite
graph consisting of n partite sets and l vertices per partite set. Let j, l, n, s
and t be natural numbers with n, s ≥ 2. Then the size multipartite Ramsey
number mj(Kn×l,Ks×t) is the smallest natural number ζ such that an arbitrary
colouring of the edges of Kj×ζ , using two colours red and blue, necessarily forces
a red Kn×l or a blue Ks×t as subgraph.

In this paper, we generalize this concept by releasing completeness require-
ment in the forbidden graphs as follows. Let j ≥ 2 be a natural number.
For graphs G1, G2, · · · , Gk, the (generalized) size multipartite Ramsey number
mj(G1, G2, · · · , Gk) is the smallest natural number m so that any colouring
of the edges of Kj×m with k colours will yield a copy of Gi in the ith colour
for some i. The existence of all numbers mj(G1, G2, · · · , Gk) for j = 2 follows
from a result of Erdös and Rado [4]. For the case of k = 2, with G1, G2 are
complete balanced multipartite graphs, the numbers can be derived from re-
sult Burger and van Vuuren [3]. The exact values of bipartite Ramsey numbers
b(Ps, Pt) = m2(Ps, Pt) of two paths can be obtained from a special case of some
results of Gyárfás and Lehel [6], and Faudree and Schelp [5]. Furthermore, Hat-
tingh and Henning [7] determined the exact values of bipartite Ramsey numbers
b(Pm,K1,n). In this paper, we establish the exact values of the size multipartite
Ramsey numbers mj(Ps, Pt) of two paths with s = 2, 3.

2 Main results

In this note, we prove the following theorem.

Theorem 1. If n ≥ 3 then mj(Ps, Pn) = �n
j � for s = 2, 3.
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Proof. Let k = �n
j �. If all edges of F = Kj×(k−1) are colored by blue then F con-

tains neither red P2 (and P3) nor blue Pn for n ≥ 3. Therefore, mj(Ps, Pn) ≥ k
for s = 2, 3 and n ≥ 3. It easy to see that mj(P2, Pn) ≤ k, and so mj(P2, Pn) = k.
Now, we prove that mj(P3, Pn) ≤ k. Let all edges of F = Kj×k be colored by
red or blue, so that F contains no red P3. To show that F contains a blue path
Pn on n vertices, consider the following three cases.

Case 1. j = 2.
Let V1={a1, a2, ..., ak} and V2={b1, b2, ..., bk} be the partite sets of F . If all edges
of F are blue then the proof is complete. Now, suppose F contains r red edges,
r ≤ k. Since there is no red P3, these red edges are independent. Without loss
of generality, we may assume that the r red edges are: a1b1, a2b2, · · · , arbr. If r is
odd then a1b2a3b4 · · · ar−2br−1arb1a2b3a4 · · · br−2ar−1brar+1br+1ar+2br+2 · · · akbk

is a blue path with at least n vertices in F . Now, if r is even then we have a blue
path a1b2a3b4 · · · ar−3br−2ar−1brar−2br−3ar−4 · · · b3a2b1ar

br−1ar+1br+1 · · · akbk with at least n vertices in F .

Case 2. j = 3.
If all edges of F are blue then it is finished. Let V1, V2 and V3 be the partite sets
of F . Now, assume, without loss of generality, there exist r, s and t red edges
connecting V1 to V2, V1 to V3, and V2 to V3, respectively. By considering these
red edges, partition V1, V2 and V3 as follow: V1 = R1 ∪X ∪S1, V2 = R2 ∪Y ∪T2

and V3 = S3 ∪Z ∪ T3, where |R1| = |R2| = r, |S1| = |S3| = s and |T2| = |T3| = t
so that all edges connecting R1 to R2, S1 to S3 and T2 to T3 are red. Next,
without loss of generality, assume r ≤ s ≤ t. This implies that |Z| ≤ |Y | ≤ |X|.
Observe that there exist three independent blue paths: (i) path aPb of 2r vertices
connecting all vertices of R1 and some of S3 with the initial vertex a ∈ R1 and
the terminal vertex b ∈ S3, (ii) path cPd of 2r vertices connecting all vertices of
R2 and some of T3 with the initial vertex c ∈ R2 and the terminal vertex d ∈ T3,
(iii) path ePf of 2s vertices connecting all vertices of S1 and some of T2 with the
initial vertex e ∈ T2 and the terminal vertex f ∈ S1, see Fig.1.(i). We can the
join all these paths into one larger blue path aPf :=aPbcPdePf . This path has
4r + 2s vertices, see Fig.1.(ii).

