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Abstract

The notion of a graph theoretic Ramsey number is generalised by assuming that both the original graph whose edges
are arbitrarily bi-coloured and the sought after monochromatic subgraphs are complete, balanced, multipartite graphs,
instead of complete graphs as in the classical definition. We previously confined our attention to diagonal multipartite
Ramsey numbers. In this paper the definition of a multipartite Ramsey number is broadened still further, by incorporating
off-diagonal numbers, fixing the number of vertices per partite set in the larger graph and then seeking the minimum
number of such partite sets that would ensure the occurrence of certain specified monochromatic multipartite subgraphs.
(© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The classical graph theoretic Ramsey number 7(m,n) may be defined as the smallest natural number p with the property
that, if the edges of the complete graph K, are arbitrarily coloured using the colours red and blue, then a red K, or a
blue K, will be forced as subgraph. We generalise this definition by taking both the original graph whose edges are to be
bi-coloured and those which are sought as monochromatic subgraphs to be complete, balanced, multipartite graphs. When
adopting this generalisation, we follow the natural approach to fix the cardinality of each partite set in the larger graph
and to seek the minimum number of partite sets of this cardinality that would ensure the occurrence of certain specified
monochromatic multipartite subgraphs, as is done in the following definition (which is an off-diagonal generalisation of
the definition used by Burger, et al. [1]). We call this minimum a set multipartite Ramsey number. In the definition we
denote a complete, balanced, multipartite graph consisting of n partite sets and / vertices per partite set by K.

Definition 1 (Set multipartite Ramsey numbers). Let j, I, n, s and ¢ be natural numbers with n,s > 2. Then the set
multipartite Ramsey number M;(K, %, Ksx,) is the smallest natural number ¢ such that an arbitrary colouring of the edges
of K¢y, using the two colours red and blue, necessarily forces a red K,x; or a blue K, as subgraph.

Note that the subgraphs in Definition 1 need not be vertex-induced subgraphs, i.e. additional edges (of any colour)
may be present between vertices of the same partite set within the forced monochromatic multipartite subgraphs. This
definition is a generalisation of that of the classical Ramsey numbers in the sense that if (g, 1)=t, then Mi(Ksx1,K;x1)=T.
The following symmetry property of off-diagonal set multipartite Ramsey numbers, whose analogy is well-known in the
classical case, is a result of the ubiquity of the word “colour”.
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Proposition 1 (Symmetry property). If the multipartite Ramsey number M;(K,xi,K¢x:) exists, then M;(Kyxi,Kex:) =
A/[j(KA'XtaKnXZ)- D

Our goal in this paper is to determine new, small, off-diagonal set multipartite Ramsey numbers. After establishing the
boundedness of these numbers, as well as some of their basic properties, in Section 2, we briefly review all known set
multipartite Ramsey numbers and establish some new numbers in Section 3. In Sections 4 and 5 we turn to the problems
of determining, respectively, lower and upper bounds for larger numbers.

2. Boundedness and basic properties

The question of the boundedness of set multipartite Ramsey numbers is settled first, and the proof is based upon the
known existence of the classical Ramsey numbers. To achieve this, we need the notion of an expansive colouring.

Definition 2 (Expansive colourings). A colouring of the edges of K is called an expansive colouring if, for every pair
of partite sets of Ky, the edges between all vertices in these partite sets have the same colour. Therefore every expansive
colouring of Ky, corresponds to exactly one edge colouring of K; (this may be seen by contracting each partite set of
Kix; to a single vertex), and we say that the expansive colouring of K;; is induced by the corresponding colouring of
K (this definition is due to Day, et al. [5]).

Theorem 1 (Boundedness). The multipartite Ramsey number M;(K,x 1, Ksx:) exists and, in fact,

I+st—2
max{r(n,s),min{[1/j]n, [1/j]s}} < Mj(Koxr, Koxe) < (n +1St1 )

for all j,1,t =1 and n,s = 2.

