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Size multipartite Ramsey numbers for

bipartite graphs
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Abstract

Size multipartite Ramsey numbers were initially investigated when
the sought monochromatic graph is complete, balanced and multi-
partite, extending the celebrated bipartite Ramsey numbers. Nowa-
days, this generalization has been studied for several classes of graphs.
In this note we obtain near-optimal bounds and a few exact classes on
the size multipartite Ramsey numbers when the required monochro-
matic graph is a bipartite graph K3 ,. In particular, an exact class
for the four-cycle Cy is derived by using Dirichlet’s Theorem on

primes numbers.

1 Introduction

Many variants and generalizations of the classical Ramsey numbers have
been widely investigated. In this note we deal with the following extension
introduced by Burger et al. [2, 3]. Let K.« denote the complete multipar-
tite graph having c classes with s vertices per each class. Given a positive

integer ¢ > 2 and graphs G4, . .., Gg, the size multipartite Ramsey number

*Corresponding author. Supported by Capes/MCT.
fSupported by CNPq/MCT Grant: 311703/2016-0.
2000 AMS Subject Classification: 05C55, 05E30, and 11N13.
Keywords and Phrases: multipartite graph, bipartite graph, Dirichlet’s Theorem,
strongly regular graph.



104 P. H. Perondi and E. L. Monte Carmelo

me(Gh,...,Gy) denotes the smallest positive integer s (if it exists) such
that any k-coloring of the edges of K.« contains a monochromatic copy
of GG; in color 7 for some ¢, 1 < i < k. As usual, the case where G; = G
for 1 <1i < k is simplified by m.(G; k).

Particularly interesting, ma(G1,...,Gy) corresponds to the well-known
bipartite Ramsey number. We focus now on m.(K, n,,- .., Knny,). For
n = 1, these numbers were evaluated in [7] (when ¢ = 2) and [9] (for
an arbitrary ¢ > 2). The case n > 2 is much more difficult even for
¢ = 2. Indeed, bounds and few exact classes were determined in [1, 7],
but the exact value for a general case remains a hard open problem. It is
worth mentioning that the exact values of ma(Cy; k) are known only for
2<k<A4.

As the goal of this note, we estimate mc(Kap,,- .., Kopn,) when ¢ > 2.
For this purpose, we obtain an upper bound based on density arguments
from [10] and a few lower bounds by using classic results linked to strongly
regular graphs, finite fields, and number theory. In some cases these
bounds are sharp or near-optimal. In particular, the following exact classes
is established.

Theorem 1. For each u > 4, there are infinitely many primes k such
that
muk(C4;k) = UC/UJ + 1.

2 A few tools

We briefly describe the main tools used in this note.

Theorem 2. (Dirichlet [6]) For relatively prime numbers t and u, there

are infinitely many prime numbers p such that p =t (mod u).

The celebrated Dirichlet’s Theorem on primes in arithmetic progres-
sions plays a central role in the proof of Theorem 1. Concepts and tools

from graph theory and Ramsey theory are also applied here. Indeed,
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a closely related variant of the size multipartite Ramsey number is de-
scribed as follows. Given a positive integer s and graphs G, ..., G, the
set multipartite Ramsey number Ms(G1, ..., Gy) denotes the smallest pos-
itive integer ¢ such that any k-coloring of the edges of K.xs contains a
monochromatic copy of G; in color ¢ for some i, 1 <4 < k. Both versions

of the multipartite Ramsey numbers are linked by the relation below.

Proposition 3. For integers s > 1, ¢ > 2 and graphs G1,...,Gy, the
equivalence holds: m.(G1,...,Gy) < s if and only if Ms(G1,...,G) < c.

Proof: The proof is a natural extension of a particular case in [3]. L]

The upper bound below is proved by density arguments.

Proposition 4. ([10]) Let s, k,ny,...,ny be positive integers with k > 2.

If a positive integer ¢ satisfies

(C;l)s k s
(3 )>Xw-n(3) )
then Mg(Kop,,...,Kap,) <c.

