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a b s t r a c t

In this paper we investigate bounds on set multipartite Ramsey numbers for the
bipartite graph K2,n, extending or improving well-known upper bounds by Chung and
Graham, Irving, Lortz and Mengersen. Known constructions based on certain classes of
combinatorial designs (projective plane, Hadamard matrix, strongly regular graph) yield
near-optimal bounds. As the main goal, a new construction based on strongly regular
graph and Hadamard matrix produces a sharp class, generalizing a classical bound by
Exoo, Harborth, and Mengersen.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Graph Ramsey numbers from designs

A great challenge in Combinatorics is that of determining the celebrated Ramsey numbers for graphs, defined as follows.
Given simple graphs G1, . . . ,Gk, the Ramsey number r(G1, . . . ,Gk) denotes the smallest positive integer n such that any
k-coloring of the edges of a complete graph Kn on n vertices contains a monochromatic copy of Gi in color i for some i,
1 ≤ i ≤ k. We refer to the book [12] for an overview on Ramsey theory.

One remarkable feature of Ramsey theory is the use of tools from many fields of mathematics. Some of these
connections received particular attention, as stated by T.D. Parsons in Mathematical Reviews MR664707 of [10].

‘‘Of all the results in Ramsey graph theory, the most intriguing are those which relate families of Ramsey
numbers to other areas of mathematics, particularly algebra and combinatorial designs...’’

Indeed, exact or near-optimal values of several Ramsey numbers depend on the existence of suitable combinatorial
designs: projective plane [14,24], resolvable design [8], difference set [5], design admitting polarity [11,25], to cite a few
references. Many of these connections are briefly described in [12,26].

Despite the importance, the topic is so difficult that advances on these links have been rarely discovered in the past
20 years. As far as we know, the last contribution seems to be [1] in 2006.
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1.2. Ramsey numbers in multipartite graphs

Ramsey numbers can be described in a more general setting: when the host graph is multipartite. More formally, let
Kc×s denote a complete multipartite graph having c classes with s vertices in each class. Given a positive integer s and
simple graphs G1, . . . ,Gk, the set multipartite Ramsey number Ms(G1, . . . ,Gk) denotes the smallest positive integer c such
that any k-coloring of the edges of Kc×s contains a monochromatic copy of Gi in color i for some i, 1 ≤ i ≤ k. As usual,
the case where Gi = G for 1 ≤ i ≤ k is abbreviated to Ms(G; k). In particular, the classical Ramsey number r(G1, . . . ,Gk)
can be regarded as M1(G1, . . . ,Gk) since the graph Kc×1 is isomorphic to the complete graph Kc .

Set multipartite Ramsey numbers were introduced by Burger, Grobler, Stipp, and van Vuuren in [2,3], who studied
Ms(Km1×n1 , Km2×n2 ). The extension to many colors is established in [22] and closely related problems have been explored
for special classes of graphs: paths [13,21], stripes versus small cycles [15], small cycles [21], stars [27].

1.3. The contribution

The main purpose of this paper is to discuss how certain classes of designs can be used for the computation of suitable
set multipartite Ramsey numbers. We focus on the case where Gi = K2,ni for any i. Since the numbers r(K2,n1 , . . . , K2,nk )
have been investigated for k = 2 (see [9,19,20]) and for an arbitrary k (see [5–7,14]), it seems to be natural analyzing the
behavior of the corresponding extension Ms(K2,n1 , . . . , K2,n1 ).

As a goal of this work, density arguments allow us to produce upper bounds on Ms(K2,n1 , . . . , K2,nk ) in Section 2.2,
extending or improving previous bounds due to Chung and Graham [5], Irving [14], Lortz and Mengersen [19,20].

Moreover, we explore near-optimal bounds in Section 2.3 by using known constructions based on combinatorial
designs or algebraic structures: projective planes (see Irving [14]) and finite fields (Lazebnik and Mubayi [16]). A celebrated
connection is reported as follows.

Theorem 1 (Exoo, Harborth, and Mengersen [9]). Let n ≥ 2. Hence M1(K2,n; 2) = 4n − 2 if and only if there is a strongly
regular graph with parameters (4n − 3, 2n − 2, n − 2, n − 1).