Proof. Let w = r(n,s) = 2. By the definition of w, there exists an edge bi-colouring of K,,_; that contains neither a
red K, nor a blue K as subgraph. The expansive colouring of K,—1)x; induced by this bi-colouring therefore contains
neither a red K, nor a blue K, as subgraph. But K, = K,x1 C K,x; and K; = K;x1 C K,x, for any /,¢ > 1, and so
the expansive colouring of K(,—1)x; also contains neither a red K,x; nor a blue K;x, as subgraph. We conclude that
Mi(Kyx 1, Koxi) > w — 1.

In order to establish the second lower bound, we prove that K,x;,Kixi & Kix; if & <min{[//j]n, [t/j]s}. Consider
first the case where / < j and suppose that £ < [//j]n. Then k <n, but K, C K,x; for any / > 1, while K, & Kix;.
Therefore K,x; & Kix;. Consider now the case where / = aj + f for some integers « > 1 and 0 < f§ < j. We show, by
attempting to construct n partite sets of a potential subgraph K, that K,x; & Kix, unless, possibly, if & > [//;]n. Note
that two vertices from any partite set of K ; may not occur in different partite sets of an attempted construction of K,
within Kj;, since there are no edges between such vertices. Hence we need at least [///] partite sets from K, for the
construction of a single partite set of K,x;, and there will be j — f superfluous vertices for each such construction. But
there must be n partite sets to form K »;, implying that & > [//j]n. It can be shown in a similar way that Kyx;, & Kix;,
unless, possibly, if k = [#//]s.

Finally, consider the upper bound. From the existence theorem of Erdds and Szekeres [6] it follows that r(nl,st) <
("l:f_’ Tz ) = u, say. Hence, when arbitrarily bi-colouring the edges of K, a red K,; or a blue Ky is forced as subgraph.
But since K,x; C Ky, Ksxi € Ky and K, = Kux1 C Kux; for any j > 1, it follows that K,; necessarily contains a red
K,x; or a blue Ky, as subgraph. []

Although the above existence theorem is constructive in the sense that it provides explicit bounds for M;(Kx 1, Ksx:),
these bounds are typically weak. It is possible to establish growth properties for set multipartite Ramsey numbers.

Proposition 2 (Growth properties). Let n,s,o,y =2 and j, k, I, t,  and ¢ be natural numbers. Then
(1) Mij(Kyx1,Ksxi) < Mi(Kyxp, Kyxs) if n <o, I < f, s <yandt < 9. Strict inequality holds if at least one of the strict

inequalities n < o or s <y holds.
(2) Mi(Knx1,Kixi) < Mi(Kuxi, Koxi) if k < j.
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Proof. (1) Let M;(Kyxp,K,xs)=w and suppose n < o, [ < ff, s <y and ¢ < 6. Then an arbitrary bi-colouring of the edges
of Ky, necessarily contains a red K,»; (and hence a red K, x;) or a blue K,xs (and hence a blue Kx,) as subgraph.
Consequently M;(K,x1,Ksxi) < w.

Now suppose that M;(K,x 1, Ksxi) =M;j(K,xp,Kyx5) =0 (say), but that n < «, / < f, s <y and ¢ < 6. Then there exists
a bi-colouring G of the edges of K,—1)x; that contains neither a red K,x; nor a blue K, as subgraph. Form a new
multipartite edge colouring H by connecting each of the vertices of Kjx; to all the vertices of G by means of red
edges. Then A contains no red K, +1)x; and hence no red K, as subgraph. Furthermore, // also contains no blue K,
and hence no blue K,x; as subgraph. But H is a bi-colouring of the edges of K,;, which contradicts the definition
of Mj(K,x1,Ksx:), and we conclude that if n <o, I < f, s <y and ¢ <6, then M;(Kyx1,Ksxi) < Mj(Kyxp,Kyxs). The
desired result then follows from the symmetry property of Proposition 1.

(2) If Mi(Kyxi,Ksx:) =w and k < j, then an arbitrary bi-colouring of the edges of K, s necessarily contains a red
K, or a blue Ky, as subgraph. But, since K, xr C Ky, if k < j, there must also be a red K, x; or a blue K,x; in an
arbitrary bi-colouring of the edges of K, x;, so that Mj(Kux:, Ksxi) <w. [

There are similar results to those of Propositions 2(1) and 2(2) for the classical Ramsey numbers. Note that the
strictness of inequality property mentioned in Proposition 2(1) does not necessarily hold when at least one of the strict
inequalities / < f§ or ¢ < ¢ holds. Exactly when strict inequality occurs (as well as minimal bounds on the gaps in such
strict inequalities) is characterised by the next result.

