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1. Introduction

Let K, denote the complete graph on r vertices. Given positive integersn; > 2 and n, > 2, the celebrated Ramsey number
r(ny, ny) denotes the smallest natural number r such that every red-blue coloring of the edges of K, contains a red copy of
Ky, or ablue copy of K;,,. Determining Ramsey numbers has been a great challenge in combinatorics since 1930. Indeed, the
only known exact values for the diagonal case are r(2, 2) = 2,7(3, 3) = 6and r (4, 4) = 18, butr(5, 5) still remains an open
problem. Up-to-date tables on bounds are available in [19]. We refer to the book [15] for an overview on Ramsey theory.

A large number of concepts, variants, and extensions have been widely investigated in many directions. In particular,
Burger et al. [6,7] generalized the Ramsey numbers by assuming that both the original graph and the sought after
monochromatic graph are complete, balanced and multipartite graphs. More precisely, let K.«s denote the multipartite
graph having c classes with s vertices per each class. In particular, note that K;,; denotes the complement of K; (s isolated
vertices), and K, corresponds to the bipartite graph K; .

Given positive integers s, nj, my, np, my, with ny, n, > 2, the set multipartite Ramsey number Ms(Kn, xm, , Knyxm,) is
the smallest natural number ¢ such that every red-blue coloring of the edges of K. contains either a red Ky, xm, or a blue
Kn, xm, - It is worth mentioning that these numbers can be regarded as an extension of the classical Ramsey numbers. Indeed,
M1 (Knyx1, Knyx1) = 1Ky, Ki,) = r(n1, nz) because K1 is isomorphic to K.

Many results on M;(Ky, xm, , Kn,xm,) are presented in [6,7]. In addition to proving the existence of these numbers, the
authors obtain growth properties, relationships with classical Ramsey numbers as well as several results concerning general
lower and upper bounds.

In this article we extend the set multipartite Ramsey numbers to an arbitrary number of colors, described in Section 2.
As the first goal, most results in [7] are extended in Sections 3 and 4, including general lower and upper bounds. As the
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second goal, we focus on the case where a monochromatic bipartite graph is required. For this purpose, we explore density
arguments similar to Turan numbers as well as an extension of a link by Chvatal and Harary [10] in Section 5. Then sharper
upper bounds for certain classes of parameters are obtained, improving previous bounds under certain parameters.

In Section 6, a new link with classical Ramsey numbers for multipartite graphs is established too, which allows us to
derive lower bounds from several known results of literature: an exact value due to Bialostocki and J. Schénheim [3], a
bound by Lazebnik and Woldar [18], for instance. Moreover, a sharp asymptotic result for the four cycle K, ; completes this
article, generalizing a well-known result by Irving [ 16] and, independently, by Chung and Graham [9].

2. Existence and relationships with classical Ramsey numbers

2.1. Existence

We begin with the definition of set multipartite Ramsey number for several colors.

Definition 1. Given positive integers s > 1, n; > 2, m; > 1for1 < i < k, the set multipartite Ramsey number
M (K, xmys - - - » Ky xm,) denotes the smallest ¢ such that for each k-coloring of the edges of K. ., there is a monochromatic
copy of Ky, xm; with color i for some 1 <i < k.

In particular, note that the classical Ramsey number r(ny, ..., ny) for k colors can be regarded as My (Kp, x1, - . . , Kn, x1)-
The case where n; = nand m; = m for every 1 < i < k is simplified by M;(K;,»m; k).
The existence for the general case is guaranteed as follows.

Theorem 2. Given positive integerss > 1,n; > 2andm; > 1for 1 < i < k, the number M;(Ky, xm,» - - - » K, xm,) is well-defined
and

MS(I<I1]><111]7 e Knkxmk) = r(nlmlv cee nkmk)~
Proof. Letc = r(nymy, ..., ngmy). Given an arbitrary k-coloring of K. s, choose one vertex of each class and let V be the set

formed by these c chosen vertices. Because the graph induced by V is isomorphic to K., the coloring of K. s above induces a
k-coloring of K.. By definition of c, this induced coloring contains a monochromatic copy of Ky, for some color i. Since K s
contains K. and Ky, xm, is a subgraph of Ky, thus a monochromatic copy of Ky, xm; occurs. W

2.2. A lower bound from classical Ramsey numbers

Exploring relationships between multipartite Ramsey numbers and classical Ramsey numbers seems to be a natural
source of research, like Theorem 2. Another link is based on the concept of expansive coloring, investigated in [7,12]. A
coloring of edges in K. is called an expansive coloring if it satisfies the property: all edges induced by each pair of classes
in K. have the same color.

