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a b s t r a c t

Set multipartite Ramsey numbers were introduced by Burger, Grobler, Stipp and van
Vuuren in 2004, generalizing the celebrated Ramsey numbers. In this work we extend
set multipartite Ramsey numbers to an arbitrary number of colors. Growth properties,
connections with classical Ramsey numbers, general lower and upper bounds are
obtained, including some improvements of known bounds. We then focus on the case
where a monochromatic bipartite graph is required by exploring density arguments and
connections with well-known results.
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1. Introduction

Let Kr denote the complete graph on r vertices. Given positive integers n1 ≥ 2 and n2 ≥ 2, the celebrated Ramsey number
r(n1, n2) denotes the smallest natural number r such that every red–blue coloring of the edges of Kr contains a red copy of
Kn1 or a blue copy of Kn2 . Determining Ramsey numbers has been a great challenge in combinatorics since 1930. Indeed, the
only known exact values for the diagonal case are r(2, 2) = 2, r(3, 3) = 6 and r(4, 4) = 18, but r(5, 5) still remains an open
problem. Up-to-date tables on bounds are available in [19]. We refer to the book [15] for an overview on Ramsey theory.

A large number of concepts, variants, and extensions have been widely investigated in many directions. In particular,
Burger et al. [6,7] generalized the Ramsey numbers by assuming that both the original graph and the sought after
monochromatic graph are complete, balanced and multipartite graphs. More precisely, let Kc×s denote the multipartite
graph having c classes with s vertices per each class. In particular, note that K1×s denotes the complement of Ks (s isolated
vertices), and K2×s corresponds to the bipartite graph Ks,s.

Given positive integers s, n1, m1, n2, m2, with n1, n2 ≥ 2, the set multipartite Ramsey number Ms(Kn1×m1 , Kn2×m2) is
the smallest natural number c such that every red–blue coloring of the edges of Kc×s contains either a red Kn1×m1 or a blue
Kn2×m2 . It is worthmentioning that these numbers can be regarded as an extension of the classical Ramsey numbers. Indeed,
M1(Kn1×1, Kn2×1) = r(Kn1 , Kn2) = r(n1, n2) because Kn×1 is isomorphic to Kn.

Many results on Ms(Kn1×m1 , Kn2×m2) are presented in [6,7]. In addition to proving the existence of these numbers, the
authors obtain growth properties, relationships with classical Ramsey numbers as well as several results concerning general
lower and upper bounds.

In this article we extend the set multipartite Ramsey numbers to an arbitrary number of colors, described in Section 2.
As the first goal, most results in [7] are extended in Sections 3 and 4, including general lower and upper bounds. As the

✩ A preliminary version of this work appeared as an extended abstract in the proceedings of the 5th Latin-American Workshop on Cliques in Graphs,
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second goal, we focus on the case where a monochromatic bipartite graph is required. For this purpose, we explore density
arguments similar to Turán numbers as well as an extension of a link by Chvátal and Harary [10] in Section 5. Then sharper
upper bounds for certain classes of parameters are obtained, improving previous bounds under certain parameters.

In Section 6, a new link with classical Ramsey numbers for multipartite graphs is established too, which allows us to
derive lower bounds from several known results of literature: an exact value due to Bialostocki and J. Schönheim [3], a
bound by Lazebnik andWoldar [18], for instance. Moreover, a sharp asymptotic result for the four cycle K2,2 completes this
article, generalizing a well-known result by Irving [16] and, independently, by Chung and Graham [9].

2. Existence and relationships with classical Ramsey numbers

2.1. Existence

We begin with the definition of set multipartite Ramsey number for several colors.

Definition 1. Given positive integers s ≥ 1, ni ≥ 2, mi ≥ 1 for 1 ≤ i ≤ k, the set multipartite Ramsey number
Ms(Kn1×m1 , . . . , Knk×mk) denotes the smallest c such that for each k-coloring of the edges of Kc×s, there is a monochromatic
copy of Kni×mi with color i for some 1 ≤ i ≤ k.

In particular, note that the classical Ramsey number r(n1, . . . , nk) for k colors can be regarded as M1(Kn1×1, . . . , Knk×1).
The case where ni = n andmi = m for every 1 ≤ i ≤ k is simplified byMs(Kn×m; k).

The existence for the general case is guaranteed as follows.

Theorem 2. Given positive integers s ≥ 1, ni ≥ 2 andmi ≥ 1 for 1 ≤ i ≤ k, the number Ms(Kn1×m1 , . . . , Knk×mk) is well-defined
and

Ms(Kn1×m1 , . . . , Knk×mk) ≤ r(n1m1, . . . , nkmk).

