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a b s t r a c t

The set multipartite Ramsey number for stars Ms(K1,n1 , . . . , K1,nk ) is the smallest positive
integer c such that any k-coloring of the edges of Kc×s contains a monochromatic star K1,ni
in color i for some i, 1 ≤ i ≤ k, where Kc×s denotes the complete multipartite graph having
c classes with s vertices per each class. On the other hand, the size multipartite Ramsey
number for stars, denoted bymc (K1,n1 , . . . , K1,nk ), is the smallest positive integer s such that
any k-coloring of the edges ofKc×s contains amonochromatic copyofK1,ni in color i for some
i, 1 ≤ i ≤ k. In this note we compute both Ms(K1,n1 , . . . , K1,nk ) and mc (K1,n1 , . . . , K1,nk ),
extending well-known results on the classical and the bipartite Ramsey numbers for stars,
respectively.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

As mentioned, Kc×s denotes the complete multipartite graph having c classes with s vertices per each class. Given graphs
G1, . . . ,Gk, consider the extremal numbers:

• for a positive integer s, the set multipartite Ramsey number Ms(G1, . . . ,Gk) denotes the smallest positive integer c such
that any k-coloring of the edges of Kc×s contains a monochromatic copy of Gi in color i for some i, 1 ≤ i ≤ k.

• for an integer c ≥ 2, the size multipartite Ramsey number mc(G1, . . . ,Gk) denotes the smallest positive integer s (if it
exists) such that any k-coloring of the edges ofKc×s contains amonochromatic copy ofGi in color i for some i, 1 ≤ i ≤ k.

It is worth mentioning two particularly interesting cases:

• M1(G1, . . . ,Gk) can be regarded as the classical Ramsey number r(G1, . . . ,Gk), since Kn×1 is isomorphic to the complete
graph Kn on n vertices. The determination of these numbers has turned out to be a central problem in combinatorics.

• the numberm2(G1, . . . ,Gk) produces the widely studied bipartite Ramsey number b(G1, . . . ,Gk).

In 2004, Burger, Grobler, Stipp, and vanVuuren [2–4] investigated the numbersMs(G1,G2) andmc(G1,G2)where eachGi is
a complete multipartite graph, which can be naturally extended to several colors, see [12]. Recently the numbersmc(G1,G2)
have been investigated for special classes: stripes versus cycles, stars versus cycles, see [11] and its references.

In this work we focus on the case where each Gi is a star. Chvátal and Harary [6] and Harary [7] evaluated the numbers
r(K1,n, K1,m), where K1,n denotes a star on n + 1 vertices. As stated by Irving [10], ‘‘many of the more interesting problems
emerge in cases k > 2’’. In particular, Irving pointed out that the chromatic index of certain complete graphs can be applied
to compute r(K1,2, . . . , K1,2). See also the numbers r(K1,3, . . . , K1,3) in [10]. Burr and Roberts [5] extended these results as
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follows

r(K1,n1 , . . . , K1,nk ) =

{
S − k + 2 if S − k is odd or n1, . . . , nk are odd;
S − k + 1 if S − k is even and some ni is even,

(1)

where S =
∑k

i=1ni.
As the first goal of this note we compute the following numbers, generalizing all the previous results.

Theorem 1. Given integers s ≥ 1 and k, n1, . . . , nk ≥ 2, let S =
∑k

i=1ni. Then

Ms(K1,n1 , . . . , K1,nk ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S − k

s
+ 1 if (S − k)/s is even, s is odd and

some ni is even;⌊
S − k

s

⌋
+ 2 otherwise.

Concerning the bipartite Ramsey numbers, b(K1,n, K1,n) = 2n − 1 is reported by Beineke and Schwenk [1]. Its extension
to arbitrary number of colors was proved by Hattingh and Henning [8], more precisely:

b(K1,n1 , . . . , K1,nk ) = S − k + 1 (2)

where S =
∑k

i=1ni.
The second goal of this note generalizes these results, as stated below.

Theorem 2. Given integers c, k, n1, . . . , nk ≥ 2, let S =
∑k

i=1ni. Then

mc(K1,n1 , . . . , K1,nk ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S − k
c − 1

if (S − k)/(c − 1) and c are odd and

some ni is even;⌈
S − k + 1
c − 1

⌉
otherwise.

Recall that a matching in G = (V (G), E(G)) is a set of edges, no two of which are adjacent. The chromatic index (also called
edge chromatic number) χ ′(G) of a graph G denotes theminimum r such that there exists a partition of E(G) into r matchings.