Theorem 3. Given positive integerss > 1,n; > 2, m; > 1 for 1 < i < k, the following inequality holds

max {T'(Tl], e nk)s min{l—mi/ﬂ n;: 1< i = k}} =< Ms(Kn]xm]’ FRE) Knkxmk)-

Proof. The proof is divided into two parts:

Part 1: We first prove that r(ny, ..., ng) < Mg(Kpyxmys - - - » Knyxmy)- Let ¢ = r(ny, ..., my). By the choice of c, there is a
k-coloring G of K._; that does not contain any monochromatic copy of Ky, in color i, where 1 < i < k. Take the expansive
coloring H of K _1)xs induced by G, namely, the edges between the classes C, and C, in K1)« are colored with the color of
the edge uv in G. Suppose for a contradiction that H contains a monochromatic copy of K, for some color i. These n; vertices
in Ky, have to belong to distinct classes of H, which induce a monochromatic copy of K, in G because H is expansive. This
is a contradiction with the construction of G. Since K, is isomorphic to Ky, .1 and Ky, <1 is a subgraph of Ky, «m;, the graph
K(c—1)xs does not contain a monochromatic copy of Ky, ».,; with color i.

Part 2: It remains to prove the second inequality, i.e,

mln{ I-mi/s-l n:1=< i< k} =< MS(I(TI]Xm]’ ey Knkxmk)~
Let g be a positive integer such that ¢ < min{ [%'lni : 1 <i < k}. We claim that any arbitrary k-coloring of K, does not
contain a copy of Ky, m;, where 1 < i < k. Two cases are analyzed in order to prove this statement:

Case 1: if m; < s. In this case, ¢ < [m;/s]n; < n;; and consequently K, is not a subgraph of K. Combining with the
fact that K, € Ky, xm;, We have that Ky, «m, is not a subgraph of K.

Case 2: if m; > s. Suppose for a contradiction that Ky, xm, is a subgraph of K, with the color i. For this case, note that
two vertices in the same class of K are forbidden to belong to distinct classes in Ky, xm,,. We need at least [m;/s] classes in
Ky in order to obtain each class of Ky, ;- Then we need at least [m;/s] n; classes in Ky, in order to obtain a copy of Ky, xm;»
and consequently the contradiction g > [m;/s] n; holds. ®

A simple argument shows us that Ms(Kyx1, . .., Kox1, Knxm) = (%ln.
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3. Some basic properties and some bounds

3.1. Growth properties

Proposition 4. Given positive integerss > 1,m; > 1,t; > 1,p; > 2, n; > 2 for 1 < i < k, the relations below hold:

1. My(Knyscmy s - - - Kngsemg) < Mg(Kpy sty s -+ -5 Kpxe) If 1 < pi, my < tiforeveryi, 1 < i < k.Theinequality is strict if n; < p;
forsomei,1 <i<k

2. MKy sy s - - - Kogemye) < MoKy sy - - - » Koy i @ < 5.

Proof. The proofs are similar to those given in [7, Proposition 2].

For part 1, let w = Ms(Kp, ¢, - - - » Ky, xt,)- By the definition of w, any k-coloring of K, s contains a monochromatic copy
of K, ; for some color i, 1 < i < k. The assumptions n; < p; and m; < t; yield that Ky, xm, € Kp, ;- Then the subgraph of
Ky, x5 induced by the color i contains a monochromatic copy of Ky, xm;. We conclude that Ms(Ky, xmy» - - - » Knjxm,) < w.

Without loss of generality, suppose that n; < p;,n; < pjfor2 <i < kandm; < t;for1 < i < k. Suppose for a
contradiction that v = Ms(Ky, xmys - - - » Knpsemy) = Ms(Kpy xty5 - -+ Kppxty)- Given G = K, xs, the graph K, 1) is regarded as
a subgraph of G.