Proof. Let c = r(n1m1, . . . , nkmk). Given an arbitrary k-coloring of Kc×s, choose one vertex of each class and let V be the set
formed by these c chosen vertices. Because the graph induced by V is isomorphic to Kc , the coloring of Kc×s above induces a
k-coloring of Kc . By definition of c , this induced coloring contains a monochromatic copy of Knimi for some color i. Since Kc×s
contains Kc and Kni×mi is a subgraph of Knimi , thus a monochromatic copy of Kni×mi occurs. �

2.2. A lower bound from classical Ramsey numbers

Exploring relationships between multipartite Ramsey numbers and classical Ramsey numbers seems to be a natural
source of research, like Theorem 2. Another link is based on the concept of expansive coloring, investigated in [7,12]. A
coloring of edges in Kc×s is called an expansive coloring if it satisfies the property: all edges induced by each pair of classes
in Kc×s have the same color.

Theorem 3. Given positive integers s ≥ 1, ni ≥ 2, mi ≥ 1 for 1 ≤ i ≤ k, the following inequality holds

max {r(n1, . . . , nk),min{⌈mi/s⌉ni : 1 ≤ i ≤ k}} ≤ Ms(Kn1×m1 , . . . , Knk×mk).

Proof. The proof is divided into two parts:
Part 1: We first prove that r(n1, . . . , nk) ≤ Ms(Kn1×m1 , . . . , Knk×mk). Let c = r(n1, . . . , nk). By the choice of c , there is a

k-coloring G of Kc−1 that does not contain any monochromatic copy of Kni in color i, where 1 ≤ i ≤ k. Take the expansive
coloringH of K(c−1)×s induced by G, namely, the edges between the classes Cu and Cv in K(c−1)×s are colored with the color of
the edge uv in G. Suppose for a contradiction that H contains a monochromatic copy of Kni for some color i. These ni vertices
in Kni have to belong to distinct classes of H , which induce a monochromatic copy of Kni in G because H is expansive. This
is a contradiction with the construction of G. Since Kni is isomorphic to Kni×1 and Kni×1 is a subgraph of Kni×mi , the graph
K(c−1)×s does not contain a monochromatic copy of Kni×mi with color i.

Part 2: It remains to prove the second inequality, i.e,

min{⌈mi/s⌉ni : 1 ≤ i ≤ k} ≤ Ms(Kn1×m1 , . . . , Knk×mk).

Let q be a positive integer such that q < min{⌈
mi
s ⌉ni : 1 ≤ i ≤ k}. We claim that any arbitrary k-coloring of Kq×s does not

contain a copy of Kni×mi , where 1 ≤ i ≤ k. Two cases are analyzed in order to prove this statement:
Case 1: if mi ≤ s. In this case, q < ⌈mi/s⌉ ni ≤ ni; and consequently Kni is not a subgraph of Kq×s. Combining with the

fact that Kni ⊆ Kni×mi , we have that Kni×mi is not a subgraph of Kq×s.
Case 2: if mi > s. Suppose for a contradiction that Kni×mi is a subgraph of Kq×s with the color i. For this case, note that

two vertices in the same class of Kq×s are forbidden to belong to distinct classes in Kni×mi . We need at least ⌈mi/s⌉ classes in
Kq×s in order to obtain each class of Kni×mi . Then we need at least ⌈mi/s⌉ ni classes in Kq×s in order to obtain a copy of Kni×mi ,
and consequently the contradiction q ≥ ⌈mi/s⌉ ni holds. �

A simple argument shows us thatMs(K2×1, . . . , K2×1, Kn×m) = ⌈
m
s ⌉n.
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3. Some basic properties and some bounds

3.1. Growth properties

Proposition 4. Given positive integers s ≥ 1, mi ≥ 1, ti ≥ 1, pi ≥ 2, ni ≥ 2 for 1 ≤ i ≤ k, the relations below hold:
1. Ms(Kn1×m1 , . . . , Knk×mk) ≤ Ms(Kp1×t1 , . . . , Kpk×tk) if ni ≤ pi, mi ≤ ti for every i, 1 ≤ i ≤ k. The inequality is strict if ni < pi

for some i, 1 ≤ i ≤ k.
2. Ms(Kn1×m1 , . . . , Knk×mk) ≤ Mq(Kn1×m1 , . . . , Knk×mk) if q ≤ s.

Proof. The proofs are similar to those given in [7, Proposition 2].
For part 1, let w = Ms(Kp1×t1 , . . . , Kpk×tk). By the definition of w, any k-coloring of Kw×s contains a monochromatic copy

of Kpi×ti for some color i, 1 ≤ i ≤ k. The assumptions ni ≤ pi and mi ≤ ti yield that Kni×mi ⊆ Kpi×ti . Then the subgraph of
Kw×s induced by the color i contains a monochromatic copy of Kni×mi . We conclude thatMs(Kn1×m1 , . . . , Knk×mk) ≤ w.