In particular, the existence of a strongly regular graph with parameters (4n − 3, 2n − 2, n − 2, n − 1) produces
M1(K2,n; 2) ≥ 4n − 2. This is a special case of the main result of this work, stated below.

Theorem 2. Suppose that there is a strongly regular graph with parameters (4n − 3, 2n − 2, n − 2, n − 1) and a symmetric
Hadamard matrix of order m. Then

Mm(K2,m(n−1)+1; 2) ≥ 4n − 2. (1)

According to Theorem 1, the existence of such graph produces the equality in (1) when m = 1. Moreover, we prove
that the equality also holds for all sufficiently large m relative to n, as established below.

Theorem 3. Suppose that there is a strongly regular graph with parameters (4n − 3, 2n − 2, n − 2, n − 1) and there is a
symmetric Hadamard matrix of order m with m ≥ 4n. Then

Mm(K2,m(n−1)+1; 2) = 4n − 2.

Typically, the graph Ramsey numbers mentioned above are generated by just one class of designs. Perhaps surprisingly,
Theorem 3 establishes a sharp class from two classes of designs. This new phenomenon seems to emphasize deep
combinatorial questions that underlie the evaluation of Ramsey numbers, as pointed out by Ryser [28] and Parsons [25].

2. Bounds on Ms(K2,n1, . . . ,K2,nk )

2.1. Lower bounds from a relationship

The link below extends a result due to Magnant and Yusko [21], which enables us to translate lower bounds on Ramsey
numbers into lower bounds on multipartite Ramsey numbers.

Theorem 4. Let k and s be positive integers, where k ≥ 2. For simple graphs G1, . . . ,Gk,⌊
r(G1, . . . ,Gk) − 1

s

⌋
+ 1 ≤ Ms(G1, . . . ,Gk).

Proof. Let r = r(G1, . . . ,Gk). By the choice of r , there is a k-coloring of the complete graph Kr−1 without a monochromatic
copy of Gi in color i, where 1 ≤ i ≤ k. Define c = ⌊(r − 1)/s⌋. Since cs ≤ r − 1, select a subgraph H of Kr−1 isomorphic to
Kc×s and consider the k-coloring restricted to H . Since H contains no monochromatic copy of Gi in color i, where 1 ≤ i ≤ k,
the result Ms(G1, . . . ,Gk) > ⌊(r − 1)/s⌋ = c follows. ■
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We now discuss some classes of lower bounds onMs(K2,n; k). To achieve this, we briefly review a few well-known lower
bounds on Ramsey numbers. Irving [14] (independently, Chung and Graham [5]) proved that r(K2,2; k+1) ≥ k2 +k+2 for
any prime power k, by using cyclic difference sets and projective planes. Lazebnik and Woldar [17] obtained the slightly
improvement r(K2,2; k) ≥ k2 + 2 if k is an odd prime power.

Lazebnik and Mubayi [16] extended the previous result to all prime power (odd or even). Moreover, they also
established that r(K2,n; k) ≥ (n − 1)k2 + 1, where n − 1 and k are powers of the same prime, by using properties of
finite fields.

Combining all these results with Theorem 4, the following lower bounds are derived.

Corollary 5. Given positive integers α, β, s and a prime number p, let k = pα and n = pβ + 1. The following lower bounds
hold:

1.

Ms(K2,2; k + 1) ≥

⌊
k2 + k + 1

s

⌋
+ 1.

2.

Ms(K2,2; k) ≥

⌊
k2 + 1

s

⌋
+ 1.

3.

Ms(K2,n; k) ≥

⌊
(n − 1)k2

s

⌋
+ 1.

