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1. Introduction

As mentioned, K. denotes the complete multipartite graph having c classes with s vertices per each class. Given graphs
Gy, ..., Gy, consider the extremal numbers:

e for a positive integer s, the set multipartite Ramsey number Ms(Gy, . . ., Gi) denotes the smallest positive integer ¢ such
that any k-coloring of the edges of K, contains a monochromatic copy of G; in color i for somei, 1 <i < k.
e for an integer ¢ > 2, the size multipartite Ramsey number m.(G, . .., G;) denotes the smallest positive integer s (if it

exists) such that any k-coloring of the edges of K, «s contains a monochromatic copy of G; in colorifor somei, 1 <i < k.
It is worth mentioning two particularly interesting cases:

e M;(Gy, ..., Gy)canbe regarded as the classical Ramsey number r(G, . . ., Gi), since K51 is isomorphic to the complete
graph K, on n vertices. The determination of these numbers has turned out to be a central problem in combinatorics.
e the number my(Gy, ..., Gy) produces the widely studied bipartite Ramsey number b(Gq, ..., Gy).

In 2004, Burger, Grobler, Stipp, and van Vuuren [2-4] investigated the numbers Ms(G1, G;) and m¢(G1, Go) where each G; is
a complete multipartite graph, which can be naturally extended to several colors, see [ 12]. Recently the numbers m:(Gy, G;)
have been investigated for special classes: stripes versus cycles, stars versus cycles, see [11] and its references.

In this work we focus on the case where each G; is a star. Chvatal and Harary [6] and Harary [7] evaluated the numbers
(K10, K1,m), where K , denotes a star on n + 1 vertices. As stated by Irving [10], “many of the more interesting problems
emerge in cases k > 2”. In particular, Irving pointed out that the chromatic index of certain complete graphs can be applied
to compute r(Kj 3, ..., Kq2). See also the numbers r(K; 3, ..., K;,3) in [10]. Burr and Roberts [5] extended these results as
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follows

_|S—k+2 ifS—kisoddorny,...,n,areodd;
r(Kinys - Kim) = {S —k+1 ifS — kiseven and some n; is even, (1)

where S = Y°F_n;.
As the first goal of this note we compute the following numbers, generalizing all the previous results.

Theorem 1. Given integerss > landk,nqy,...,n, > 2, letS = Z;‘:]nf. Then
S—k . . .
—~ +1 if (S—k)/siseven,sis odd and
Ms(K1nys - Kin) = some n; is even;

S—k .
—— | +2 otherwise.
s

Concerning the bipartite Ramsey numbers, b(K; n, K1,,) = 2n — 1 is reported by Beineke and Schwenk [1]. Its extension
to arbitrary number of colors was proved by Hattingh and Henning [8], more precisely:

b(Kipys - Kim) =S —k+1 (2)

where S = Y°F_n;.
The second goal of this note generalizes these results, as stated below.

Theorem 2. Given integersc,k,ny,...,n, > 2, let S = Zf:1ni. Then
S—k
p— if (S—k)/(c — 1) and c are odd and
Me(Kings oo Kiny) = some n; is even;
"S —k+ 1-‘ )
_ otherwise.
c—1

Recall that a matching in G = (V(G), E(G)) is a set of edges, no two of which are adjacent. The chromatic index (also called
edge chromatic number) x'(G) of a graph G denotes the minimum r such that there exists a partition of E(G) into r matchings.

Only two well-known results are required for our purpose: (i) the celebrated Vizing’s Theorem on the chromatic index of
a graph and (ii) the chromatic index of a complete multipartite graph due to Hoffman and Rodger [9]. We show Theorem 1
in Section 2. Since the proof of Theorem 2 is very similar, we present only a sketch of its proof in Section 3.

2. Proof of Theorem 1

In order to facilitate the understanding, let us split the proof of Theorem 1 into parts. We begin with a simple but very
useful general upper bound, which is sharp for several classes.
Proposition 3. Given integersk, ny,...,n, > 2, let S = Zg(:]nf. Foranys > 1,
My(K1ny, .. K1) < [(S —K)/s| +2.
Proof. Denote ¢ = [(S — k)/s] + 2. Given an arbitrary k-coloring of K., let H; be the subgraph of K., formed by all edges

in color i, where 1 < i < k. Select a vertex v of K. ;. Note that Zf:ld,»(v) = (c — 1)s, where d;(v) denotes the degree of v in
H;. By the choice of ¢, we have

k k
Dodv)=(c—1s>(S—k)=) (m—1) (3)
i=1 i

=1

thus dj(v) > n; — 1 holds for some j, 1 < j < k. Hence there is a monochromatic copy of K incolorj. W
As usual, A(G) denotes the maximum degree of G. A cornerstone of graph theory states that the parameter x'(G) is very
close to the trivial lower bound A(G), more specifically:
Theorem 4 (Vizing’s Theorem [13]). For a simple graph G,
A(G) = x'(G) = A(G) + 1.