Without loss of generality, suppose that n1 < p1, ni ≤ pi for 2 ≤ i ≤ k and mi ≤ ti for 1 ≤ i ≤ k. Suppose for a
contradiction that v = Ms(Kn1×m1 , . . . , Knk×mk) = Ms(Kp1×t1 , . . . , Kpk×tk). Given G = Kv×s, the graph K(v−1)×s is regarded as
a subgraph of G.

By the definition of v, there is a k-coloring ofK(v−1)×s that contains nomonochromatic copy ofKni×mi for every i, 1 ≤ i ≤ k.
It remains v copies of K1×s in order to extent this coloring to G. We color all remaining edges with the color 1. Note that

this coloring of G contains no copy of K(n1+1)×m1 (hence no copy of Kp1×t1 ) at color 1. Moreover, G contains no copy of Kni×mi
(hence no copy of Kpi×ti ) for each color i, 2 ≤ i ≤ k. The arguments above implyMs(Kp1×t1 , . . . , Kpk×tk) > v, a contradiction.

For part 2, let w = Mq(Kn1×m1 , . . . , Knk×mk). Consider an arbitrary coloring of Kw×s with k colors. The assumption q ≤ s
forces Kw×q ⊆ Kw×s, so, this coloring induces a k-coloring of Kw×q. By the definition of w, the graph Kw×q contains a
monochromatic copy of Kni×mi for some color i. Consequently, Kw×s contains a monochromatic copy of Kni×mi at color i,
proving the assertion. �

Note thatMs(Kn1×1, . . . , Knk×1) = r(n1, . . . , nk) is derived from Theorems 2 and 3.

3.2. Gaps between Ramsey numbers

Gaps between Ramsey numbers can be investigated from a constructive approach. We now illustrate this method. Let
a = r(n1 −1, n2). Thus, there exists a red–blue coloring of Ka−1 that contains neither a red Kn1−1 nor a blue Kn2 . Consider the
coloring of Ka+n2−2 by joining to Ka−1 above a blue Kn2−1 and coloring all remaining (interconnecting) edges red. Therefore,
this construction leads to r(n1, n2) ≥ r(n1 − 1, n2) + n2 − 1.

Burger and van Vuuren [7, Theorem 2] were able to extend this relation by means of a more refined construction, more
precisely:

Ms(Kn1×m1 , Kn2×m2) ≥ Ms(K(n1−1)×m1 , Kn2×m2) + n2⌈m2/s⌉ − 1. (1)

In this spirit, a generalization of this result is stated below.

Theorem 5. Given n1 > k, ni ≥ 2 for 2 ≤ i ≤ k and s ≥ 1, mi ≥ 1 for 1 ≤ i ≤ k, let α =
k

i=2 (ni⌈mi/s⌉ − 1). Thus

Ms(Kn1×m1 , . . . , Knk×mk) ≥ Ms(K(n1−k+1)×m1 , Kn2×m2 , . . . , Knk×mk) + α.

Proof. Take the sequences of numbers:
• w1 = Ms(K(n1−k+1)×m1 , Kn2×m2 , . . . , Knk×mk)
• wi = ni ⌈mi/s⌉ − 1, for 2 ≤ i ≤ k,

and let w = (
k

i=1 wi) − 1 = w1 + α − 1. In order to prove the statement, it is enough to construct a k-coloring G of Kw×s
without a monochromatic copy of Kni×mi in color i, 1 ≤ i ≤ k.

Consider the vertex set of G formed by the disjoint union of all vertex sets of Kwi×s, where 1 ≤ i ≤ k.
By the choice of w1, there exists a k-coloring of K(w1−1)×s which contains neither a monochromatic copy of K(n1−k+1)×m1

in color 1 nor a monochromatic Kni×mi in color i, 2 ≤ i ≤ k.
The coloring of K(w1−1)×s above is extended to G according to the rules:

• all edges of each Kwi×s are colored with color i, where 2 ≤ i ≤ k;
• all the remaining edges of G (interconnecting edges between two distinct Kwi×s and Kwl×s, 1 ≤ i < l ≤ k) are colored

with color 1.

Suppose for a contradiction that G contains a monochromatic Knj×mj for some color j.
We first analyze the case j = 1. Given i, 2 ≤ i ≤ k, each Kwi×s must contain at most one partite set of Kn1×m1 , because all

edges receive color i. Then there are at least n1 − k + 1 partite sets of Kn1×m1 that belong to K(w1−1)×s, that is, the subgraph
of K(w1−1)×s induced by the color 1 contains a copy of K(n1−k+1)×m1 , a contradiction.