2.2. Upper bounds from density argument

The research on Ramsey numbers for bipartite graphs K2,n is immensely difficult even for the specific case k = 2. Exoo
et al. [9] established that

r(K2,n, K2,n) ≤ 4n − 2, (2)

improving r(K2,n, K2,n) ≤ 4n in [5]. Many bounds on off-diagonal cases were deeply studied by Lortz and Mergensen [19,
20]. In particular, they proved

r(K2,n, K2,n+1) ≤ 4n and r(K2,n, K2,n+a) ≤ 4n + 2a − 3 (3)

for a ≥ 2 and were able to present classes where the bounds above are optimal for small a. The literature on multicolored
Ramsey numbers is rarer. Chung and Graham [5] obtained the upper bound

r(K2,n; k) ≤ (n − 1)k2 + k + 2 (4)

and improved slightly the case n = 2 (independently proved by Irving [14])

r(K2,2; k) ≤ k2 + k + 1. (5)

A closely related bound is established in [22], more precisely,

Ms(K2,2; k) ≤ ⌈(k2 + k + 2s − 1)/s⌉. (6)

Density arguments have been successfully explored to improve several upper bounds on Ramsey numbers for bipartite
graphs, according to [14,18–20] (when k = 2) and [5–7,22] (for arbitrary k). An adaptation of this approach is displayed
as follows.

Lemma 6. Let k ≥ 2, s, n1, . . . , nk be positive integers. Suppose that c is a positive integer such that

kcs
( (c−1)s

k
2

)
>

k∑
i=1

(ni − 1)
(
cs
2

)
, (7)

then Ms(K2,n1 , . . . , K2,nk ) ≤ c.

Proof. Let c be a positive integer that satisfies (7). Given an arbitrary k-coloring of Kc×s = (V , E), let Hi = (V , Ei) denote
the spanning subgraph of Kc×s formed by all edges in color i, where i = 1, . . . , k.

For each color i, let αi denote the number of stars of type K1,2 in Hi. A key part of the proof consists in estimating αi.
To achieve this, a star K1,2 in Hi can be represented by a pair (v, A) formed by a vertex v (the center of the star) and a
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subset A (the basis of the star) of V with |A| = 2 such that the set of edges {va : a ∈ A} is contained in Ei. Thus each
vertex v of the graph Kc×s is the center of

(di(v)
2

)
distinct stars of type K1,2 in Hi, where di(v) denotes the degree of v in Hi.

Since the binomial
(

·

2

)
is a convex function, Jensen’s inequality and the handshaking lemma

∑
v∈V di(v) = 2|Ei| imply

αi =

∑
v∈V

(
di(v)
2

)
≥ |V |

(∑
v∈V di(v)

|V |

2

)
= |V |

( 2|Ei|
|V |

2

)
= cs

( 2|Ei|
cs
2

)
.

Since
∑k

i=1 |Ei| = |E| = c(c − 1)s2/2, an application of Jensen’s inequality again yields

k∑
i=1

αi ≥ cs
[ k∑

i=1

( 2|Ei|
cs
2

)]
≥ cs

[
k
(∑k

i=1 2|Ei|/cs
k
2

)]
= kcs

( (c−1)s
k
2

)
.

Combining with the hypothesis in (7),
k∑

i=1

αi >

k∑
i=1

(ni − 1)
(
cs
2

)
,

hence αj > (nj − 1)
(cs
2

)
holds for some color j. By the pigeonhole principle, there is a subset A with |A| = 2 that is basis

of more than nj − 1 stars of type K1,2 in Hj, that is, Hj contains a copy of K2,nj . ■

We are ready to present upper bounds on Ms(K2,n1 , . . . , K2,nk ).

Theorem 7. Given positive integers k ≥ 2, n1, . . . , nk, denote S =
∑k

i=1 ni.

1. M1(K2,n1 , . . . , K2,nk ) = r(K2,n1 , . . . , K2,nk ) ≤ k(S − k + 1) + 2.

2. For every s ≥ 2, Ms(K2,n1 , . . . , K2,nk ) ≤

⌈
k(S−k+1)+2s−1

s

⌉
.

3. In particular, Ms(K2,n; k) ≤

⌈
(n−1)k2+k+2s−1

s

⌉
for any s ≥ 2.

Proof. The proof is based on an application of Lemma 6. Elementary calculations reveal that the inequality (7) is equivalent
to

s2c2 − s(2s + k + kS − k2)c + (s2 + sk + kS − k2) > 0. (8)

For the case where s = 1, note that the number c = 2 + k + kS − k2 satisfies the inequality above. Thus Lemma 6
implies the first part.

