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Abstract

The notion of a graph theoretic Ramsey number is generalised by assuming that both the original graph whose edges
are arbitrarily bi-coloured and the sought after monochromatic subgraphs are complete, balanced, multipartite graphs,
instead of complete graphs as in the classical de6nition. We previously con6ned our attention to diagonal multipartite
Ramsey numbers. In this paper, the de6nition of a multipartite Ramsey number is broadened still further, by incorporating
o8-diagonal numbers, 6xing the number of partite sets in the larger graph and then seeking the minimum cardinality of
such partite sets that would ensure the occurrence of certain speci6ed monochromatic multipartite subgraphs.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The classical graph theoretic Ramsey number r(m; n) may be de6ned as the smallest natural number p with the property
that, if the edges of the complete graph Kp are arbitrarily coloured using the colours red and blue, then a red Km or a blue
Kn will be forced as subgraph. In [3] we generalised this de6nition by taking both the original graph whose edges are
to be bi-coloured and those which are sought as monochromatic subgraphs to be complete, balanced, multipartite graphs.
However, we previously 6xed the cardinality, j, of each partite set in the larger graph and sought the minimum number
of partite sets, � = Mj(Kn×l; Ks×t), 1 of that cardinality that would ensure the occurrence of a red Kn×l or a blue Ks×t
as subgraph in any (red, blue)-colouring of the edges of K�×j . We called the resulting number, Mj(Kn×l; Ks×t), the set
multipartite Ramsey number. In this paper we rather 6x the number of partite sets, and then seek the minimum cardinality
of such partite sets that would ensure the occurrence of certain speci6ed monochromatic multipartite subgraphs, and call
this number the size multipartite Ramsey number.

De�nition 1 (Size multipartite Ramsey numbers). Let j, l, n, s and t be natural numbers with n; s¿ 2. Then the size
multipartite Ramsey number mj(Kn×l; Ks×t) is the smallest natural number 
 such that an arbitrary colouring of the edges
of Kj×
, using the two colours red and blue, necessarily forces a red Kn×l or a blue Ks×t as subgraph.

E-mail addresses: alewynburger@hotmail.com (A.P. Burger), vuuren@sun.ac.za (J.H. van Vuuren).
1 We denote a complete, balanced, multipartite graph consisting of n partite sets and l vertices per partite set by Kn×l.
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The subgraphs in De6nition 1 need not be vertex-induced subgraphs. This de6nition is a generalisation of that of the
classical Ramsey numbers in the sense that if r(�; �) = �, then m�(K�×1; K�×1) = 1. The following symmetry property of
o8-diagonal multipartite Ramsey numbers holds.

Proposition 1 (Symmetry property). If the multipartite Ramsey number mk(Kn×l; Ks×t) exists, then mk(Kn×l; Ks×t) =
mk(Ks×t ; Kn×l).

Our goal in this paper is to determine new, small, o8-diagonal size multipartite Ramsey numbers. After establishing a
necessary and suGcient criterion for the existence of these numbers, as well as some basic properties of these numbers, in
Section 2, we brieHy review all known size multipartite Ramsey numbers and establish new small size numbers in Section
3. In Section 4, we turn to the problems of determining lower and upper bounds for larger size multipartite Ramsey
numbers.

2. Existence and basic properties

The question of the existence of size multipartite Ramsey numbers is settled 6rst.

Theorem 1 (Partial existence of size numbers). The size multipartite Ramsey number mj(Kn×l; Ks×t) exists for any
n; s¿ 2 and l; t¿ 1 if and only if j¿ r(n; s).