The case where j ≠ 1 remains. With a similar argument used in Theorem 3, the hypothesis wj < nj

mj/s


yields that

Knj×mj is not a subgraph of Kwj×s. Consequently, the graph G does not contain a monochromatic Knj×mj , where 2 ≤ j ≤ k. �
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Inequality (1) can be extended in another way. For this purpose, we consider a slightly weaker condition n1 > 3 instead
of the hypothesis n1 > k of Theorem 5.

Theorem 6. Given positive integers s, mi for every 1 ≤ i ≤ k, n ≥ 2, k ≥ 2, and ni ≥ 3 for every 1 ≤ i ≤ k − 1, let
α =

k
i=2 (ni⌈mi/s⌉ − 1). Thus

Ms(Kn1×m1 , . . . , Knk×mk) ≥ Ms(K(n1−1)×m1 , . . . , K(n(k−1)−1)×m(k−1) , Knk×mk) + α.

Proof. The coloring is based on a slight modification of that given in the previous proof. Take the sequences of numbers:

• w1 = Ms(K(n1−1)×m1 , . . . , K(n(k−1)−1)×m(k−1) , Knk×mk) and
• wi = ni ⌈mi/s⌉ − 1 for every 2 ≤ i ≤ k.

Let w = (
k

i=1 wi) − 1.
Let the graph H isomorphic to Kw×s whose vertex set is formed by the disjoint union of all vertex sets of K(w1−1)×s, and

Kwi×s where 2 ≤ i ≤ k.
A k-coloring of H is defined as follows. By the choice of w1, there is a k-coloring of K(w1−1)×s without any monochromatic

copy of K(ni−1)×mi in color i, for 1 ≤ i ≤ k − 1 and no copy of Knk×mk with color k.
The coloring of K(w1−1)×s above is extended to H according to the rules:

• for each i, 2 ≤ i ≤ k, all edges of Kwi×s are colored with i;
• all incident edges joined two distinct graphs Kwi×s, Kwj×s, 2 ≤ i < j ≤ k are colored with 1;
• the edges between vertices in K(w1−1)×s and Kwi×s are colored with i − 1, where 2 ≤ i ≤ k.

We first analyze the color k. Note that the edges with color k come from K(w1−1)×s or Kwk×s. From the choice of the k-
coloring of K(w1−1)×s and the fact that we need at least nk ⌈mk/s⌉ classes to produce a Knk×mk (as explained in the proof of
case 2 in Theorem 3), H does not contain any monochromatic Knk×mk with the color k.

Given a color i, with 1 ≤ i ≤ k−1, suppose for a contradiction thatH contains amonochromatic subgraph Kni×mi for some
color i. If i ≥ 2, the hypothesis wi < ni ⌈mi/s⌉ yields that Kni×mi is not a subgraph of Kwi×s. If Kni×mi is a subgraph of H , then
only one class of Kni×mi can be contained in Kwi+1×s. Therefore, we conclude that K(ni−1)×mi ⊆ K(w1−1)×s, a contradiction. �

See applications of Theorems 5 and 6 in Example 18.

3.3. An upper bound

The upper bound given by Theorem 2 can be improved for a bipartite graph K2×m = Km,m, as follows.

Theorem 7. For every positive integers s, m, and k with k ≥ 2, the following bound holds.

Ms(K2×m; k) ≤


k(m − 1) + 1

s


+


k(m − 1)


k(m−1)+1

m


+ 1

s

 .

Proof. Let c be the bound mentioned in the statement. Given an arbitrary k-coloring of Kc×s, take S ∪ T as a partition of the
classes of Kc×s such that |S| =


k(m − 1)


k(m−1)+1

m


+ 1


/s

and |T | = ⌈(k(m − 1) + 1)/s⌉.

Choose a subset U of k(m − 1)


k(m−1)+1
m


+ 1 vertices in S and a subsetW of k(m − 1) + 1 vertices in T . Since a vertex

u ∈ U and a vertex w ∈ W belong to distinct classes, the edge uw belongs to Kc×s. Look at now the bipartite subgraph G
induced by the vertex sets U and W .

For our purpose, the central vertex u in U of a star K1,m in G is adjacent to a set ofm vertices inW , called base of this star.
For each vertex u in U , the pigeonhole principle asserts that there is a monochromatic copy of K1,m where the center is u

and the base lies inW .
Since there are


k(m−1)+1

m


subsets of cardinalitym inW , the pigeonhole principle implies that there is at least k(m−1)+1

copies of these stars with the same base.
Again by the pigeonhole principle, there arem copies of K1,m with the same color where each central vertex belongs to U

and these central vertices share the same base. Hence, the graph Kc×s contains a monochromatic copy of Km,m = K2×m. �

The case where k = 2 of Theorem 7 corresponds to [6, Theorem 5].