Thus a combination of Propositions 3 and 4 yields the lemma below.

Lemma 5. Let ¢, k,nq,...,ny; be positive integers with ¢ > 2,k > 2. If a
positive integer s satisfies (1), then me(Kaop,, ..., Kon,) < s.

On the other hand, the following relationship is very useful to obtain

lower bounds. The proof is similar to that in [10].

Proposition 6. Suppose that m.(G1,...,Gy) exists. The following con-

nection holds

Y(Gl,...,Gk) 1

C

J +]- Smc(Glu"'va)7

where r(G1,...,Gr) = M1(G1,...,Gk) denotes the classic Ramsey num-

ber.
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3 Contribution: bounds and a few exact classes

The upper bounds ma(Kan, Kan) < 4n —3 ([1]), ma(Ka2;k) < k? +
k—1 (7)), and ma(Kan; k) < (n— 1)k% + k — 1 ([4]) are well-known. A

corresponding version to an arbitrary ¢ > 2 follows.

Proposition 7. Given positive integers ¢, k,nq, . ..,ng with ¢, k,ny > 2,
let S = Zle n;. The upper bound holds

Me(Kony, .- Kam,) < [C’f(s — k) + (c— 1)/1

(c—1)?

Proof: The result is an application of Lemma 5. Indeed, note that the

inequality (1) is equivalent to the inequality in the variable s
(c —1)%s* — (ck(S — k) + (c — 1)k)s + k(S — k) > 0. (2)

Thus the result follows if we show that so := [ (ck(S—k)+(c—1)k)/(c—1)?]
satisfies the inequality above.

For this purpose, write (2) in the form as?+8s+v > 0 and let A := 32—
4ay. If A < 0, then any real number s satisfies (2), in particular, sg, hence
the result is valid in this case. Otherwise, note that 0 < A = 82 —4ay < 52
because o, v > 0 (here we use ny > 2). Since VA < || = —f, we conclude
that

S ] ey

Thus s satisfies (2) and Lemma 5 concludes the proof. [

Theorem 8. (Ezoo, Harborth, and Mengersen [5]) For each n > 2,
(Ko, Koyn) = 4n — 2 if and only if there exists a strongly regular graph

with parameters (4n — 3,2n —2,n — 2,n — 1).

By exploring the literature on r(G1, ..., Gy), Proposition 6 might pro-
duce near-optimal lower bounds on m.(G1,...,Gy). For instance, Theo-

rem 8 and Propositions 6 and 7 yield the next result.
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Proposition 9. Suppose that there is a strongly reqular graph with pa-

rameters (4n — 3,2n —2,n —2,n — 1). Then

{471—3

J +1 < me(Kon, Kap) < [46(” -, 2 w
C

_l’_
(c—1)2  c¢—1
The classical construction of Paley graph assures that such graph with
parameters (4n — 3,2n — 2, n —2,n — 1) exists whenever 4n — 3 is a prime
power, see [5] for instance. Furthermore, for ¢ > 3, note that

4c(n—1)+ 2 4c(n—1)+ 2 4n-—2
(c—=1)2 " ¢c—17 ¢c—=2) ¢c—2 c¢—2°

The remarks above and Proposition 9 yield the next result.

Corollary 10. Given positive integers c,r with ¢ > 3 and a prime p such
that p" =1 (mod 4), let n = (p" + 3)/4. Then

[p"/e] + 1 <me(Kon, Kap) < [(p" +1)/(c = 2)]. 3)

A closer look reveals that if ¢ = p' for some ¢ such that r/2 < t < r,

both lower and upper bounds in (3) are sharp, more specifically.

Corollary 11. Let r,t be positive integers such that r/2 < t < r. Given
a prime p such that p" =1 (mod 4), let n = (p" + 3)/4 and ¢ = pt. Then

mc(KZ,mKZn) = pr—t + 1.