Theorem 2 (Gaps between Ramsey numbers). For all natural numbers n =3, s =22 and j,1,t = 1, Mj(Kyx1,Kixi) =
Mi(Ku—1yx1, Ksxi) +s[t/j] — 1.

Proof. Let v =M;(Ku—1)x1,Ksx:) and w=s[t/j] — 1. Then there exists a bi-colouring G of the edges of K(,—1)x; which
contains neither a red K,—1)x; nor a blue K,x, as subgraph. Form a new multipartite edge-colouring H by colouring all
edges of K, x; blue and connecting each of the vertices of K, x; = F to all vertices of G by means of red edges.

Now suppose it were possible that H contains a red K,x; as subgraph. Since F' can contain at most one partite set (or
part thereof) of K,«; (because F has no red edges), at least n — 1 partite sets of K,x; must be in G. But this contradicts
the definition of G, and we conclude that H does not contain a red K,x; as subgraph.

Since at least s[#/j] partite sets of size j are necessary for a multipartite graph to contain K, as subgraph, F (and
hence also H) contains no blue Ky, as subgraph. Consequently H is an edge bi-colouring of K+w—1)x; containing
neither a red K,x; nor a blue K;x, as subgraph. [

3. Known and new small set numbers

There are only a few set multipartite Ramsey numbers known to the authors. These are M;(Kzx2,K3x3) =7 due to
Chartrand and Schuster [2], M1(K2x2,K4x1)=10 due to Chvatal and Harary [4], M2(K2x2,K3x1)=4 and M>(Kax2, Kax1)="7
due to Harborth and Mengersen [13,14], Mi(K2x2,Ksx1) = 14 due to Greenwood and Gleason [10], Mi(K2x2,Kex1) =18
due to Exoo [8], Mi(K>x3,K2x3) = 18 due to Harborth and Mengersen [12] and the complete class of (K>x2,Kax2) set
multipartite Ramsey numbers, as listed in Table 1.

Bounds for small, diagonal as yet undetermined set multipartite Ramsey numbers may be found in [15]. We establish
two new classes of basic set numbers.

Proposition 3 (Basic set multipartite numbers).

(1) Mi(Kax1,Koxi) = [t/j]s for all j,t =1 and s = 2.
(2) Mj(Kux1,Ksx1) =r(n,s) for all j =1 and n,s > 2.

Proof. (1) Consider an arbitrary bi-colouring of the edges of the graph Ky, ;. If this colouring contains a red edge,
then the graph contains a red K>« as subgraph. Else it contains a blue K, as subgraph. Hence M;(Kax1,Ksx:) < [t/j]s.
Now colour the edges of K([y;1,—1)x; blue. This colouring contains neither a red K>x1 nor a blue Kx, as subgraph, so
that M/(KZXlsKVXt) > [t/ﬂs — 1.

(2) Mj(Kuxi1,Ksxi) = r(n,s) for all j,[,t > 1 and n,s > 2 by Theorem 1, but M;(K,x1,Ksx1) < Mi(Kux1,Ksx1)=r(n,s)
by Proposition 2(1). Consequently M;(Kyx1,Ksx1)=r(n,s) for all j > 1 and n,s >2. [

Finally, we conclude this section by fully establishing the new class of (K>x2,K3x1) set multipartite Ramsey numbers.
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Table 1
The class of (K;x2,K5x2) multipartite Ramsey numbers

J M;i(Kax2,Kr%2)

62
4b
4b
3b
2b

6 20

\\/m.bwl\)»—-

2Due to Chvatal and Harary [3].
"Due to Burger, et al. [1].

Theorem 3 (The class of (K2x2,K3x1) set multipartite numbers).

(1) Ml(KZXZ,KBXI):7.
(2) My(Kzx2,K3%1) = 4.
(3) Mj(Kax2,K3x1) =3 for all j = 3.

Proof. (1) Due to Chartrand and Schuster [2].