By the definition of v, there is a k-coloring of K, 1 xs that contains no monochromatic copy of Ky, ., foreveryi, 1 <i < k.

It remains v copies of K in order to extent this coloring to G. We color all remaining edges with the color 1. Note that
this coloring of G contains no copy of K(n, +1)xm, (hence no copy of K, x¢, ) at color 1. Moreover, G contains no copy of Ky, xm;
(hence no copy of K;,, ;) for each color i, 2 < i < k. The arguments above imply My(Kp, x¢;, - - - » Kp,xy,) > v, a contradiction.

For part 2, let w = My(Kn;xm;» - - - » Knyxm, ). Consider an arbitrary coloring of K, s with k colors. The assumption q < s
forces Kyxq S Kuxs, S0, this coloring induces a k-coloring of K, .4. By the definition of w, the graph K, ., contains a
monochromatic copy of Ky, xm, for some color i. Consequently, K,,»s contains a monochromatic copy of Ky, xm, at color i,
proving the assertion. W

Note that Ms(Ky, x1, - - ., Knx1) = r(n1, ..., ) is derived from Theorems 2 and 3.

3.2. Gaps between Ramsey numbers

Gaps between Ramsey numbers can be investigated from a constructive approach. We now illustrate this method. Let
a = r(n; — 1, ny). Thus, there exists a red-blue coloring of K,_; that contains neither a red K;,, 1 nor a blue Kj,. Consider the
coloring of Kq4.n,—> by joining to K,_; above a blue K,,_; and coloring all remaining (interconnecting) edges red. Therefore,
this construction leads tor(nq, ny) > r(n; — 1,ny) +ny, — 1.

Burger and van Vuuren [7, Theorem 2] were able to extend this relation by means of a more refined construction, more
precisely:

Ms(Km xmy» anxmz) > Ms(K(n171)><m1 , anxmz) + ny[my/s] — 1. (1)
In this spirit, a generalization of this result is stated below.

Theorem 5. Givenny > k,n; >2for2 <i<kands>1,m;>1for1 <i<kleta = Zf‘zz (nij[m;/s1 — 1). Thus

Ms(Kmxnn PRI Knkxmk) > Ms(K(n1—l<+l)><m1 B anxmza e Knkxmk) + .

Proof. Take the sequences of numbers:

® Wy = Ms(K(n1—k+1)><m1 s an XMys + o Knkxmk)
e w; =n;[m/s] —1,for2 <i<k,

and let w = (Zi-;l w;) — 1 = wy; + a — 1. In order to prove the statement, it is enough to construct a k-coloring G of K, s
without a monochromatic copy of Ky, xm; in colori, 1 <i < k.

Consider the vertex set of G formed by the disjoint union of all vertex sets of K, s, where 1 <i < k.

By the choice of wj, there exists a k-coloring of K,,, —1)xs which contains neither a monochromatic copy of K, —k41)xm;
in color 1 nor a monochromatic Ky, xm; in colori,2 <i < k.

The coloring of K(,,, —1)xs above is extended to G according to the rules:

o all edges of each K, s are colored with color i, where 2 < i < k;
o all the remaining edges of G (interconnecting edges between two distinct Ky, xs and Ky, x5, 1 < i < | < k) are colored
with color 1.

Suppose for a contradiction that G contains a monochromatic Ky, x; for some color j.

We first analyze the case j = 1. Given i, 2 < i < k, each K, s must contain at most one partite set of K, x,, because all
edges receive color i. Then there are at least ny — k + 1 partite sets of K, xm, that belong to K,,—1)xs, that is, the subgraph
of K, —1)xs induced by the color 1 contains a copy of K, —x+1)xm,» @ contradiction.

The case where j # 1 remains. With a similar argument used in Theorem 3, the hypothesis w; < n; |—mj /s] yields that

Knjxm; is not a subgraph owajXS. Consequently, the graph G does not contain a monochromatic Knjxcm;» where2 <j<k ®
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Inequality (1) can be extended in another way. For this purpose, we consider a slightly weaker condition n; > 3 instead
of the hypothesis n; > k of Theorem 5.