In order to establish the second part, assume s ≥ 2. Since k and S are also fixed, let f (c) denote the quadratic function
induced by the left side of the inequality in (8). Write t = k(S − k + 1) + 2s and c0 = (t − 1)/s. The result follows if we
show that f (⌈c0⌉) > 0. An analysis on its derivative shows that the real function f is increasing in the interval [t/(2s),∞).
Combining with the fact that c0 ≥ t/(2s), we obtain

f (⌈c0⌉) ≥ f (c0) = (s − 1)2 + k(s − 1) > 0.

Lemma 6 completes the argument.
Part 3 is an immediate consequence of part 2. ■

Theorem 7 yields r(K2,n1 , K2,n2 ) ≤ 2n1 + 2n2, fairly close to those in (2) and (3). Indeed, our bound differs from (2) by
exactly 2, and differs from those bounds in (3) by exactly 2 and 3, respectively. For the case where n1 = · · · = nk = n,
part 1 of Theorem 7 presents an alternative proof of the bound in (4). Moreover, the case where n = 2 of part 3 derives
the bound in (6) for s ≥ 2.

2.3. The gap between lower bound and upper bound

Suppose now that both n− 1 and k are powers of the same prime, denote L = ⌈(n− 1)k2/s⌉ and N = ⌈(k− 1)/s⌉ + 2.
Part 3 of Corollary 5 and part 3 of Theorem 7 produce

L ≤ Ms(K2,n; k) ≤

⌈
(n − 1)k2 + k + 2s − 1

s

⌉
≤ L + N (9)

for any s ≥ 2. Thus the gap between the lower and upper bounds is at most N , which does not depend on n. Table 1
illustrates numerical applications of (9) for a few instances, revealing that the gap can be very small.

Let s be a positive integer and let n − 1 be a power of 2. Part 3 of Corollary 5 yields⌊
4n − 4

s

⌋
+ 1 ≤ Ms(K2,n; 2).
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Table 1
Bounds on Ms(K2,n; k).
n k s Lower bound L Upper bound L + N

3 8 7 19 22
3 16 5 103 108
9 8 7 74 77
9 16 5 410 415
n k s ≥ k − 1 L ≤ L + 3
n k s ≥ (k − 1)/2 L ≤ L + 4
n k s ≥ (k − 1)/3 L ≤ L + 5

A slight improvement and extension are obtained in the next results, whose construction depends on suitable strongly
regular graphs.

Given a vertex v of a graph G = (V , E), we denote by N(v) the set of neighbors of v. Recall that a graph G is strongly
regular with parameters (p, k, λ, µ) when

• G has p vertices;
• G is k-regular;
• if vw is an edge of G, then |N(v) ∩ N(w)| = λ;
• if vw is not an edge of G, then |N(v) ∩ N(w)| = µ.

It is worth mentioning that strongly regular graphs are closely related to quasi-symmetric designs and designs with
polarity [4].

Corollary 8. Suppose that there is a strongly regular graph with parameters (4n − 3, 2n − 2, n − 2, n − 1). For any s ≥ 2,⌊
4n − 3

s

⌋
+ 1 ≤ Ms(K2,n; 2) ≤

⌈
4n − 3

s

⌉
+ 2.

Proof. The upper bound is an immediate consequence of Theorem 7 part 3. A combination of Theorems 1 and 4 produces
the lower bound. ■

Example 9. A classical construction states that a strongly regular graph with parameters (4n − 3, 2n − 2, n − 2, n − 1)
exists whenever 4n−3 is a prime power, see [9]. Given a prime p ≡ 1(mod 4), let s = pα and n = (pβ +3)/4 with β > α.
An application of the previous result produces

pβ−α
+ 1 ≤ Ms(K2,n; 2) ≤ pβ−α

+ 2.

Since this gap does not exceed 1, any improvement would be very desirable.

Let us mention an intriguing behavior: constructions from combinatorial designs sometimes determine Ramsey
numbers up to an error of 1, see [10,11,24,25] for instance.