(2) Due to Harborth and Mengersen [13,14].

(3) Let ¥ ={xi,...,x9} be the vertex set of G ~ K33, where {xi,x2,x3}, {x4,%s5,x6} and {x7,xs,x0} are independent
sets. Suppose there exists a (red, blue)-colouring of the edges of G containing neither a red C4 nor a blue K3 and denote
the subgraphs of G induced by the red and blue edges of this colouring by R and B respectively. Since there is no graph
with an odd number of vertices, each of odd degree, we have the following two cases:

Case (a): A(B) = 4. If in B some vertex has at least two neighbours in each of the other two partite sets, we have
a contradiction immediately. Thus we may assume that A(B) =4 and that Np(x1) = {x4,xs5,%6,x7}. Then x4,xs5,xs are the
vertices of a red K3, for otherwise there is a blue K3. Since there is no red Cs, we may assume that xoxs € B or x2x9 € B;
we assume the former. If either x, or xs is adjacent to two of x4,xs,xs there is a red Cs; otherwise Np(x2) U Np(xs) # ()
and there is a blue K3, which is a contradiction.

Case (b): A(R) = 4. Assume that |Ng(x1)| = 4, and note that x, is adjacent in B to at least |Nz(x1)| — 1 of the vertices
in Ng(x1); otherwise there is a red C4. If |[Ng(x1)| = 5, then x, has degree at least four in B, so we have case (a). Hence
we may assume that Nr(x1) = {vi, v2,v3,v4} and Np(x1) = {vs,v6}. Since {x2,x3,vs,06} does not span a red Cs, it follows
that xovs € B. Then x; has degree at least four in B, and again we have case (a).

We conclude that no such extremal colouring exists, and hence M3(Kzx2,K3x1) < 3. But Mj(Kzx2,Ksx1) = #(2,3)=3
for all j > 1 by Theorem 1, and the desired result therefore follows from Proposition 2(2). [l

4. Lower bounds

In 1972, Chvatal and Harary [4] proved that for any graphs G and A without isolated vertices,
"G.H) = (1(G) = D(c(H) = 1) + 1, (4.1)

where y(G) denotes the vertex chromatic number of G and ¢(H') denotes the cardinality of the largest connected component
of H. For complete, balanced, multipartite graphs we therefore have the following corollary.

Corollary 1. M(Kyx;,Kx:) = max{(n — 1)(st — 1),(s — V)(nl — 1)} + 1 for all n,s =2 and I,t = 1. [J

Unfortunately the above result does not hold for M;(-,-), where j > 1. However, using the probabilistic method described
by Erdés and Spencer [7], it is possible to prove the following general set multipartite Ramsey lower bound.

Theorem 4 (Lower bounds). For all n,s >2 and j,1,t > 1,

Mi(Kpx 1, Koxi) > min{ "\/n!(n)ﬂ 221 \/s!(t!)s 2‘2(3)*1}//'.
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Proof. Suppose
kj < min { ”\’/n! Iy 2PG=1, §’/s! (¢1)s 222201 } ,

then it follows that

Kjkj — 1)+ (kj — nl + 1) < (k)" < nt (1) 25D
and similarly
Kj(kj — 1)+ (kj — st + 1) <1 (e1y 2771,

Therefore

Ki\ iy _pey 1 Ki\ (s oy 1
~27"G) <~ and 270 < 2 42
<n,> a1y =2 WL sy ) (4.2)

Now consider a random bi-colouring of the edges of Ky ;, where the probability of each edge being coloured red is 1/2.
The number of edges in any K,x; (or Kyx/) substructure of Kix; is /°(}) (or °(})), so that there are 24 (or 275
possible colourings of that substructure.