Proof. We 6rst show that mj(Kn×l; Ks×t) exists for any n; s¿ 2 and l; t¿ 1 if j¿ r(n; s). It is known that the diagonal
bipartite Ramsey number m2(K2×l; K2×l) exists, and in fact that m2(K2×l; K2×l)6

( 2l
l

)−1 for all l¿ 1. This result is due
to Hattingh and Henning [7]. Therefore, it is always possible to 6nd an arbitrarily large monochromatic bipartite graph
in any edge bi-colouring of a bipartite graph F , if the partite sets of F are “large enough”. Now consider a complete,
balanced multipartite graph G consisting of r(n; s) “large enough” partite sets (the meaning of the phrase “large enough”
will be made precise later in the proof). Colour the edges of G according to the following algorithm:

(1) Index each partite set of G as H0.
(2) Select any two partite sets of G for which the connecting edges have not yet been coloured. If no edges incident

to neither of these partite sets have yet been coloured, then colour all edges between these partite sets arbitrarily,
using the colours red and blue. Note that a complete, balanced, monochromatic, bipartite graph will be forced by this
sub-colouring and index both of the partite sets of this monochromatic subgraph as H1. Else, if edges incident to one
or both of the selected partite sets of G have been coloured previously, then select those subsets of vertices from each
partite set of G with highest indices, say Hk and Hm, respectively, where m6 k. An arbitrary bi-colouring (using
the colours red and blue) of the edges between the vertices within the one partite set indexed as Hk and |Hk | of the
vertices amongst those within the other partite set indexed as Hm will force a complete, balanced, monochromatic,
bipartite graph; index both partite sets of this monochromatic subgraph as Hk+1.

(3) Repeat step 2 until there are coloured edges between subsets of all pairs of partite sets.

This results in an expansive colouring 2 of Kr(n; s)×|H�| as subgraph of G, induced by some edge bi-colouring of Kr(n; s),
where H� is the maximal index utilised in the above algorithm. Hence we will have a red Kn×|H�| or a blue Ks×|H�| as
subgraph of G. Colour the remaining edges of G arbitrarily, using the colours red and blue. By choosing the original
partite sets of G so large that |H�|¿max{l; t}, we will therefore have forced a red Kn×l or a blue Ks×t as subgraph of
G via the above edge bi-colouring.

Finally, we show that mj(Kn×l; Ks×t) does not exist for any n; s¿ 2 and l; t¿ 1 if j¡ r(n; s). Suppose 16 j¡ r(n; s)
for some n; s¿ 2, then there exists a (red, blue)-colouring of the edges of Kj that contains neither a red Kn nor a blue
Ks as subgraph. But, since Kn ⊆ Kn×l and Ks ⊆ Ks×t for any l; t¿ 1, the expansive colouring of Kj×k induced by this
speci6c colouring of E(Kj) contains neither a red Kn×l nor a blue Ks×t as subgraph, no matter how large we choose
k¿ 1.

It is possible to establish bounds on the size multipartite numbers in terms of bounds on the set multipartite numbers,
and vice versa, as is done in the following theorem.

2 See the de6nition of an expansive colouring in [3].



A.P. Burger, J.H. van Vuuren /Discrete Mathematics 283 (2004) 45–49 47

Theorem 2 (Set numbers versus size numbers).

(1) mk(Kn×l; Ks×t)¿j if and only if Mj(Kn×l; Ks×t)¿k, ∀ l; t¿ 1 and n; s¿ 2.
(2) mk(Kn×l; Ks×t)6 j if and only if Mj(Kn×l; Ks×t)6 k, ∀ l; t¿ 1 and n; s¿ 2.

Proof. (1) The inequality Mj(Kn×l; Ks×t)¿k holds if and only if there exists an arbitrary bi-colouring of the edges of Kk×j
that contains neither a red Kn×l nor a blue Ks×t as subgraph, which may equivalently be restated as mk(Kn×l; Ks×t)¿j.
(2) This result follows from the previous result by a double contra-positive argument.

It is also possible to establish growth properties for size multipartite Ramsey numbers. The proof of the following result
is similar to that of Proposition 2 in [3], and will not be repeated here.

Proposition 2 (Growth properties). Let n; s; �; �¿ 2 and j, k, l, t, � and � be natural numbers. Then

(1) mj(Kn×l; Ks×t)6mj(K�×�; K�×�) if n6 �, l6 �, s6 � and t6 � (when both size multipartite Ramsey numbers
exist).

(2) mj(Kn×l; Ks×t)6mk(Kn×l; Ks×t) if k6 j (when both size multipartite Ramsey numbers exist).