3. A new lower bound from strongly regular graphs and Hadamard matrices

This section deals with the proof of Theorem 2. To achieve this purpose, let us build a lower bound on Ms(K2,n; 2).
Unlike the constructions in [1,5,8,11,14,24,25], our method needs not only one but two classes of combinatorial designs.
Two preliminary results are required.

Lemma 10. Let G = (V (G), E(G)) be a strongly regular graph with parameters (4n − 3, 2n − 2, n − 2, n − 1). For distinct
vertices a and b, denote

G1 = {c ∈ V (G) − {a, b} : ac ∈ E(G) and bc ∈ E(G)},

G2 = {c ∈ V (G) − {a, b} : ac ̸∈ E(G) and bc ̸∈ E(G)},

G3 = {c ∈ V (G) − {a, b} : ac ∈ E(G) and bc ̸∈ E(G)},

G4 = {c ∈ V (G) − {a, b} : ac ̸∈ E(G) and bc ∈ E(G)}.
The inequality |Gi| ≤ n − 1 holds for any i, where 1 ≤ i ≤ 4.

Proof. We firstly analyze the case where ab ∈ E(G). The choice of G yields |G1| = n − 2. Since the complement G of G is
also a strongly regular graph with parameters (4n − 3, 2n − 2, n − 2, n − 1) (see [4]), the equality |G2| = n − 1 holds. It
is easy to see that |G1| + |G3| + |{b}| = 2n − 2 and |G1| + |G4| + |{a}| = 2n − 2. A combination of the previous equalities
yields |G3| = |G4| = n − 1.

The proof for the case where ab ̸∈ E(G) follows analogously. ■
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Recall that a Hadamard matrix of order m is an m × m matrix H in which every entry is ±1 such that HH t
= mIm,

where In denotes the identity matrix of order m.
Hadamard matrices are particularly interesting as they generate special classes of symmetric designs, the so-called

Hadamard 2-designs and Hadamard 3-designs. We refer to [29] for a survey on this topic.

Lemma 11. Let M = (mi,j) be a Hadamard matrix of order m ≥ 2. For distinct integers 1 ≤ i, j ≤ m, denote

I1 = {k ∈ {1, . . . ,m} : mi,k = 1 and mj,k = 1},

I2 = {k ∈ {1, . . . ,m} : mi,k = −1 and mj,k = −1},

I3 = {k ∈ {1, . . . ,m} : mi,k = 1 and mj,k = −1},

I4 = {k ∈ {1, . . . ,m} : mi,k = −1 and mj,k = 1}.
Then |I1| + |I2| + |I3| + |I4| = m and |I1| + |I2| = m/2.

Proof. Given distinct lines i and j of a Hadamard matrix M , note that
∑m

k=1 mi,k ·mj,k = 0, thus |I1| + |I2| − |I3| − |I4| = 0.
Since |I1| + |I2| + |I3| + |I4| = m, we immediately conclude |I1| + |I2| = m/2. ■

The proof above is a simple adaptation of that for the well-known necessary condition: if there is a Hadamard matrix
of order m ≥ 3, then m ≡ 0 (mod 4). Note that Lemma 11 also holds when m = 2.

We are ready to prove Theorem 2.

Proof of Theorem 2. Let G = (V (G), E(G)) be a strongly regular graph with parameters (4n−3, 2n−2, n−2, n−1), where
V (G) = {1, . . . , 4n − 3}. Let M = [mi,j]m×m be a symmetric Hadamard matrix of order m. The vertex class of K(4n−3)×m
can be partitioned into the classes L1, . . . , L4n−3, where La = {(a, 1), . . . , (a,m)} for each a = 1, . . . , 4n − 3. Choose the
coloring ψ : E(K(4n−3)×m) −→ {−1, 1} defined by the rule

ψ
(
(a, i)(b, j)

)
=

{
mi,j if ab ∈ E(G)

−mi,j if ab ̸∈ E(G).

The symmetric matrix M assures that ψ is a well-defined coloring of the edges of K(4n−3)×m. It is enough to prove the
following statement.

Claim 1. Any two distinct vertices of K(4n−3)×m are simultaneously connected to at most m(n − 1) vertices in each color.