Only two well-known results are required for our purpose: (i) the celebrated Vizing’s Theorem on the chromatic index of
a graph and (ii) the chromatic index of a complete multipartite graph due to Hoffman and Rodger [9]. We show Theorem 1
in Section 2. Since the proof of Theorem 2 is very similar, we present only a sketch of its proof in Section 3.

2. Proof of Theorem 1

In order to facilitate the understanding, let us split the proof of Theorem 1 into parts. We begin with a simple but very
useful general upper bound, which is sharp for several classes.

Proposition 3. Given integers k, n1, . . . , nk ≥ 2, let S =
∑k

i=1ni. For any s ≥ 1,

Ms(K1,n1 , . . . , K1,nk ) ≤
⌊
(S − k)/s

⌋
+ 2.

Proof. Denote c = ⌊(S − k)/s⌋ + 2. Given an arbitrary k-coloring of Kc×s, let Hi be the subgraph of Kc×s formed by all edges
in color i, where 1 ≤ i ≤ k. Select a vertex v of Kc×s. Note that

∑k
i=1di(v) = (c − 1)s,where di(v) denotes the degree of v in

Hi. By the choice of c , we have
k∑

i=1

di(v) = (c − 1)s > (S − k) =

k∑
i=1

(ni − 1), (3)

thus dj(v) > nj − 1 holds for some j, 1 ≤ j ≤ k. Hence there is a monochromatic copy of K1,nj in color j. ■

As usual,∆(G) denotes the maximum degree of G. A cornerstone of graph theory states that the parameter χ ′(G) is very
close to the trivial lower bound∆(G), more specifically:

Theorem 4 (Vizing’s Theorem [13]). For a simple graph G,

∆(G) ≤ χ ′(G) ≤ ∆(G) + 1.

The key ingredient of Irving’s result about r(K1,2, . . . , K1,2) is based on the statement: since a matching does not contain
a copy of K1,2, the chromatic index may induce almost optimal coloring with no copy of K1,2. With the same spirit, Vizing’s
Theorem plays a central role to extend such idea. More formally:
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Proposition 5. Given integers k, n1, . . . , nk ≥ 2, let S =
∑k

i=1ni. For any s ≥ 1,⌊
(S − k − 1)/s

⌋
+ 2 ≤ Ms(K1,n1 , . . . , K1,nk ).

Proof. Let c = ⌊(S−k−1)/s⌋+1. Vizing’s Theorem states χ ′(Kc×s) ≤ s(c−1)+1, that is, there is a
(
s(c−1)+1

)
-coloration

of Kc×s with no monochromatic copy of K1,2. This coloring is denoted by φ : E(Kc×s) → Zs(c−1)+1.
By the choice of c , s(c − 1) + 1 ≤ S − k =

∑k
i=1(ni − 1), thus we can select a function ψ : Zs(c−1)+1 → {1, . . . , k} such

that |ψ−1(i)| = |{x ∈ Zs(c−1)+1 : ψ(x) = i}| ≤ ni − 1 for any i = 1, . . . , k. The composition ψ ◦ φ : E(Kc×s) → {1, . . . , k} is a
k-coloration of Kc×s with no monochromatic copy of K1,ni in color i for any i = 1, . . . , k. Thus the statement follows. ■

An immediate consequence is established below.

Corollary 6. Given integers k, n1, . . . , nk ≥ 2, let S =
∑k

i=1ni. If s does not divide S − k, then

Ms(K1,n1 , . . . , K1,nk ) =
⌊
(S − k)/s

⌋
+ 2.

Proof. If s does not divide S − k, note that
⌊
(S − k− 1)/s

⌋
=

⌊
(S − k)/s

⌋
. An application of Propositions 3 and 5 ensures the

result. ■

In view of the result above, we may assume that s divides S − k from now on. In this case, the upper bound χ ′(Kc×s) ≤

s(c−1)+1 due to Vizing’s theorem is not so powerful to evaluate the exact value ofMs(K1,n1 , . . . , K1,nk ). Fortunately, a slight
improvement can be derived from the next statement.

Theorem 7 (Hoffman and Rodger [9]). If c or s is even, then χ ′(Kc×s) = ∆(Kc×s) = s(c − 1).

As an application, we can determine another part of Theorem 1, more specifically:

Proposition 8. Given integers k, n1, . . . , nk ≥ 2. Let S =
∑k

i=1ni and suppose that s divides S − k. If (S − k)/s is odd or s is
even, then

Ms(K1,n1 , . . . , K1,nk ) = (S − k)/s + 2.