There are similar results to those of Propositions 2(1) and 2(2) for the classical and set multipartite Ramsey numbers
(see [3, Proposition 2]), but note that the strictness of inequality property in the latter case does not necessarily hold for
the size multipartite numbers mj(·; ·), no matter which of the inequalities n6 �, l6 �, s6 � or t6 � are strict. Exactly
when strict inequality occurs (as well as minimal bounds on the gaps in such strict inequalities) is characterised by the
next result, whose proof is similar to that of Theorem 2 in [3], and will not be repeated here.

Theorem 3 (Gaps between size numbers). For all integers n¿ 3, s¿ 2 and j; l; t¿ 1, mj(Kn×l; Ks×t)¿
mj(K(n−1)×l; Ks×t) + 	t=
j=s�� − 1.

We establish the following asymptotic limit for size multipartite Ramsey numbers.

Theorem 4 (Size number asymptotic limit). mj(Kn×l; Ks×t) → 1 as j → ∞ for any n; s¿ 2 and l; t¿ 1.

Proof. We know, by Proposition 2(2), that the sequence mj(Kn×l; Ks×t) is non-increasing for increasing j and any
6xed values of n; s¿ 2 and l; t¿ 1. Therefore we only need to show that there exists a natural number k such that
mk(Kn×l; Ks×t) = 1. It is clear that k = r(nl; st) is such a number, since every (red, blue)-colouring of the edges of
Kk ≡ Kk×1 contains a red Knl (in which case it also contains a red Kn×l) or a blue Kst (in which case it also contains a
blue Ks×t).

Note that the value of k in the proof of Theorem 4 is expected to be very conservative in the sense that the asymptotic
unary limit of mj(Kn×l; Ks×t) may possibly be attained long before j=r(nl; st). Finally, the next result follows as corollary
of Theorem 1.

Corollary 1 (Set number asymptotic limit). Mj(Kn×l; Ks×t) → r(n; s) as j → ∞ for any n; s¿ 2 and l; t¿ 1.

3. Known and new small size numbers

There are only a few size multipartite Ramsey numbers known to the authors. These are m2(K2×2; K2×3) = 9 and
m2(K2×2; K2×4) = 14 due to Hattingh and Henning [6], m2(K2×3; K2×3) = 17 due to Beineke and Schwenk [1],
m2(K2×4; K2×4) = 48 due to Irving [8] and the complete class of (K2×2; K2×2) multipartite Ramsey numbers, as listed
in Table 1.

Bounds for small, diagonal as yet undetermined size multipartite Ramsey numbers may be found in [9]. The following
proposition provides values for simple general classes of multipartite Ramsey numbers.

Proposition 3 (Basic size multipartite numbers).

(1) mj(K2×1; Ks×t) = 	t=
j=s�� for all t¿ 1 and j¿ s¿ 2.
(2) mj(Kn×1; Ks×1) = 1 for all n; s¿ 2 and j¿ r(n; s).
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Table 1
The class of (K2×2; K2×2) size multipartite Ramsey numbers

j mj(K2×2; K2×2)

1 ∞a

2 5b

3 3b

4 2b

5 2b

¿ 6 1b

aBy Theorem 1.
bDue to Day, et al. [4].

Proof. (1) Suppose t¿ 1 and j¿ s¿ 2, and de6ne c as the smallest natural number such that Ks×t ⊆ Kj×c. It is clear
that any two vertices in the same partite set of Kj×c may not be in separate partite sets of Ks×t . This means that, to
6nd a Ks×t as subgraph in Kj×c, we must group together full partite sets of Kj×c to form s new partite sets. This gives

j=s� partite sets of Kj×c in each grouping. To ensure that there are t vertices in each grouping, there must be at least
c = 	t=
j=s�� vertices per partite set in Kj×c.

(2) From classical Ramsey theory we know that r(n; s)=w (say) partite sets is suGcient to force a red Kn×1 or a blue
Ks×1 as subgraph of any (red, blue)-colouring of the edges of Kw×1. Therefore, mj(Kn×1; Ks×1)6 1 for all j¿w. But
then it follows from De6nition 1 that mj(Kn×1; Ks×1) = 1 for all j¿w.