The key ingredient of Irving’s result about r(Kj 5, . . ., K12) is based on the statement: since a matching does not contain
a copy of Kj », the chromatic index may induce almost optimal coloring with no copy of K; . With the same spirit, Vizing’s
Theorem plays a central role to extend such idea. More formally:
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Proposition 5. Given integersk, ny,...,n,>2,letS = Zf‘:1ni. Foranys > 1,
L(S —k— 1)/5J +2< Ms(Kl,nl LR K],nk)~

Proof. Letc = [(S—k—1)/s]| + 1. Vizing’'s Theorem states x'(K:xs) < s(c — 1)+ 1, that s, there is a (s(c -1+ 1)—coloration
of K. xs with no monochromatic copy of K ,. This coloring is denoted by ¢ : E(Kc«s) = Zsic—1)+1-

By the choice of ¢c,s(c — 1)+ 1<S -k = Zle(ni — 1), thus we can select a function ¥ : Zgc—1)+1 — {1,..., k} such
that | ~1(i)| = [{x € Zsc—1)+1 : ¥(x) =i}| <n;— 1foranyi=1,..., k. The composition ¢ o ¢ : E(K¢xs) — {1,...,k}isa
k-coloration of K. s with no monochromatic copy of K 5, in coloriforany i = 1, ..., k. Thus the statement follows. =

An immediate consequence is established below.

Corollary 6. Given integers k,ny,...,n, > 2,let S = fo:1ni. If s does not divide S — k, then
My(Kiny, - Kin) = [(S —K)/s| +2.

Proof. If s does not divide S — k, note that | (S —k — 1)/s | = | (S — k)/s]. An application of Propositions 3 and 5 ensures the
result. W

In view of the result above, we may assume that s divides S — k from now on. In this case, the upper bound x'(K¢ys) <
s(c — 1)+ 1due to Vizing's theorem is not so powerful to evaluate the exact value of My(Ky ., . . ., K1 5, ). Fortunately, a slight
improvement can be derived from the next statement.

Theorem 7 (Hoffman and Rodger [9]). If c or s is even, then x'(K.xs) = A(Kcxs) = s(c — 1).

As an application, we can determine another part of Theorem 1, more specifically:

Proposition 8. Given integers k,nq,...,n, > 2. Let S = Z;{:ﬂli and suppose that s divides S — k. If (S — k)/sis odd or s is
even, then

Ms(Kinys oo Kin) = (S —k)/s+ 2.

Proof. Proposition 3 states the upper bound. For the lower bound, let c = (S — k)/s + 1. By hypothesis, c or s is even. Hence
Theorem 7 ensures that x'(K;s) < s(c—1). By a similar argument used in the proof of Proposition 5, we obtain a k-coloration
of K;«s with no monochromatic copy of Ky », in coloriforanyi =1, ..., n, thatis, Ms(Ky n,, ..., Ky ) >c. B

We analyze now the unique case where the upper bound in Proposition 3 is not optimal.

Proposition 9. Given positive integers k, nq, ..., ngy > 2 with n; even forsomei =1, ...,k letS = Zf:]n,-. If (S—k)/sisan
even integer and s is odd, then

S—k
M(Kynys - oo Kin) = — + 1.

Proof. Let ¢ = (S — k)/s + 1. Proposition 5 produces My(Kyy,,...,Ki ) > c. Suppose for a contradiction that
M(Kipny, ..., Kyn,) > c. By assumption, there exists a k-coloring of K..; = (V, E) that contains no copy of K; », in color
iforanyi = 1,...,k Let H; = (V, E;) denote the subgraph of K., induced by the color i and let d;(v) be the degree of a
vertex v € V in H;. Since Ky, is not subgraph of H;, d;(v) < n; — 1 holds for any vertex v € V. Note that

k

k
(c—1)s = Zd,-(u)f Z(n,-— 1)=S—k=(c—1)s.
i=1

i=1
The inequality above ensures that d;(v) = n; — 1 for every vertex v € V and for everyi = 1, ..., k. By hypothesis, there is a
color j such that n; is even. By Euler’s identity,

205 = di(v)=Y (n;— 1) = cs(n; — 1).

veV veV

Thus cs(n; — 1) is even, contradicting the assumption that ¢, s and (n; — 1) are all odd numbers. ®

Corollary 6, Proposition 8, and Proposition 9 ensure Theorem 1 except when (S — k)/s is an even integer, s is odd, and n;

isodd foreveryi =1, ..., k. For this remaining case, we need a more involved construction.
Proposition 10. Given positive integers k, nq, ..., ny > 2 withn;odd foralli = 1,..., k. Let S = Z:-‘zln,-. If (S —k)/sisan
even integer and s is odd, then

S—k

Ms(Kinys oo Kin) = =—— +2.
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Proof. The upper bound is already known according to Proposition 3. Let ¢ = (S —k)/s. Denote the g+ 1 classes of vertices of
the multipartite graph Kig+1)xs by L1, ..., 1, Loo, wheret, = {(a, 1), ..., (a,s)} foranya = 1, ..., q, oco. We need to build
a k-coloration of K{g41)xs with no monochromatic copy of Ky », in coloriforany i =1, ..., k. This coloring depends on three
auxiliary functions, which are described in the steps below.