Proof: Apply Corollary 10 and note that (p" + 1)/(p' — 2) < p"t + 1.
Indeed,

PP -2)=p"+ (TP -2)—2>p" +p—2>p + 1
| |

We now explore bounds on the multicolored case. Motivated by Corol-
lary 11, a question arises: can we find an exact class for £ > 37 In order
to answer this question, we recall a result whose proof is based on finite
fields.
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Theorem 12. (Lazebnik and Mubayi [8]) Given a prime p, suppose that
k=p® andn =p®+1 witha>1 and > 0. Then

(n—1k? +1 < r(Kop; k).

Theorem 13. Let n,u > n + 2,k > 2 be positive integers such that
k=0 (mod u) or k =1 (mod u). Suppose k = p* and n = p® + 1 with
a>1 and 8 > 0 for some prime p. Then

muk(KZn; k) = {(n - 1)k/UJ + 1.

Proof: Let s = [(n — 1)k/u] 4+ 1. Proposition 6 and Theorem 12 produce
the desired lower bound my(Ks2; k) > s. The proof of the upper bound
muk(K2n; k) < s requires accurate estimates. Indeed, Proposition 7 yields

(n — 1)uk?® 4+ uk® — k < (n—1)k*+k
u?k? — 2uk + 1 uk — 2 ’

(K ) < [

Since (n—1)k*+k = (uk—2)<

we can write

(n—1)/~c+2(n—1)+u>+4(n—1)—|—2u

2 2 ’

U u u

Mk (Kan: k) < [(n - 1)k N 2n —1)+u  4(n—1)+ QUW n

u u? u?(uk — 2)

By hypothesis, there is ¢ € N such that k¥ = qu + r, where r =0 or r = 1.
Thus (n — 1)k/u = (n—1)g+r(n—1)/u < (n—1)g+ (n — 1)/u. Let
e=Mm—-—1u+2n—1)4+u+ (4(n — 1) + 2u)/(uk — 2). After a simple

algebraic manipulation, (4) and the facts above yield
Mauk(Kzni k) < [(n—1)g +¢/u’]. (5)

It remains to estimate €. By hypothesis, n — 1 < u — 3 holds, and conse-

quently

4(u — 2 —12
(u—3)+ u<u2_6+6u

2_
wk—2 = gy g < 3 (0

e<(u—3)u+2u—-3)+u+

Finally, the inequalities (5) and (6) imply

mukp(Kopn;k) < (n—1)g+1=nm—-1|k/u]l +1<[(n—1)k/u|+1=s.
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As an immediate consequence, the exact class below is derived.

Corollary 14. Consider integers >0, o >~ > 1. If p is a prime such
that p? > pP + 3, then

Mpatnr (Ko poy13p*) = p* 777 4+ 1.

Proof: Apply Theorem 13 with k = p®, n=p® +1 and u = p”. [

For example, select p = 3, 8 = 2 and v = 3. The result above yields
Maats(Ka,10;3%) = 3% 141 for any o > 3. In particular, myeg (K2 10; 27) =
10.

Moreover, the case 3 = 0 in Theorem 13 produces n = p® +1 = 2. Since

the graphs K39 and Cj are isomorphic, the following statement follows.

Corollary 15. For an integer u > 4 and a prime power k such that
k=0 (modu) or k=1 (mod u),

muk(Ca; k) = [k/u] + 1.

In contrast with Theorem 13, a closer look reveals that k in Corollary
15 does not need to be a power of a pre-determined prime, but a power
of any prime. In particular, Theorem 2 states that there are infinitely
many prime numbers k such that £ = 1 (mod u). This fact combined with
Corollary 15 imply Theorem 1.

Particularly interesting, Theorem 1 is essentially existential, due to the
fact that the sequence of prime numbers in Theorem 2 is proved by exis-

tential approach.

4 Final Remarks

In this work we investigated a few bounds on m¢(Kap,, ..., Kon,) by

using density arguments and known tools from graph theory, finite fields,
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and number theory. For future research, it would be interesting to explore

bounds on me(Kpp,,- .., Knp,) for n > 3 as well as theirs connections

with algebraic and combinatorial structures.
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