In order to prove Claim 1, we introduce the following notation. Given distinct vertices v1 = (a, i) and v2 = (b, j) and a
color w ∈ {−1, 1}, let δ(v1, v2, w) denote the number of vertices of K(4n−3)×m that are simultaneously connected to both
v1 and v2 with color w. Thus Claim 1 corresponds to the inequality δ(v1, v2, w) ≤ m(n− 1). For this purpose, the analysis
is divided into three cases:

Case 1: a ̸= b and i = j. We estimate how many vertices (c, k) are simultaneously connected to v1 = (a, i) and
v2 = (b, i) by color w. Consider an arbitrary k ∈ {1, . . . ,m}. If w = mi,k, then the construction of ψ implies that ac and
bc are both edges in E(G). If w = −mi,k, then ac ̸∈ E(G) and bc ̸∈ E(G). As mentioned before, G and its complement G
are strongly regular graphs with parameters (4n − 3, 2n − 2, n − 2, n − 1). In both situations, there are at most n − 1
possibilities in selecting c for each k. Therefore, there are at most m(n − 1) choices for (c, k). The argument ensures that
δ(v1, v2, w) ≤ m(n − 1).

Case 2: a = b and i ̸= j. Since i ̸= j, m ≥ 2 holds trivially. Note that there are 2n − 2 neighbors of the vertex a in
G. By Lemma 11, the number of vertices simultaneously connected to v1 = (a, i) and v2 = (a, j) by color w is exactly
|I1|(2n − 2) + |I2|(2n − 2). Lemma 11 again implies that

δ(v1, v2, w) = (|I1| + |I2|)(2n − 2) = (m/2)(2n − 2) = m(n − 1).

Case 3: a ̸= b and i ̸= j. We analyze the contribution of each color separately.

Case 3.1: Firstly consider the subcase where w = 1. A vertex (c, k) is simultaneously connected to v1 = (a, i) and
v2 = (b, j) by color 1 if and only if one of the following situations occurs:
– ac ∈ E(G), bc ∈ E(G), mi,k = 1, and mi,j = 1;
– ac ̸∈ E(G), bc ̸∈ E(G), mi,k = −1, and mi,j = −1;
– ac ∈ E(G), bc ̸∈ E(G), mi,k = 1, and mi,j = −1;
– ac ̸∈ E(G), bc ∈ E(G), mi,k = −1, and mi,j = 1.

Adding up the contributions of these four situations,

δ(v1, v2, 1) = |G1∥I1| + |G2∥I2| + |G3∥I3| + |G4∥I4|.
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Lemma 10 states that |Gi| ≤ n − 1 for any 1 ≤ i ≤ 4 and Lemma 11 ensures that |I1| + |I2| + |I3| + |I4| = m. Combining
these facts,

δ(v1, v2, 1) ≤ (n − 1)(|I1| + |I2| + |I3| + |I4|) = m(n − 1).

Case 3.2: It remains the subcase where w = −1. A vertex (c, k) is simultaneously connected to v1 = (a, i) and v2 = (b, j)
by color −1 if and only if one of the situations occurs:
– ac ∈ E(G), bc ∈ E(G), mi,k = −1, and mi,j = −1;
– ac ̸∈ E(G), bc ̸∈ E(G), mi,k = 1, and mi,j = 1;
– ac ∈ E(G), bc ̸∈ E(G), mi,k = −1, and mi,j = 1;
– ac ̸∈ E(G), bc ∈ E(G), mi,k = 1, and mi,j = −1.

By a similar argument used when w = 1, we conclude

δ(v1, v2,−1) = |G1∥I2| + |G2∥I1| + |G3∥I4| + |G4∥I3|
≤ (n − 1)(|I1| + |I2| + |I3| + |I4|)
≤ m(n − 1)

Since δ(v1, v2, w) ≤ m(n − 1) for all possible cases, there is not a monochromatic copy of K2,m(n−1)+1 in the coloring
induced by ψ . This argument concludes the proof. ■

It is worth mentioning that the construction in Theorem 1 corresponds to the particular case where m = 1. A closer
look reveals that the influence of the Hadamard matrix M = [1] is imperceptible on that construction, since −1 does not
appear.