Let denote by A,B and C the subsets of T2, S3 and T3, respectively, which
contain all vertices not in the above three blue paths. Then, we have |Y |+ |A| =
|X| and |B|+ |Z|+ |C| = |X|+ |B| = |X|+(s−r), and (s−r) = |Y |−|Z| ≤ |X|.
We will show that there exists a blue path connecting X, Y ∪A and B ∪Z ∪C
with at least 3|X| + (s − r) vertices.

Partition the sets C = C1∪C2 such that C2 consists of all end-vertices of red
edges connecting A and C, and so |C2| = |A| = (t− s) and |C1| = |B| = (s− r).
Partition the sets X = X1 ∪ X2 such that |X2| = |C2|; Clearly |X1| = |Y |. Sup-
pose D = B ∪ Z ∪ C1. Note that |X2| = |A| = |C2|. Let C2 = {a1, a2, · · · , am},
X2 = {b1, b2, · · · , bm}, and A = {c1, c2, · · · , cm}, where m = t − s. Then we
obtain a blue path a1b1c1a2b2c2 · · · ambmcm. This path has 3(t− s) vertices, and
is denoted by a1Pcm

. Since fa1 is a blue edge then by joining the two paths aPf

and a1Pcm
we have a blue path with 4r + 3t − s vertices. This resulting path,

denote by aPcm
, starts from a and ends at cm. Next, we consider the following

three subcases.
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Fig. 1. The three blue paths form a larger blue path starting from vertex a ∈ R1 and
ending at f ∈ S1.
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Fig. 2. (i) A blue path gPh (ii) A blue path uPv



86

Subcase 2.1. |Z| = 0.
Since |Z| = 0 then |D| = |B ∪ C1| = 2|Y | = 2|X1| = 2(s − r). Then, we obtain
a blue path by connecting all vertices in X1 with a half of D alternatingly, and
continuing connecting the other half of D with all the vertices in Y alternatingly.
This path starts at some vertex g ∈ X1 and ends at h ∈ C1, and is denoted by
gPh (see Fig.2.(i)). Note that this path has 4(s− r) vertices. Since cmg is a blue
edge then by joining the two paths aPcm

and gPh we have a blue path with
3(s + t) vertices. This resulting path uses all vertices of F , and so F contains a
blue path with at least n vertices.

Subcase 2.2. 0 < |Z| < |Y |.
Since |Z| < |Y | then |D| = |B∪Z∪C1| < 2|Y |. Then, we obtain a blue path uPv

connecting all vertices in X1 with all vertices in Y through all vertices in D one
by one each time, until all the vertices in D have been totally used. If there are
still some vertices in X1 (and so in Y ) left then connect directly these remaining
vertices alternatingly, see Fig.2.(ii). Since cmu is a blue edge then by joining the
two paths aPcm

and uPv, we have a blue path with 3(|Y | + r + t) vertices. This
resulting path contains all the vertices of F , and so F has contains a blue path
with at least n vertices.

Subcase 2.3. |Z| = |Y | �= 0.
Since |Z| = |Y |, then s − r = 0 and so |D| = |Z|. Then we obtain a blue path
wPz connecting all vertices in D, X1, and Y alternatingly, where w ∈ D and
z ∈ Y . Since cmw is a blue edge then by joining the two paths aPcm

and wPz,
we have a blue path with 3(|Y |+r+ t) vertices. This resulting path will contains
all the vertices of F .

Case 3. j ≥ 4.
Let V1, V2, · · · , Vj be the partite sets of F . Trivially, if all edges of F are blue
then it is finished. If j even by Case 1 we have j

2 blue paths connecting all
vertices V1 to V2, V3 to V4, · · · , Vj−1 to Vj . Each path has 2k vertices. Since
F has no a red P3 then we can concatenate these j

2 paths into one blue path
of kj vertices. This final path will have at least n vertices. Ifj is odd then by
Case 1 we obtain j−3

2 blue paths connecting all vertices V1 to V2, V3 to V4, · · · ,
Vj−4 to Vj−3 independently. Each path has 2k vertices. By using the method in
Case 2 we get another blue path connecting all vertices in Vj−2, Vj−1 and Vj .
Again, since F has no red P3, we can join all these paths into one with at least
n vertices.�	
Corollary 1. If n ≥ 3 then mj(Ps, Cn) = �n

j � for s = 2, 3.

Proof. Let xPy be the final blue path obtained in the proof of Theorem 1. This
path consists of at least n vertices. Since xy is a blue edge then by joining the
two vertices x and y, we have a blue cycle Cn with at least n vertices.�	
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