Proof. Proposition 3 states the upper bound. For the lower bound, let c = (S − k)/s+ 1. By hypothesis, c or s is even. Hence
Theorem7 ensures thatχ ′(Kc×s) ≤ s(c−1). By a similar argument used in the proof of Proposition 5, we obtain a k-coloration
of Kc×s with no monochromatic copy of K1,ni in color i for any i = 1, . . . , n, that is,Ms(K1,n1 , . . . , K1,nk ) > c. ■

We analyze now the unique case where the upper bound in Proposition 3 is not optimal.

Proposition 9. Given positive integers k, n1, . . . , nk ≥ 2 with ni even for some i = 1, . . . , k, let S =
∑k

i=1ni. If (S − k)/s is an
even integer and s is odd, then

Ms(K1,n1 , . . . , K1,nk ) =
S − k

s
+ 1.

Proof. Let c = (S − k)/s + 1. Proposition 5 produces Ms(K1,n1 , . . . , K1,nk ) ≥ c . Suppose for a contradiction that
Ms(K1,n1 , . . . , K1,nk ) > c . By assumption, there exists a k-coloring of Kc×s = (V , E) that contains no copy of K1,ni in color
i for any i = 1, . . . , k. Let Hi = (V , Ei) denote the subgraph of Kc×s induced by the color i and let di(v) be the degree of a
vertex v ∈ V in Hi. Since K1,ni is not subgraph of Hi, di(v) ≤ ni − 1 holds for any vertex v ∈ V . Note that

(c − 1)s =

k∑
i=1

di(v) ≤

k∑
i=1

(ni − 1) = S − k = (c − 1)s.

The inequality above ensures that di(v) = ni − 1 for every vertex v ∈ V and for every i = 1, . . . , k. By hypothesis, there is a
color j such that nj is even. By Euler’s identity,

2|Ej| =

∑
v∈V

dj(v) =

∑
v∈V

(nj − 1) = cs(nj − 1).

Thus cs(nj − 1) is even, contradicting the assumption that c , s and (nj − 1) are all odd numbers. ■

Corollary 6, Proposition 8, and Proposition 9 ensure Theorem 1 except when (S − k)/s is an even integer, s is odd, and ni
is odd for every i = 1, . . . , k. For this remaining case, we need a more involved construction.

Proposition 10. Given positive integers k, n1, . . . , nk ≥ 2 with ni odd for all i = 1, . . . , k. Let S =
∑k

i=1ni. If (S − k)/s is an
even integer and s is odd, then

Ms(K1,n1 , . . . , K1,nk ) =
S − k

s
+ 2.
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Proof. The upper bound is already known according to Proposition 3. Let q = (S−k)/s. Denote the q+1 classes of vertices of
the multipartite graph K(q+1)×s by Ł1, . . . , Łq, Ł∞, where Ła = {(a, 1), . . . , (a, s)} for any a = 1, . . . , q,∞. We need to build
a k-coloration of K(q+1)×s with no monochromatic copy of K1,ni in color i for any i = 1, . . . , k. This coloring depends on three
auxiliary functions, which are described in the steps below.

Step 1: Initially, consider the (S − k)-coloration ψ : E(K(q+1)×s) −→ ZS−k defined by

ψ
(
{(a, b), (c, d)}

)
=

⎧⎨⎩(a + c)s + b + d if a, c ≤ q;
2as + b + d if c = ∞;

2cs + b + d if a = ∞;

where for any integer x, x denotes the equivalence class of xmodulo S − k.
The coloring of the neighbor of a vertex (a, b) has distinct behaviors when a ̸= ∞ or a = ∞, as described in the two next

claims.

Claim 1: For each a = 1, . . . , q and for each b = 1, . . . , s, the S − k(= qs) incident edges at the vertex (a, b) of K(q+1)×s have
S−k different colors. To prove this claim, suppose for a contradiction that there are distinct vertices, say, (c1, d1) and (c2, d2)
with c1 ̸= a ̸= c2 such that

ψ
(
{(a, b), (c1, d1)}

)
= ψ

(
{(a, b), (c2, d2)}

)
. (4)

We divide the analysis into three cases:

1. If c1 = ∞ and c2 = ∞. In this case, the equality (4) implies d1 = d2, that is, d1 = d2. Since c1 = c2, we obtain the
contradiction (c1, d1) = (c2, d2).