Let P[K,(l"‘X fe‘i)] denote the probability of the event that the ith K,; substructure is entirely red, and use a similar
notation for the event that an entirely blue substructure Ky, occurs. Then

2

P[K(i_ red)] _ 2—12(’2’) and P[K?h’ b]ue)] — ()

nxl sXt

for all 7 and A4, respectively, so that

(V) v (V)| < o s e,
i h i h

Ki\ (nh)! . _pen () s

< o2 AN CIOLIPEZ S

s (,,,) a2 ) Gy
1

1

P

A

< =z +

N |
N |

—

by (4.2), where P[V[K,(,"’Xrid)] and P[V, Ks(i’?l"e)] denote the probabilities of, respectively, the events that at least some K, x;
substructure of Kj; is entirely red, and that at least some K»‘Xf substructure of Ky is entirely blue. Therefore some edge
bi-colouring of Ky is in the complement of the event (\/I-K,E”X FYV (VK P)), showing that M(Kyxi, Kxi) > k. O

Although the method used in Theorem 4 guarantees the existence of edge bi-colourings of small multipartite graphs that
contain neither a red K, x; nor a blue Kx;, the method provides no qualitative information as to how such bi-colourings

may be constructed. This bound becomes weak when n/ and st differ significantly in magnitude, since then an upper
bound of L on both (“)((nl)!/n!(11y")27"3) and (¥ )((st)!/s(11))27 ) in (4.2) seems inefficient.

It is anticipated that the above asymptotic bound is weak in general, just as the classical lower bound r(k k) > V2% is
weak, and that these bounds may be improved upon for small values of n, /, s and ¢ by rather attempting to construct
specific bi-colourings of multipartite graphs that contain neither a red K,x; nor a blue K,x,; via computerised statistical
searches. However, in the absence of such computerised searches, the above lower bound is the best known bound for
large values of n/ and/or st.

5. Upper bounds

Proof of the following upper bound for diagonal multipartite Ramsey numbers may be found in Burger, et al. [1] and
in Stipp [15].
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Theorem 5 (Diagonal bipartite upper bound).

20— 1
2(1—1)< [ >+1

J

21 —1
Mi(Kaxi, Kaxi) < [ ; —‘ +

forall j,l>1. [

The above bound is valid only in the special case where the sought after monochromatic subgraphs are bipartite.
Although we are unable to generalise the above result to the case of multipartite graphs in complete generality, it is
possible to prove the following recursive upper bound.

Theorem 6 (Generalised recursive upper bound). For any s > 2 and j > 1,
M;(G,Kx2) < 2[Mi1(G — v,Ksx2) — 1] + Mi(G,K(s—1)x2), (5.1)

where G — v is any connected graph.

Proof. We first prove, by contradiction, that
Mi(G,Ksx2) < 2[Mi1(G — v,Kx2) — 1] + Mi(G, K(s—1)x2).

Let a=M (G —v,Ksx2) and b=M;(G, Ks—1)x2), but suppose that M;(G,Kyx2) > 2(a — 1)+ b. Then there exists an edge
bi-colouring of Ky,—1)+» containing neither a red G nor a blue K;x> as subgraph. It is easy to see that the maximal red
degree in this extremal colouring is « — 1. Consider any vertex v and denote all vertices joined to v by means of red
edges (blue edges, respectively) by R (B, respectively). Hence |R| <a — 1 and |B| = (a — 1)+ (b — 1). Now let w be
any vertex in R. There are at most @ — 2 vertices in B which are joined to w by means of red edges. Consequently there
must be at least b vertices in B which are joined to w by means of blue edges; let (H) denote the subgraph induced
by these vertices. Because (H) contains no red G as subgraph, it must contain a blue K;—1)x> as subgraph. But this is
a contradiction, since all vertices in H are joined to both v and w by means of blue edges, which would force a blue
K> as subgraph of the above bi-colouring of Ky—1)+». Now it follows by a similar argument to that in the proof of
Proposition 2(2) that M;(G,Ksx2) < Mi(G,Ksx2). U

6. Conclusion

In this paper the notion of a graph theoretic Ramsey number was generalised by replacing the requirement of a complete
graph in the classical definition by that of a complete, balanced, multipartite graph following the general approach by
Burger, et al. [1] in the diagonal special case. The notion of a set multipartite Ramsey number involved fixing the number
of vertices per partite set in the larger graph and then seeking the minimum number of such partite sets that would ensure
the occurrence of certain specified monochromatic multipartite subgraphs. The boundedness of these generalised Ramsey
numbers was established and some new set numbers were found, as well as lower and upper bounds for other set numbers.
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