Theorem 6. Given positive integers s, m; forevery 1 < i < kn > 2,k > 2,andn; > 3forevery1 < i < k— 1, let
a= Zf(:z (n;[m;/s] — 1). Thus

Ms(Krnxnn s e Knkxmk) > MS(I<(H]*1)><TT1]! cees K(n(k,l)fl)xm(k,l), Knkxmk) + a.

Proof. The coloring is based on a slight modification of that given in the previous proof. Take the sequences of numbers:

o W = MS(K(TI]—])Xml P K(Tl(kfn—])xm(k—l)’ KnkX"Ik) and
o w; =n;[m;/s] — 1forevery2 <i<k.

Letw = (fo=1 w;) — 1.

Let the graph H isomorphic to K,, s whose vertex set is formed by the disjoint union of all vertex sets of K(,,, —1)xs, and
Ky;xs Wwhere2 <i < k.

A k-coloring of H is defined as follows. By the choice of w1, there is a k-coloring of K,,, —1)xs Without any monochromatic
copy of K(n,—1yxm; in color i, for 1 < i < k — 1 and no copy of Ky, xm, with color k.

The coloring of K,,,—1)xs above is extended to H according to the rules:

o foreachi, 2 <i <k, all edges of K, are colored with i;
e all incident edges joined two distinct graphs K, s, ijxs, 2 <i<j < kare colored with 1;
o the edges between vertices in K, —1)xs and K, s are colored withi — 1, where 2 <i < k.

We first analyze the color k. Note that the edges with color k come from K(,,,—1)xs 0r Ky, xs. From the choice of the k-
coloring of K(,,,—1)xs and the fact that we need at least n [my/s] classes to produce a Ky, xm, (as explained in the proof of
case 2 in Theorem 3), H does not contain any monochromatic Ky, »m, with the color k.

Givena colori,with 1 < i < k—1, suppose for a contradiction that H contains a monochromatic subgraph Ky, ».,; for some
color i.If i > 2, the hypothesis w; < n; [m;/s] yields that Ky, xm, is not a subgraph of Ky, xs. If Kn,xm, is a subgraph of H, then
only one class of Ky, xm; can be contained in K, , xs. Therefore, we conclude that K, —1yxm; S K, —1)xs, @ contradiction. =

See applications of Theorems 5 and 6 in Example 18.

3.3. An upper bound
The upper bound given by Theorem 2 can be improved for a bipartite graph Ky xm = K., as follows.

Theorem 7. For every positive integers s, m, and k with k > 2, the following bound holds.

_ k(m _ 1) k(m—1)+1 +1
k 1 1
My (Ko K) < [‘(m )+ W + (")

S S

Proof. Let c be the bound mentioned in the statement. Given an arbitrary k-coloring of K., take S U T as a partition of the
classes of K. such that |S| = {(k(m -1 (k(m_])H) + 1) /s-‘ and |T| = [(k(m — 1) + 1)/s].

m

Choose a subset U of k(m — 1) (k(m;l)+1) + 1 vertices in S and a subset W of k(m — 1) + 1 vertices in T. Since a vertex

u € U and a vertex w € W belong to distinct classes, the edge uw belongs to K. .. Look at now the bipartite subgraph G
induced by the vertex sets U and W.

For our purpose, the central vertex u in U of a star K; , in G is adjacent to a set of m vertices in W, called base of this star.

For each vertex u in U, the pigeonhole principle asserts that there is a monochromatic copy of K; , where the center is u
and the base lies in W.

Since there are (k(m;:)“ ) subsets of cardinality min W, the pigeonhole principle implies that there is at least k(m—1)+1

copies of these stars with the same base.
Again by the pigeonhole principle, there are m copies of K; ,;, with the same color where each central vertex belongs to U
and these central vertices share the same base. Hence, the graph K. contains a monochromatic copy of Kjy.m = Ko W

The case where k = 2 of Theorem 7 corresponds to [6, Theorem 5].

4. A lower bound by the probabilistic method

Erdds proved an exponential lower bound for the classical Ramsey numbers in 1947, by using probabilistic arguments.
Nowadays this method is a powerful tool to estimate bounds on extremal problems in combinatorics. By applying this
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method, Burger and van Vuuren [7] presented a lower bound on set multipartite Ramsey numbers. The method can be
extended to an arbitrary number of colors, according to the next result.