4. A sharp class

Suppose that there is a strongly regular graph with parameters (4n − 3, 2n − 2, n − 2, n − 1). Exoo et al. [9] showed
that the lower bound in (1) is optimal when m = 1 (Theorem 1). However, the upper bound in Corollary 8 combined
with Theorem 2 does not produce the exact value of Mm(K2,m(n−1)+1; 2) for any m. Fortunately, this upper bound can be
improved for sufficient large m, more precisely.

Proposition 12. For integers s, n ≥ 2 such that s ≥ 2
√
n + 1,

Ms(K2,n; 2) ≤

⌈
4n − 4

s

⌉
+ 2.

Proof. Denote c0 =
⌈
(4n − 4)/s

⌉
+ 2. By Lemma 6, it is enough to show that c = c0 satisfies the inequality

cs
( (c−1)s

2
2

)
> (n − 1)

(
cs
2

)
,

or equivalently,

s2c2 − (2s + 4n − 2)sc + s2 + 2s + 4n − 4 > 0.

Let β = 2s + 4n − 2 and γ = s2 + 2s + 4n − 4. Consider the real function f (c) = s2c2 − βsc + γ for all c ∈ R. We
need to show that f (c0) > 0. Since f is a convex quadratic function and the highest root of f is

(
β +

√
β2 − 4γ

)
/(2s), it

is sufficient to prove that

c0 >
(
β +

√
β2 − 4γ

)
/(2s).

The hypothesis s ≥ 2
√
n + 1 implies that (s − 1)2 ≥ 4n. Consequently, the inequality s2 − 2s − 4n + 15/4 ≥ 0 holds,

which is equivalent to (β − 4)2 ≥ β2
− 4γ + 1. Combining the arguments above,

c0 =

⌈
β +

√
(β − 4)2

2s

⌉
≥

⌈
β +

√
β2 − 4γ + 1
2s

⌉
>
β +

√
β2 − 4γ
2s

.

The proof is complete. ■

Although the improvement is very subtle, it is enough to show Theorem 3, as follows.

Proof of Theorem 3. Theorem 2 ensures that Mm(K2,m(n−1)+1; 2) ≥ 4n − 2. On the other hand, the hypothesis m ≥ 4n
implies (m−1)2 ≥ 4m(n−1)+4, and consequently m ≥ 2

√
m(n − 1) + 1+1. An application of Proposition 12 concludes

that Mm(K2,m(n−1)+1; 2) ≤ 4n − 2. ■

As alluded before, there is a strongly regular graph with parameters (4n − 3, 2n − 2, n − 2, n − 1) whenever 4n − 3 is
a prime power.
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Theorem 13. Let p be a prime number and α be a positive integer with pα ≡ 1 (mod 4). If there is a symmetric Hadamard
matrix of order 4r with 4r > pα , then

M4r (K2,r(pα−1)+1; 2) = pα + 1.

Proof. Let n = (pα + 3)/4 and m = 4r . Since n is an integer and 4n − 3 is a prime power, there is a strongly regular
graph with parameters (4n − 3, 2n − 2, n − 2, n − 1). Furthermore, the conditions 4r > pα and pα ≡ 1(mod4) ensure
m = 4r ≥ pα + 3 = 4n. Thus the result follows from Theorem 3. ■

A famous conjecture states the existence of a symmetric Hadamard matrix of order 4r for all r . If this conjecture were
valid, the magnitude of Theorems 2, 3 and 13 increases. Classes of such matrices are known for many parameters. For
instance, the existence of a symmetric Hadamard matrix of order 4m4 for all odd m is proved in [23]. Thus an application
of Theorem 13 yields the exact class below.

Corollary 14. Consider positive integers α,m, p such that p is prime, m is odd, pα ≡ 1 (mod 4) and 4m4 > pα . We have

M4m4 (K2,m4(pα−1)+1; 2) = pα + 1. (10)

Example 15. In particular, for fixed p and α under the conditions above, the equality (10) is attained for all sufficiently
large odd m. For example,

M4m4 (K2,8m4+1; 2) = 10

for all odd m ≥ 3.
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