Step 1: Initially, consider the (S — k)-coloration ¥ : E(K(g+1)xs) —> Zs—i defined by

(a+c)s+b+d ifa,c<g;
v ({(a,b),(c.d)}) = {2as+b +d ifc = 0o
2cs+b+d ifa = oo;

where for any integer x, X denotes the equivalence class of x modulo S — k.
The coloring of the neighbor of a vertex (a, b) has distinct behaviors when a # oo or a = o0, as described in the two next
claims.

Claim 1: Foreacha=1,...,qand foreachb =1, ..., s, the S — k(= gs) incident edges at the vertex (a, b) of K(g+1)xs have
S — k different colors. To prove this claim, suppose for a contradiction that there are distinct vertices, say, (c1, d1) and (c,, d3)
with ¢; # a # ¢, such that

¥ ({(a, b), (c1, d1)}) = ¥ ({(a, b), (2, d2)}). (4)
We divide the analysis into three cases:

1. If c; = oo and ¢; = oo. In this case, the equality (4) implies d; = d,, that is, d; = d,. Since ¢; = c,, we obtain the
contradiction (cq, d1) = (ca, d3).

2. Ifc; < gandc, < g.Since a, ¢, ¢; < q, (4) implies (¢c; — ¢2)s = dp — dy. But [d, — dq| < s, thus d, — d; = 0 holds.
Consequently, (c; — ¢3)s = 0. The condition |[(c; — ¢3)s| < (@ — 1)s < S — k implies (c; — ¢3)s = 0, that is, ¢c; = ¢,
which contradicts the assumption (cq, d1) # (¢, d2).

3. Ifc; = coand ¢; < q.In this case, (4) implies (a — ¢;)s = d, — d1. Proceeding as in the case 2, we conclude the absurd
a = Cy.

Claim 2: Letb € {1, ..., s}.In the coloration v, the S — k incident edges at the vertex (oo, b) can be partitioned into (S — k)/2
colors of type A, = b+ 2js+1: 1 <j < q/2,1 <1 < s}. Moreover, there are exactly two edges of each one of these
(S —k)/2 colors.

In order to proceed the proof of Claim 2, suppose that

\/’({(Oos b)v (C17 dl)}) = 1//({(007 b)7 (C27 dz)})

Then 2(c; — ¢3)s = dy — dy. Since |d; — dy| < s, we have d; — d; = 0 and consequently 2(c; — ¢c;)s = 0. Thus there
is an integer z such that 2(c; — ¢3)s = z(S — k) = zgs. In particular, 2(c; — ¢3) = zq. The conditions ¢y, c; < q reveal
that two situations can hold: ¢; — ¢; = Oor|c; — o] = q/2.If (c1,dy) and (cy, dy) are distinct and ¢c; > ¢4, then
(c2, d2) = (c1+q/2, d1). On the other hand, if (c;, d2) = (c1+4/2, dy), we have ¥ ({(c0, b), (c1, d1)}) = ¥ ({(00, b), (c2, d2)}).
The facts above ensure that the S — k incident edges at the vertex (oo, b) are of (S — k)/2 colors, being two of each color. It
remains to prove that this set of colors is A, which is a consequence of the facts that w({(oo, b), (c1, d1 )}) =b+ 2cis+ dq

and ¥ ({(co, b). (c1, d1)}) = ¥ ({(00, b). (c1 — 4/2, d1)}) if &1 > q/2.

Step 2: Consider the function w : Zs_y —> Zs_y defined as follows: givenx € Zs_, with 1 < x < S — k(= gs), there are
unique integers mand r with0 < m < g— 1land 1 < r < ssuchthatx = ms + r. Define w(X) = X = ms+rif mis
even and w(x) = X —s = (m — 1)s +r if m is odd. Note that Im(w) = 2ms+r : 0 < m < q/2—-1,1 <r < s} and
Im(w)l = (q/2)s = (S — k)/2.