Theorem 8. The lower bound holds

1 n 4
M (Knxm; k) > — (n!(m!)“l<m2(z)—1)
S

Proof. Given a positive integer a (which will be estimated afterward), consider a random k-coloring of K, s where the color
of each edge is determined by a uniform distribution. More precisely, the probability is determined by setting: for each edge
e and for each color i, let

1
P[ “ the edge e is colored with i "] = m
k

and make these probabilities mutually independent. Take the probability space formed by all k-colorings of K, . Let u denote

the number of copies of the graph Kioxm in Ky s and enumerate such copies, say, K nxm, ..., K .Foracoloriand1 <j<u,

denote the event “the jth copy K., is monochromatic with color i” by K,?X',)ﬂ
More generally, denote the event “some copy of Ky, xm in Ky is monochromatic with color i” by U; Kn(’x,)11 (union over all
copies). Since U; K,f’;’,)n I(,ﬁlxl,i U---u K,Ei,'%, the subadditivity of P yields

Pluikii] < ZP (1] < wp [0 ] < e ), o)

The event “some copy of K, xm in K, is monochromatic” can be denoted by U; U; I(rf’;?n. Combining the equality

UG kD =y kDU U k3R

nxm nxm nxmo»

the subadditivity of P and Eq. (2), we obtain
k 2(n
P [u,» Uj K,f’x',)n] < ZP[ K,?X,L] < kuk ™ (), 3)
i=1
Let us now estimate u. There are at most ( ) ways of choosing a vertex set with nm elements. There are at most ( ) ways

of choosing the first vertex class, and so on. Finally, there are at most ("m (:1 1)”') ways of choosing the last class. Since the
order of the classes does no matter,

= (B ()

Because

"< (aS) (nm)!

nm/ n!(mHr’

Eq. (3) yields
G as\ (nm)! _ an
p [u U; 1<,,m] < k<nm) ik (), (4)

We now search the largest a as possible as such that the probability above is strictly less than 1. For this purpose, take a
1

satisfying as < (n!(m!)”kmz(g)_ ) . Since (as( rfr!n), < (as)"™, the following bounds hold
as ! m - premnytem’ (2) -1
( )(nm). < (@s)™ < ni(m))"k™ ()1, (5)
nm
By Egs. (4) and (5), we derive

! n
P[U Yj K”’)] k( as) m)! o (3) < 24
m nm/ nl(mHr -k

Then the complement of the event U; U; I(,?X,),1 is not empty, that is, there is a k-coloring of K, ,.; without any monochromatic
copy of K. M
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5. Upper bounds from density arguments

Density arguments have been a powerful method in exploring problems in extremal graph theory. In particular, this
method yields many bounds on Ramsey numbers involving bipartite graphs (see [9,16] for instance) as well as bounds on
bipartite Ramsey numbers arising from Zarankiewicz numbers (see [2,8,17] for instance). In order to improve some upper
bounds for bipartite graphs, an adaptation of this approach for set multipartite Ramsey numbers is the main goal of this
section.

5.1. The method

Lemma9. Let s > 1, m > 2, and k > 2 be positive integers. Let c¢ be a positive integer such that

cs(“zs’%(:;"l)sz—|> > (m—l)(;:).

Then M (Kysm; k) < c.

Proof. Given an arbitrary k-coloring of K, the pigeonhole principle asserts that there is a color i with at least ((;) %—‘
edges. Let H = (V, E) be the spanning subgraph of K. s formed by all edges with color i. Let A denote the number of stars
of type K1 n in H. Each one of these stars corresponds to a center v and a basis A, where v € V,A C V, |A| = m,and vais an
edge of H for every a € A.

Each vertex v € V is the center of (d(”)

m ) distinct stars. Since the binomial (:1) is a convex function, Jensen’s inequality

gives us the following lower bound

> dw)
A=Z<d(r:)> ch( Wml )

veV

Euler's identity ) _, d(v) = 2|E| and the hypothesis imply

veV
2 Irc(c—l)sz—‘ cs

A>cs| &1 2 >(m—1)< )
m m

By the pigeonhole principle again, there is a subset A that is the base of more than m — 1 stars, then H contains a copy of
Kyym with colori. ®

We have weakened slightly Lemma 9 to facilitate applications, more precisely.