4. A lower bound by the probabilistic method

Erdős proved an exponential lower bound for the classical Ramsey numbers in 1947, by using probabilistic arguments.
Nowadays this method is a powerful tool to estimate bounds on extremal problems in combinatorics. By applying this
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method, Burger and van Vuuren [7] presented a lower bound on set multipartite Ramsey numbers. The method can be
extended to an arbitrary number of colors, according to the next result.

Theorem 8. The lower bound holds

Ms(Kn×m; k) >
1
s


n!(m!)nkm

2( n
2 )−1

 1
nm

.

Proof. Given a positive integer a (which will be estimated afterward), consider a random k-coloring of Ka×s where the color
of each edge is determined by a uniform distribution. More precisely, the probability is determined by setting: for each edge
e and for each color i, let

P[ ‘‘ the edge e is colored with i ’’] =
1
k
,

andmake these probabilitiesmutually independent. Take the probability space formedby all k-colorings ofKa×s. Let udenote
the number of copies of the graph Kn×m in Ka×s and enumerate such copies, say, K 1

n×m, . . . , K u
n×m. For a color i and 1 ≤ j ≤ u,

denote the event ‘‘the jth copy K j
n×m is monochromatic with color i’’ by K (j,i)

n×m.

More generally, denote the event ‘‘some copy of Kn×m in Ka×s is monochromatic with color i’’ by ∪j K
(j,i)
n×m (union over all

copies). Since ∪j K
(j,i)
n×m = K (1,i)

n×m ∪ · · · ∪ K (u,i)
n×m, the subadditivity of P yields

P

∪j K

(j,i)
n×m


≤

u
j=1

P

K (j,i)
n×m


≤ uP


K (j,i)
n×m


≤ uk−m2( n

2 ). (2)

The event ‘‘some copy of Kn×m in Ka×s is monochromatic’’ can be denoted by ∪i ∪j K
(j,i)
n×m. Combining the equality

∪i ∪j K
(j,i)
n×m = ∪j K

(j,1)
n×m ∪ · · · ∪j K

(j,k)
n×m,

the subadditivity of P and Eq. (2), we obtain

P

∪i ∪j K

(j,i)
n×m


≤

k
i=1

P

∪j K

(j,i)
n×m


≤ kuk−m2( n

2 ). (3)

Let us now estimate u. There are at most
 as
nm


ways of choosing a vertex set with nm elements. There are at most

 nm
m


ways

of choosing the first vertex class, and so on. Finally, there are at most


nm−(n−1)m
m


ways of choosing the last class. Since the

order of the classes does no matter,

u ≤

 as
nm

 nm
m


. . .


nm − (n − 1)m

m


1
n!

.

Because

u ≤

 as
nm

 (nm)!

n!(m!)n
.

Eq. (3) yields

P

∪i ∪j K

(j,i)
n×m


≤ k

 as
nm

 (nm)!

n!(m!)n
k−m2( n

2 ). (4)

We now search the largest a as possible as such that the probability above is strictly less than 1. For this purpose, take a

satisfying as ≤


n!(m!)nkm

2( n
2 )−1

 1
nm

. Since (as)!
(as−nm)!

< (as)nm, the following bounds hold as
nm


(nm)! < (as)nm ≤ n!(m!)nkm

2( n
2 )−1. (5)

By Eqs. (4) and (5), we derive

P

∪i ∪j K

(j,i)
n×m


< k

 as
nm

 (nm)!

n!(m!)n
k−m2( n

2 ) ≤ k
1
k

= 1.

Then the complement of the event ∪i ∪j K
(j,i)
n×m is not empty, that is, there is a k-coloring of Ka×s without any monochromatic

copy of Kn×m. �
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5. Upper bounds from density arguments

Density arguments have been a powerful method in exploring problems in extremal graph theory. In particular, this
method yields many bounds on Ramsey numbers involving bipartite graphs (see [9,16] for instance) as well as bounds on
bipartite Ramsey numbers arising from Zarankiewicz numbers (see [2,8,17] for instance). In order to improve some upper
bounds for bipartite graphs, an adaptation of this approach for set multipartite Ramsey numbers is the main goal of this
section.

5.1. The method

Lemma 9. Let s ≥ 1, m ≥ 2, and k ≥ 2 be positive integers. Let c be a positive integer such that

cs


2
cs


c(c−1)s2

2k


m


> (m − 1)

 cs
m


.

Then Ms(K2×m; k) ≤ c.

Proof. Given an arbitrary k-coloring of Kc×s, the pigeonhole principle asserts that there is a color i with at least
 c

2

 s2
k


edges. Let H = (V , E) be the spanning subgraph of Kc×s formed by all edges with color i. Let Λ denote the number of stars
of type K1,m in H . Each one of these stars corresponds to a center v and a basis A, where v ∈ V , A ⊆ V , |A| = m, and va is an
edge of H for every a ∈ A.