Finally, we conclude this section by fully establishing the new class of (K2×2; K3×1) size multipartite Ramsey numbers.

Theorem 5 (The class of (K2×2; K3×1) size multipartite numbers).

(1) m1(K2×2; K3×1) = m2(K2×2; K3×1) = ∞.
(2) m3(K2×2; K3×1) = 3 and m4(K2×2; K3×1) = 2.
(3) m5(K2×2; K3×1) = m6(K2×2; K3×1) = 2.
(4) mj(K2×2; K3×1) = 1 for all j¿ 7.

Proof. (1) By Theorem 1, since r(2; 3) = 3.
(2) By Theorem 3(2) in [3], M2(K2×2; K3×1) = 4¿ 3, so that m3(K2×2; K3×1)¿ 2 by Theorem 2(1). By Theorem 3(3)

in [3], M3(K2×2; K3×1)6 3, so that 2¡m3(K2×2; K3×1)6 3 by Theorem 2(2). Now 1¡m4(K2×2; K3×1)6 2 follows in
a similar fashion, because M1(K2×2; K3×1) = 7¿ 4 and M2(K2×2; K3×1)6 4.

(3) By Theorem 3(1) in [3], M1(K2×2; K3×1)=7¿ 6, so that 1¡m6(K2×2; K3×1)6m5(K2×2; K3×1)6m4(K2×2; K3×1)=
2 by Theorem 2(1) and Proposition 2(2).

(4) By Theorem 3(1) in [3], M1(K2×2; K3×1)6 j for all j¿ 7. Hence it follows by Theorem 2(2) that 16
mj(K2×2; K3×1)6 1 for all j¿ 7.

4. Bounds on size numbers

It is possible to provide a simple lower bound for size multipartite Ramsey numbers.

Proposition 4 (Direct lower bound). For all integers j; l; t¿ 1 and n; s¿ 2, mj(Kn×l; Ks×t)¿min{	nl=j�; 	st=j�}.

Proof. The graphs Kn×l and Ks×t have nl and st vertices respectively. Hence there must be at least min{	nl=j�; 	st=j�}
vertices per partite set in a complete, balanced, multipartite graph comprising j partite sets in order to possibly contain
Kn×l or Ks×t as subgraph.

Using the probabilistic method described by ErdPos and Spencer [5], it is possible to establish the following general size
multipartite Ramsey lower bound.
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Theorem 6 (Probabilistic lower bound).

mj(Kn×l; Ks×t)¿ min




nl

√
n!(l!)n2

l2
( n

2

)
−1
;

st

√
s!(t!)s2

t2
( s

2

)
−1



/
j:

for all n; s¿ 2 and j; l; t¿ 1.

The result follows immediately from Theorem 4 in [3], via Theorem 2(1) in this paper.
Hattingh and Henning [7] established the bipartite set size upper bound

m2(K2×l; K2×l)6

(
2l

l

)
− 1 for all l¿ 1: (4.1)

The following result, for which a proof may be found in Burger, et al. [2] and in Stipp [9], is a more general, yet weaker,
result than the upper bound in (4.1).

Theorem 7 (Diagonal bipartite upper bound).

mj(K2×l; K2×l)6max



2l− 1;




2(l− 1)

(
2l− 1

l

)
+ 1

j − 1







for all j¿ 2 and l¿ 1.

5. Conclusion

In this paper the notion of a graph theoretic Ramsey number was generalised by replacing the requirement of a complete
graph in the classical de6nition by that of a complete, balanced, multipartite graph following the general approach by
Burger, et al. [2] in the diagonal special case. The notion of a size multipartite Ramsey number involved 6xing the number
of partite sets in the larger graph and then seeking the minimum cardinality of such partite sets that would ensure the
occurrence of certain speci6ed monochromatic multipartite subgraphs. The existence of these generalised Ramsey numbers
was established and some new, small size numbers were found, as well as lower and upper bounds for larger size numbers.
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