Lemma 10. Let s > 1, m > 2, and k > 2 be positive integers. Let ¢ be a positive integer such that

(c—1)s cs
cs| ¥ >(m-1) ( ) )
m m
Thus Ms(Kyxm; k) < c.

2
Proof. Since % P(C%—‘ > % the result follows as an immediate application of Lemma 9. W

5.2. Some applications
Several new bounds can be derived from Lemma 10. We discuss here some of these applications.

5.2.1. Bounds for Koy
Chung and Graham [9, Theorem 1] proved that M;(Kaxm; k) < (m — 1)(k + k/™)™. Hence Proposition 4.2 yields
My (Kaxm; k) < (m — 1)(k + k™™ However the last bound can be improved as follows.

Theorem 11. Given a positive integer m > 2, the bound below holds for any sufficiently large k

M2(1<2><m; k) = (m - 1)km'

Proof. Writing c = (m — 1)k™, it is enough to show the hypothesis of Lemma 10. Since 2(c — 1)/k > 2(m — Dk™ 1 — 1,
the hypothesis holds provided

_ m—1 __ _ m
2(m — k" <2(m Dk 1) m— 1) <2(m Dk ) ' ®)
m m
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By applying twice the relation (a — m + 1)™/m! < (r‘:l) < a™/m! (the first inequality when a = 2(m — 1)k™~! — 1 and the
second one when a = 2(m — 1)k™, Eq. (6) follows if

2(m = DE™[2(m — DK™ = m]™ > (m — D[2(m — DK™™.
Simple calculation shows that the inequality above is equivalent to
@Y™ — 12(m — DK™ > m2Vm, (7)

and the result follows. =

Example 12. Since Eq. (7) holds for m = 4 and k = 4, we obtain M;(K>x4; 4) < 768, which improves significatively the
previous upper bound M; (K;4; 4) < 4298 from Theorem 7.

5.2.2. Bounds for K; 3
A closer look on the argument produces a slightly stronger bound for the case m = 3, more precisely:

Theorem 13. Let k > 2 be a positive integer.

1. M;(Koys; k) < [(2k® + 6k)/s] + 3 for everyss.
2. For s = 2, the sharper bound M, (K»3; k) < k* + 2k + 1 holds.

Proof. For item 1, we need to find a positive integer ¢ such that

cs((c3"l)s>>2(;s). (8)

By applying the relation (a — 2)3/3! < (g) < a®/3!, Eq. (8) can be derived from the following inequality

[es — (s + 2k)]% > 2k (cs)?. 9)
Note that both inequalities below

(xs)> = 3(s + 2k) (x5)% > 2k3(xs)?
3(xs)(s + 2k)? — (s +2k)* > 0

hold for any real number x > (2k* 4 6k) /s + 3. In particular when x = ¢ = [(2k®> + 6k)/s] + 3, the sum of the inequalities
above implies Eq. (9), and consequently Eq. (8) holds. Therefore the bound follows as an application of Lemma 10.

It remains the analysis of item 2. If

2k* + 4 20k + 2k + 1
2(k3+2k+1)< ; )>2< k +3 + )),

then Lemma 10 concludes the required bound. Elementary calculation shows us that the previous inequality is equivalent
to k* 4+ 5k*> + 6 > k® + 2k, which holds forevery k > 2. ®

Table 1 presents some upper bounds on M;(K;x3; 2) for small s, which allows us a comparative analysis between [6,
Theorem 5], Theorem 13.1 and Lemma 9.

As mentioned in Table 1, the bound M, (K;3; 2) < 24 was obtained in [6]. Theorem 13.1 improves to M, (K»3; 2) < 17.
However, the sharper bound M, (K;.3; 2) < 13 holds from Theorem 13.2.

Table 1

Upper bounds on M;(Kax3; 2).
s 1 2 3 4 5 6 7 8
Theorem 5 of [6] 46 24 14 13 10 8 7 7
Theorem 13.(1) 31 17 13 10 9 8 7 7
Lemma 9 22 13 9 8 7 6 6 5
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5.3. Turdn number and bounds for K>

Given graphs G and F, the Turdn number ex(G; F) denotes the maximum number of edges in a subgraph of G containing
no copy of F. We refer to [4] for a survey on this mainstream problem of extremal graph theory.