Each vertex v ∈ V is the center of


d(v)

m


distinct stars. Since the binomial

 x
m


is a convex function, Jensen’s inequality

gives us the following lower bound

Λ =


v∈V


d(v)

m


≥ cs

 
d(v)

|V |

m


.

Euler’s identity


v∈V d(v) = 2|E| and the hypothesis imply

Λ ≥ cs


2
cs


c(c−1)s2

2k


m


> (m − 1)

 cs
m


.

By the pigeonhole principle again, there is a subset A that is the base of more than m − 1 stars, then H contains a copy of
K2×m with color i. �

We have weakened slightly Lemma 9 to facilitate applications, more precisely.

Lemma 10. Let s ≥ 1, m ≥ 2, and k ≥ 2 be positive integers. Let c be a positive integer such that

cs


(c−1)s

k

m


> (m − 1)

 cs
m


.

Thus Ms(K2×m; k) ≤ c.

Proof. Since 2
cs


c(c−1)s2

2k


≥

(c−1)s
k , the result follows as an immediate application of Lemma 9. �

5.2. Some applications

Several new bounds can be derived from Lemma 10. We discuss here some of these applications.

5.2.1. Bounds for K2×m
Chung and Graham [9, Theorem 1] proved that M1(K2×m; k) ≤ (m − 1)(k + k1/m)m. Hence Proposition 4.2 yields

M2(K2×m; k) ≤ (m − 1)(k + k1/m)m. However the last bound can be improved as follows.

Theorem 11. Given a positive integer m ≥ 2, the bound below holds for any sufficiently large k

M2(K2×m; k) ≤ (m − 1)km.

Proof. Writing c = (m − 1)km, it is enough to show the hypothesis of Lemma 10. Since 2(c − 1)/k ≥ 2(m − 1)km−1
− 1,

the hypothesis holds provided

2(m − 1)km

2(m − 1)km−1

− 1
m


> (m − 1)


2(m − 1)km

m


. (6)
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By applying twice the relation (a − m + 1)m/m! ≤
 a
m


≤ am/m! (the first inequality when a = 2(m − 1)km−1

− 1 and the
second one when a = 2(m − 1)km, Eq. (6) follows if

2(m − 1)km[2(m − 1)km−1
− m]

m > (m − 1)[2(m − 1)km]
m.

Simple calculation shows that the inequality above is equivalent to

(21/m
− 1)2(m − 1)km−1 > m21/m, (7)

and the result follows. �

Example 12. Since Eq. (7) holds for m = 4 and k = 4, we obtain M2(K2×4; 4) ≤ 768, which improves significatively the
previous upper boundM2(K2×4; 4) ≤ 4298 from Theorem 7.

5.2.2. Bounds for K2×3

A closer look on the argument produces a slightly stronger bound for the casem = 3, more precisely:

Theorem 13. Let k ≥ 2 be a positive integer.

1. Ms(K2×3; k) ≤ ⌈(2k3 + 6k)/s⌉ + 3 for every s.
2. For s = 2, the sharper bound M2(K2×3; k) ≤ k3 + 2k + 1 holds.

Proof. For item 1, we need to find a positive integer c such that

cs


(c−1)s

k

3


> 2

 cs
3


. (8)

By applying the relation (a − 2)3/3! ≤
 a
3


≤ a3/3!, Eq. (8) can be derived from the following inequality

[cs − (s + 2k)]3 > 2k3(cs)2. (9)

Note that both inequalities below

(xs)3 − 3(s + 2k)(xs)2 ≥ 2k3(xs)2

3(xs)(s + 2k)2 − (s + 2k)3 > 0

hold for any real number x ≥ (2k3 + 6k)/s + 3. In particular when x = c = ⌈(2k3 + 6k)/s⌉ + 3, the sum of the inequalities
above implies Eq. (9), and consequently Eq. (8) holds. Therefore the bound follows as an application of Lemma 10.

It remains the analysis of item 2. If

2(k3 + 2k + 1)

2k2 + 4

3


> 2


2(k3 + 2k + 1)

3


,

then Lemma 10 concludes the required bound. Elementary calculation shows us that the previous inequality is equivalent
to k4 + 5k2 + 6 > k3 + 2k, which holds for every k ≥ 2. �

Table 1 presents some upper bounds on Ms(K2×3; 2) for small s, which allows us a comparative analysis between [6,
Theorem 5], Theorem 13.1 and Lemma 9.

As mentioned in Table 1, the boundM2(K2×3; 2) ≤ 24 was obtained in [6]. Theorem 13.1 improves toM2(K2×3; 2) ≤ 17.
However, the sharper boundM2(K2×3; 2) ≤ 13 holds from Theorem 13.2.