2. If c1 ≤ q and c2 ≤ q. Since a, c1, c2 ≤ q, (4) implies (c1 − c2)s = d2 − d1. But |d2 − d1| < s, thus d2 − d1 = 0 holds.
Consequently, (c1 − c2)s = 0. The condition |(c1 − c2)s| ≤ (q − 1)s < S − k implies (c1 − c2)s = 0, that is, c1 = c2,
which contradicts the assumption (c1, d1) ̸= (c2, d2).

3. If c1 = ∞ and c2 ≤ q. In this case, (4) implies (a − c2)s = d2 − d1. Proceeding as in the case 2, we conclude the absurd
a = c2.

Claim 2: Let b ∈ {1, . . . , s}. In the colorationψ , the S − k incident edges at the vertex (∞, b) can be partitioned into (S − k)/2
colors of type Ab = {b + 2js + l : 1 ≤ j ≤ q/2, 1 ≤ l ≤ s}. Moreover, there are exactly two edges of each one of these
(S − k)/2 colors.

In order to proceed the proof of Claim 2, suppose that

ψ
(
{(∞, b), (c1, d1)}

)
= ψ

(
{(∞, b), (c2, d2)}

)
.

Then 2(c1 − c2)s = d2 − d1. Since |d2 − d1| < s, we have d2 − d1 = 0 and consequently 2(c1 − c2)s = 0. Thus there
is an integer z such that 2(c1 − c2)s = z(S − k) = zqs. In particular, 2(c1 − c2) = zq. The conditions c1, c2 ≤ q reveal
that two situations can hold: c1 − c2 = 0 or |c1 − c2| = q/2. If (c1, d1) and (c2, d2) are distinct and c2 ≥ c1, then
(c2, d2) = (c1+q/2, d1). On the other hand, if (c2, d2) = (c1+q/2, d1), we haveψ

(
{(∞, b), (c1, d1)}

)
= ψ

(
{(∞, b), (c2, d2)}

)
.

The facts above ensure that the S − k incident edges at the vertex (∞, b) are of (S − k)/2 colors, being two of each color. It
remains to prove that this set of colors is Ab, which is a consequence of the facts that ψ

(
{(∞, b), (c1, d1)}

)
= b + 2c1s + d1

and ψ
(
{(∞, b), (c1, d1)}

)
= ψ

(
{(∞, b), (c1 − q/2, d1)}

)
if c1 > q/2.

Step 2: Consider the function ω : ZS−k −→ ZS−k defined as follows: given x ∈ ZS−k with 1 ≤ x ≤ S − k(= qs), there are
unique integers m and r with 0 ≤ m ≤ q − 1 and 1 ≤ r ≤ s such that x = ms + r . Define ω(x) = x = ms + r if m is
even and ω(x) = x − s = (m − 1)s + r if m is odd. Note that Im(ω) = {2ms + r : 0 ≤ m ≤ q/2 − 1, 1 ≤ r ≤ s} and
|Im(ω)| = (q/2)s = (S − k)/2.

Claim 3: In the (S − k)/2-coloration ω ◦ ψ : E(K(q+1)×s) −→ Im(ω), a vertex (a, b) is connected to exactly two vertices
by a same color, say x ∈ Im(ω). Indeed, we have ω−1(x) = {x, x + s}, thus, if a ≤ q, it follows from Claim 1 that in the
(S − k)/2-coloration ω ◦ ψ , the vertex (a, b) is connected to two vertices by color x. On the other hand, if a = ∞, observe
that just one element of ω−1(x) = {x, x+ s} is on set Ab = {b+ 2ms + l : 1 ≤ m ≤ q/2, 1 ≤ r ≤ s}. This way, it follows from
Claim 2 that in (S − k)/2-coloration ω ◦ ψ , the vertex (∞, b) is connected to two vertices by color x.

Step 3: Note that (n1 − 1)/2, . . . , (nk − 1)/2 are integers satisfying
k∑

i=1

(ni − 1)/2 = (S − k)/2 = |Im(ω)|.