Chvatal and Harary [10] established a simple but particularly important connection between Turan numbers and
multicolored Ramsey numbers:

If ex(K,: F) < (;) /k, then r(F: k) < c,

where r (F; k) denotes the smallest n such that any k-coloring of the edges of K, must contain a monochromatic copy of F. A
natural extension to multipartite graphs is stated, more precisely.

Lemma 14. If ex(Kcxs; F) < 52 (5) /k, then Ms(F; k) < c.

Let us focus on the case where F = K3 ; = C4. Erdés-Rényi-Sés [13] (see also [9,16]) computed

ex(Ky: Ky 5) < %(1 +Van —3). (10)

Determining Turan numbers even for this cycle has been a long-standing problem. The topic is so difficult that exact values
on ex(Ky; K3 ») are known only for a particular class, according to Fiiredi [ 14].

The well-known bound r(K»»; k) < k? 4k + 1 was obtained by Irving [ 16, Theorem 3.12] and, independently, by Chung
and Graham [9, Corollary 1]. We extend this bound as follows.

Theorem 15. Let k > 2 and s be positive integers. Thus

K +k+2s—1

M;s(Kax2; k) < ’7 )

s

Proof. The proof is an application of Lemma 14 when F = K; ,. Because the case s = 1 is already known, we only prove the

case where s > 2. Let ¢ be the upper bound of the statement above. Since K. is a subgraph of K, any K, ,-free subgraph

of K.« is also a K, »-free subgraph of K., and consequently ex(K.«s; K».2) < ex(K; K>.2). By using this previous inequality
and the bound in Eq. (10), the hypothesis of Lemma 14 holds if the inequality below is satisfied for all k.

(2sc — 2s — k)?
<
k?

Take now the real function f (x) = (2sx — 2s — k)> — (4sx + 3)k?. Note that Eq. (11) can be reformulated as f (c) > 0. For
this purpose, it is easy to see that its derivate f'(x) = 4s(2sx — 2s — k) — 4sk? is nonnegative for all x > (k? + k + 2s)/2s.

Put c = [A/s], where A = k? + k + 2s — 1. Elementary calculation reveals that f (A/s) > 0. Combining the facts: f is an
increasing function for allx > A/s,f(A/s) > 0,c > A/s, we conclude that f(c) > 0 and consequently Eq. (11) holds. Finally,
apply Lemma 14 to obtain the desired bound. ®

4sc — 3 11

6. A new connection

As mentioned above, the works [6,7] explore important connections between M (Ky, xm, , Kn, xm,) and r (Ky, , Ky, ), Ramsey
number that ensures the occurrence of a monochromatic copy of a complete graph on suitable u; and u, vertices. With this
spirit, we aim to discuss now a connection between Ms(Ky, xmy» - - - » Knpxm) and r(Kaxuy s -« -5 Koy )-

Theorem 16. Given positive integers, the following lower bound holds

M](KH]XYT]]! DR Knkxmk) -1
1.
[ '

M;(Knyxmys - -+ s Knpxmy) =

Proof. Let n = M (Ky, xm,> - - - » Ky xm,)- By the choice of n, there is a k-coloring of the complete graph K,_; without a
monochromatic copy of Ky, in color i, where 1 < i < k.Letc = [(n— 1)/s]. Since ¢s < n — 1, select a subgraph H
(isomorphic to K. «s) of K,_1 and consider the k-coloring restricted to H. It is clear that H contains no monochromatic copy
of Ky, »m; in colori, where1 <i<k. ®

Example 17. Let us illustrate some numerical results:

1. Bialostocki and J. Schonheim [3] proved that M;(Kzx2; 3) = r(C4; 3) = 11. A combination of Theorems 15 and 16 yields
the following numbers:
6 <My(Cs53) <8 4=<M3((453) <6 3 =<Myu(CGy53) <5
3<Ms5(Cy53) =5 2 <Ms(Cy; 3) <4
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2. The lower bound 27 < r(C4; 5) is due to Lazebnik and Woldar [18]. Theorems 16 and 15 produce:

14 < My(C4;5) <17 9 < M3(Cy;5) <12
7 < My(Cq;5) <10 6 < M5(Cy;5) <8.