Table 1
Upper bounds on Ms(K2×3; 2).

s 1 2 3 4 5 6 7 8

Theorem 5 of [6] 46 24 14 13 10 8 7 7
Theorem 13.(1) 31 17 13 10 9 8 7 7
Lemma 9 22 13 9 8 7 6 6 5
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5.3. Turán number and bounds for K2×2

Given graphs G and F, the Turán number ex(G; F) denotes the maximum number of edges in a subgraph of G containing
no copy of F . We refer to [4] for a survey on this mainstream problem of extremal graph theory.

Chvátal and Harary [10] established a simple but particularly important connection between Turán numbers and
multicolored Ramsey numbers:

If ex(Kc; F) <
 c
2


k, then r(F; k) ≤ c,

where r(F; k) denotes the smallest n such that any k-coloring of the edges of Kn must contain a monochromatic copy of F . A
natural extension to multipartite graphs is stated, more precisely.

Lemma 14. If ex(Kc×s; F) < s2
 c
2


/k, then Ms(F; k) ≤ c.

Let us focus on the case where F = K2,2 = C4. Erdős–Rényi–Sós [13] (see also [9,16]) computed

ex(Kn; K2,2) ≤
n
4
(1 +

√
4n − 3). (10)

Determining Turán numbers even for this cycle has been a long-standing problem. The topic is so difficult that exact values
on ex(Kn; K2,2) are known only for a particular class, according to Füredi [14].

The well-known bound r(K2×2; k) ≤ k2 + k+1 was obtained by Irving [16, Theorem 3.12] and, independently, by Chung
and Graham [9, Corollary 1]. We extend this bound as follows.

Theorem 15. Let k ≥ 2 and s be positive integers. Thus

Ms(K2×2; k) ≤


k2 + k + 2s − 1

s


.

Proof. The proof is an application of Lemma 14 when F = K2,2. Because the case s = 1 is already known, we only prove the
case where s ≥ 2. Let c be the upper bound of the statement above. Since Kc×s is a subgraph of Kcs, any K2,2-free subgraph
of Kc×s is also a K2,2-free subgraph of Kc×s, and consequently ex(Kc×s; K2,2) ≤ ex(Kcs; K2,2). By using this previous inequality
and the bound in Eq. (10), the hypothesis of Lemma 14 holds if the inequality below is satisfied for all k.

4sc − 3 <
(2sc − 2s − k)2

k2
. (11)

Take now the real function f (x) = (2sx − 2s − k)2 − (4sx + 3)k2. Note that Eq. (11) can be reformulated as f (c) > 0. For
this purpose, it is easy to see that its derivate f ′(x) = 4s(2sx − 2s − k) − 4sk2 is nonnegative for all x ≥ (k2 + k + 2s)/2s.

Put c = ⌈A/s⌉, where A = k2 + k + 2s − 1. Elementary calculation reveals that f (A/s) > 0. Combining the facts: f is an
increasing function for all x ≥ A/s, f (A/s) > 0, c ≥ A/s, we conclude that f (c) > 0 and consequently Eq. (11) holds. Finally,
apply Lemma 14 to obtain the desired bound. �

6. A new connection

Asmentioned above, theworks [6,7] explore important connections betweenMs(Kn1×m1 , Kn2×m2) and r(Ku1 , Ku2), Ramsey
number that ensures the occurrence of a monochromatic copy of a complete graph on suitable u1 and u2 vertices. With this
spirit, we aim to discuss now a connection betweenMs(Kn1×m1 , . . . , Knk×mk) and r(K2×u1 , . . . , K2×uk).

Theorem 16. Given positive integers, the following lower bound holds

Ms(Kn1×m1 , . . . , Knk×mk) ≥


M1(Kn1×m1 , . . . , Knk×mk) − 1

s


+ 1.

Proof. Let n = M1(Kn1×m1 , . . . , Knk×mk). By the choice of n, there is a k-coloring of the complete graph Kn−1 without a
monochromatic copy of Kni×mi in color i, where 1 ≤ i ≤ k. Let c = ⌊(n − 1)/s⌋ . Since cs ≤ n − 1, select a subgraph H
(isomorphic to Kc×s) of Kn−1 and consider the k-coloring restricted to H . It is clear that H contains no monochromatic copy
of Kni×mi in color i, where 1 ≤ i ≤ k. �

Example 17. Let us illustrate some numerical results:
1. Bialostocki and J. Schönheim [3] proved thatM1(K2×2; 3) = r(C4; 3) = 11. A combination of Theorems 15 and 16 yields

the following numbers:

6 ≤ M2(C4; 3) ≤ 8 4 ≤ M3(C4; 3) ≤ 6 3 ≤ M4(C4; 3) ≤ 5
3 ≤ M5(C4; 3) ≤ 5 2 ≤ M6(C4; 3) ≤ 4.
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2. The lower bound 27 ≤ r(C4; 5) is due to Lazebnik and Woldar [18]. Theorems 16 and 15 produce:

14 ≤ M2(C4; 5) ≤ 17 9 ≤ M3(C4; 5) ≤ 12
7 ≤ M4(C4; 5) ≤ 10 6 ≤ M5(C4; 5) ≤ 8.