Thus, we can select a function φ : Im(ω) −→ {1, . . . , k} in a way that |φ−1(i)| = (ni − 1)/2 for every i = 1, . . . , k.
We are ready to present the desired coloring. Consider the k-coloration φ ◦ (ω ◦ ψ) : E(K(q+1)×s) −→ {1, . . . , k}. As in

(S − k)/2-coloration ω ◦ψ , any vertex is connected to exactly two others vertices by a same color x ∈ Im(ω), it follows that
in k-coloration φ ◦ (ω ◦ ψ), any vertex of K(q+1)×s is connected to exactly others 2|φ−1(i)| = ni − 1 vertices by color i, for



372 P.H. Perondi, E.L. Monte Carmelo / Discrete Applied Mathematics 250 (2018) 368–372

i = 1, . . . , k. Thus, the k-coloration φ ◦ (ω ◦ψ) contains no monochromatic copy of K1,ni in color i, for any i = 1, . . . , k. This
ensures thatMs(K1,n1 , . . . , K1,nk ) ≥ q + 2 = (S − k)/s + 2 and concludes the proof. ■

The result above concludes the proof of Theorem 1.

3. Proof of Theorem 2

The proof of Theorem 2 can be summarized into five statements, whose proofs are analogous to Propositions 3 and 5 and
8–10, respectively.

Claim A:mc(K1,n1 , . . . , K1,nk ) ≤
⌈ S−k+1

c−1

⌉
.

Let s =
⌈ S−k+1

c−1

⌉
and take an arbitrary k-coloration of Kc×s. Using the same notation and performing as in Proposition 3,

the inequality in (3) is true. Thus there is a monochromatic copy of K1,j for some color j, 1 ≤ j ≤ k.

Claim B:
⌈ S−k

c−1

⌉
≤ mc(K1,n1 , . . . , K1,nk ).

Let s =
⌊ S−k−1

c−1

⌋
. The arguments are similar to those used in Proposition 5. An application of Vizing’s Theorem ensures

that there is a k-coloration of Kc×s with no copy of K1,ni in color i for any i = 1, . . . , n. Thus

mc(K1,n1 , . . . , K1,nk ) ≥ s + 1 =

⌊
S − k − 1
c − 1

⌋
+ 1 =

⌈
S − k
c − 1

⌉
.

As an immediate combination of both claims above, mc(K1,n1 , . . . , K1,nk ) =
⌈ S−k+1

c−1

⌉
holds when c − 1 does not divide

S − k. From now on, we assume that c − 1 divides S − k, say, S − k = (c − 1)z.

Claim C: If c or z is even, thenmc(K1,n1 , . . . , K1,nk ) =
⌈ S−k+1

c−1

⌉
.

Indeed, the upper bound is derived by Claim 1. It remains to show the lower boundmc(K1,n1 , . . . , K1,nk ) > z. Since c or z is
even, Theorem7 ensuresχ ′(Kc×z) = z(c−1). Thus there is a

(
z(c−1)

)
-coloration ofKc×z with nomonochromatic copy ofK1,2,

denoted by φ : E(Kc×z) −→ Zz(c−1). Since z(c−1) = S−k =
∑n

i=1(ni−1), we can select a function ϕ : Zz(c−1) −→ {1, . . . , k}
such that |ϕ−1(i)| = ni − 1 for any i = 1, . . . , k. The composition ϕ ◦ φ : E(Kc×z) −→ {1, . . . , k} is a k-coloration of Kc×z
with no copy of K1,ni in color i for any i = 1, . . . , k.

Claim D: Let c and z be odd. If nj is even for some j ∈ {1, . . . , k}, then mc(K1,n1 , . . . , K1,nk ) = z =
S−k
c−1 .

Indeed, Claim B states thatmc(K1,n1 , . . . , K1,nk ) ≥ z. Suppose for a contradiction thatmc(K1,n1 , . . . , K1,nk ) > z. Thus there
is a k-coloration of Kc×z with no copy of K1,ni in color i for any i = 1, . . . , k. Proceeding as the proof in Proposition 9, we obtain
2|Ej| = cz(nj − 1), where |Ej| denotes the number of edges colored by color j. The last equality contradicts the assumption
that c , z, and (nj − 1) are all odd numbers.

Claim E: Let both c and z be odd. If ni is odd for any i ∈ {1, . . . , k}, thenmc(K1,n1 , . . . , K1,nk ) = z + 1 =
⌈ S−k+1

c−1

⌉
.

The proof is essentially based onProposition 10.With the change of variables c = q+1 and z = s, the following statements
hold: S − k = qs, q is even, s is odd, and ni is odd for any i = 1, . . . , k. As an application of Proposition 10, we can build a k-
coloration ofKc×z(= K(q+1)×s)withno copyofK1,ni in color i for any i = 1, . . . , n. Thusmc(K1,n1 , . . . , K1,nk ) ≥ z+1 =

⌈ S−k+1
c−1

⌉
.

The upper bound follows from Claim A.
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