Example 18. Table 2 presents some lower bounds on M(Ksx2, K22, K>%2) by using Theorem 5 and the lower bounds in
Example 17.1. The same values and applications of Theorem 6 produce lower bounds on Ms(K3x2, K3x2, K2x2) in Table 2.

Table 2

Some lower bounds.
s 2 3 4 5
M;s(Kax2, Kax2, Kax2) 8 6 5 5 4
M;(K3x2, K3x2, K2x2) 9 7 6 6 5

We now discuss additional applications.

6.1. Extending a result by Burger et al.

Given a graph G, let x (G) denote the chromatic number of G and let c(G) denote the cardinality of the largest connected
component of G. Chvatal and Harary [11] discovered a useful bound r(H, G) > (x (G) — 1)(c(H) — 1) 4 1. As an application,
Burger and van Vuuren |7, Corollary 1] proved that

Ml(Knlxmla anxmz) = (n2 - 1)(”1”’11 - 1) + 1. (12)

The authors pointed out that an extension to an arbitrary s would be interesting.
We attempt to extend this result by discussing firstly an adaptation of Eq. (12) to an arbitrary number of colors. This
method is motivated by the recursive construction from the proof of r(Ks; k) > 2%, see [15, page 145].

Proposition 19. Given positive integersm; > landn; > 2for 1 <i <k, letr = r(Ky, xm,> - - - » Knj_; xm,_,)- FOT every positive
integer s,
(=D —1)
M (Knyxmys - - -+ Kngsemyl) = Lf +1.

Proof. We firstly analyze the case s = 1. By the choice of r, there is a k — 1-coloring of K;_; without a monochromatic copy
Of Ky, xm; in color i, where 1 < i < k — 1.Let ¢ = (ny — 1)(r — 1) and consider K. to be made up of n, — 1 copies of K;_4
with edges interconnecting all pairs of vertices in the distinct copies of K;_;. Color all edges within a copy K;_; by using the
k — 1 coloring above, and all remaining edges with color k. There is no copy of Ky, ,; in color i, where 1 < i < k — 1. Since
the largest complete graph in K. with color k has ny — 1 vertices, no copy of Ky, xm, with color k can occur. The proof for an
arbitrary s follows from Theorem 16. ®

We note that for 1-coloring, the degenerate case of the notation considers r(Kn, xm,; 1) = niymy, which is used in the
lower bound of Proposition 19 when s = 1 and k = 2. Under this viewpoint, Proposition 19 can be regarded as an extension
of Eq. (12).

Corollary 20. Given positive integerss > 1,n>2,m> 1,k > 2,
mn — Dk +1
MK by > 28D L
Proof. We analyze the case s = 1. Since r (K,xm; 1) = nm, Proposition 19 produces
Mi(Knxm; 2) = (MiKnsm; D — D= D +1=mm—Dn—1)+1>mn— 1>+ 1.
The argument follows by induction on k. Theorem 16 completes the proof to an arbitrarys. H

The case where s = 1,n = 3, and m = 1 yields essentially the bound r(K3; k) > 2¥ mentioned above.

6.2. Asymptotic bound for the four cycle

We conclude this work with some remarks about asymptotic results. Alon et al. [ 1] proved that r (Kxx3; k) = (1+0(1))k,
improving a well-known construction based on certain finite geometries by Brown [5]. As an immediate application of

Theorems 16 and 13, for a given s, the number M;(K>3; k) is bounded by (1 + o(l))? and (2 + o(l))?.
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An asymptotically sharp class can be established, more specifically.

Corollary 21. For a positive integer s, we have

) k?
lim M;(Kyx2; k) = —.
k— 00 S

Proof. The upper bound follows from Theorem 15. Irving [ 16, Theorem 3.2] proved that M (Kyx2; k) > k* — k+ 1 for every
k — 1 prime power (see also [9, Theorem 3]). The proof follows from this lower bound, Theorem 16, and the fact that prime
powers are sufficiently dense. ®

The case where s = 1 was obtained in [16,9]. As another consequence, it is worth mentioning that Theorem 15 is
asymptotically sharp for an arbitrary s.
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