Claim 3: In the (S — k)/2-coloration w o ¥ : E(K(q+1 )xs) —> Im(w), a vertex (a, b) is connected to exactly two vertices
by a same color, say X € Im(w). Indeed, we have v~ (X) = {X,X + 5}, thus, if a < g, it follows from Claim 1 that in the
(S — k)/2-coloration w o 1// the vertex (a, b) is connected to two vertices by color x. On the other hand, if a = oo, observe
that just one element of w~'(x) = {X,Xx+35}isonsetA, = (b+2ms+1:1<m < q/2,1 < r < s}. This way, it follows from
Claim 2 that in (S — k)/2-coloration w o v, the vertex (oo, b) is connected to two vertices by color x.

1

Step 3: Note that (n; — 1)/2, ..., (ny — 1)/2 are integers satisfying
k
D = 1)/2=(S = k)/2 = lIm(e)I.
i=1
Thus, we can select a function ¢ : Im(w) —> {1, ..., k} in a way that |¢~'(i)| = (n; — 1)/2 foreveryi=1,..., k.
We are ready to present the desired coloring. Consider the k-coloration ¢ o (w o ¥) : E(K(g+1)xs) —> {1,...,k}. Asin

(S — k)/2-coloration w o v, any vertex is connected to exactly two others vertices by a same color x € Im(w), it follows that
in k-coloration ¢ o (w o ¥), any vertex of Ki,11)xs is connected to exactly others 2|¢~1(i)] = n; — 1 vertices by color i, for
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i=1,..., k Thus, the k-coloration ¢ o (w o ) contains no monochromatic copy of K; ,,; in color i, forany i = 1, ..., k. This
ensures that My(Ky 5,, ..., Ki,n,) > ¢+ 2 = (S — k)/s + 2 and concludes the proof. =

The result above concludes the proof of Theorem 1.
3. Proof of Theorem 2

The proof of Theorem 2 can be summarized into five statements, whose proofs are analogous to Propositions 3 and 5 and
8-10, respectively.
Claim A: mc(Ky ., ..., Ki) < [ S5

Lets = [3 ’f“ and take an arbitrary k-coloration of K. ;. Using the same notation and performing as in Proposition 3,
the inequality in (3) is true. Thus there is a monochromatic copy of K j for some colorj, 1 <j < k.

Claim B: [2=X] < mc(Kyn,. . ... Kin,):
Lets = L%J The arguments are similar to those used in Proposition 5. An application of Vizing’s Theorem ensures
that there is a k-coloration of K with no copy of Ky ;,; in coloriforanyi =1, ..., n. Thus

S—k—1 S—k
mC(Kl,nls--~aK1,nk)ZS+l: ﬁ +1= c—1 .

As an immediate combination of both claims above, m.(Ki n,, - .., Kin,) = [%—‘ holds when ¢ — 1 does not divide
S — k. From now on, we assume that c — 1divides S — k, say, S — k = (c — 1)z.

Claim C: If ¢ or z is even, then mc(Ky n,., . .., Ki.n,) = [2225].

Indeed, the upper bound is derived by Claim 1. It remains to show the lower bound m(Ky p,, ..., Ki,5,) > z.Sincecorzis
even, Theorem 7 ensures x'(Kx,) = z(c—1). Thus thereis a (z(c— 1 ))—coloration of K., with no monochromatic copy of Kj »,
denoted by ¢ : E(Kcx;) —> Zyc—1).Sincez(c—1)=S—k = 2?21(”1'_ 1), we canselecta function ¢ : Z,—1) — {1, ..., k}
such that |¢~1(i)] = n; — 1foranyi = 1, ..., k. The composition ¢ o ¢ : E(K.x,) —> {1, ..., k} is a k-coloration of K.,
with no copy of Ky ,, incoloriforanyi=1,..., k.

Claim D: Let ¢ and z be odd. If n; is even for some j € {1, ..., k}, then m(Ky p,, ..., Ky p) =2 = %

Indeed, Claim B states that m¢(Ky,n,, . . ., K1,5,) > z. Suppose for a contradiction that m¢(Ky n,, . . ., K1,,) > z. Thus there
is a k-coloration of K., with no copy of K; ,; incoloriforanyi = 1, ..., k. Proceeding as the proofin Proposition 9, we obtain
2|Ej| = cz(n; — 1), where |E;| denotes the number of edges colored by color j. The last equality contradicts the assumption
that ¢, z, and (n; — 1) are all odd numbers.

Claim E: Let both ¢ and z be odd. If n; is odd for any i € {1, ..., k}, then m(Kyn,, ..., Kin,) =2z 4+ 1= [31],

The proofiis essentially based on Proposition 10. With the change of variables c = g+1and z = s, the following statements
hold: S — k = gs, q is even, s is odd, and n; is odd for any i = 1, ..., k. As an application of Proposition 10, we can build a k-
coloration of K¢ ;(= Kig+1)xs) withno copy of Ky »; incoloriforanyi = 1, ..., n.Thus m¢(Ky n;, ..., K1n,) = 24+1 = |'s;ﬁ1'|'

The upper bound follows from Claim A.
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