Example 18. Table 2 presents some lower bounds on Ms(K4×2, K2×2, K2×2) by using Theorem 5 and the lower bounds in
Example 17.1. The same values and applications of Theorem 6 produce lower bounds onMs(K3×2, K3×2, K2×2) in Table 2.

Table 2
Some lower bounds.

s 2 3 4 5 6

Ms(K4×2, K2×2, K2×2) 8 6 5 5 4
Ms(K3×2, K3×2, K2×2) 9 7 6 6 5

We now discuss additional applications.

6.1. Extending a result by Burger et al.

Given a graph G, let χ(G) denote the chromatic number of G and let c(G) denote the cardinality of the largest connected
component of G. Chvátal and Harary [11] discovered a useful bound r(H,G) ≥ (χ(G)− 1)(c(H)− 1)+ 1. As an application,
Burger and van Vuuren [7, Corollary 1] proved that

M1(Kn1×m1 , Kn2×m2) ≥ (n2 − 1)(n1m1 − 1) + 1. (12)

The authors pointed out that an extension to an arbitrary swould be interesting.
We attempt to extend this result by discussing firstly an adaptation of Eq. (12) to an arbitrary number of colors. This

method is motivated by the recursive construction from the proof of r(K3; k) ≥ 2k, see [15, page 145].

Proposition 19. Given positive integers mi ≥ 1 and ni ≥ 2 for 1 ≤ i ≤ k, let r = r(Kn1×m1 , . . . , Knk−1×mk−1). For every positive
integer s,

Ms(Kn1×m1 , . . . , Knk×mk) ≥


(nk − 1)(r − 1)

s


+ 1.

Proof. We firstly analyze the case s = 1. By the choice of r , there is a k− 1-coloring of Kr−1 without a monochromatic copy
of Kni×mi in color i, where 1 ≤ i ≤ k − 1. Let c = (nk − 1)(r − 1) and consider Kc to be made up of nk − 1 copies of Kr−1
with edges interconnecting all pairs of vertices in the distinct copies of Kr−1. Color all edges within a copy Kr−1 by using the
k − 1 coloring above, and all remaining edges with color k. There is no copy of Kni×mi in color i, where 1 ≤ i ≤ k − 1. Since
the largest complete graph in Kc with color k has nk − 1 vertices, no copy of Knk×mk with color k can occur. The proof for an
arbitrary s follows from Theorem 16. �

We note that for 1-coloring, the degenerate case of the notation considers r(Kn1×m1; 1) = n1m1, which is used in the
lower bound of Proposition 19 when s = 1 and k = 2. Under this viewpoint, Proposition 19 can be regarded as an extension
of Eq. (12).

Corollary 20. Given positive integers s ≥ 1, n ≥ 2, m ≥ 1, k ≥ 2,

Ms(Kn×m; k) ≥
m(n − 1)k + 1

s
.

Proof. We analyze the case s = 1. Since r(Kn×m; 1) = nm, Proposition 19 produces

M1(Kn×m; 2) ≥ (M1(Kn×m; 1) − 1)(n − 1) + 1 = (nm − 1)(n − 1) + 1 ≥ m(n − 1)2 + 1.

The argument follows by induction on k. Theorem 16 completes the proof to an arbitrary s. �

The case where s = 1, n = 3, and m = 1 yields essentially the bound r(K3; k) ≥ 2k, mentioned above.

6.2. Asymptotic bound for the four cycle

We conclude this workwith some remarks about asymptotic results. Alon et al. [1] proved that r(K2×3; k) = (1+o(1))k3,
improving a well-known construction based on certain finite geometries by Brown [5]. As an immediate application of
Theorems 16 and 13, for a given s, the numberMs(K2×3; k) is bounded by (1 + o(1)) k3

s and (2 + o(1)) k3
s .
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An asymptotically sharp class can be established, more specifically.

Corollary 21. For a positive integer s, we have

lim
k→∞

Ms(K2×2; k) =
k2

s
.

Proof. The upper bound follows from Theorem 15. Irving [16, Theorem 3.2] proved thatM1(K2×2; k) > k2 − k+ 1 for every
k − 1 prime power (see also [9, Theorem 3]). The proof follows from this lower bound, Theorem 16, and the fact that prime
powers are sufficiently dense. �

The case where s = 1 was obtained in [16,9]. As another consequence, it is worth mentioning that Theorem 15 is
asymptotically sharp for an arbitrary s.
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