The size multipartite Ramsey numbers for paths
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Abstract. For graphs G1,Ga, - - , Gy, the (generalized) size multipar-
tite Ramsey number m;(G1,Gz,- - ,Gy) is the least natural number m
so that any colouring of the edges of K., with k colours will yield a
copy of G; in the ith colour for some i. In this note, we determine the ex-
act value of the size multipartite Ramsey number m;(Ps, P;) for s = 2,3
and all integers t > 2, where P; denotes a path on ¢ vertices.

1 Introduction

Recently, Burger and van Vuuren [3] studied one of generalisations of the classical
Ramsey number as follows. Let K, «; denote a complete, balanced, multipartite
graph consisting of n partite sets and [ vertices per partite set. Let j,l,n,s
and ¢ be natural numbers with n,s > 2. Then the size multipartite Ramsey
number m;(Kpxi, Kox¢) is the smallest natural number ¢ such that an arbitrary
colouring of the edges of K« ¢, using two colours red and blue, necessarily forces
ared K, «; or a blue K,«; as subgraph.

In this paper, we generalize this concept by releasing completeness require-
ment in the forbidden graphs as follows. Let 5 > 2 be a natural number.
For graphs G1,Ga, - -, Gy, the (generalized) size multipartite Ramsey number
m;(G1,Ga,- -+, G) is the smallest natural number m so that any colouring
of the edges of K., with k colours will yield a copy of G; in the 7th colour
for some i. The existence of all numbers m;(G1, Ga,- - ,Gy) for j = 2 follows
from a result of Erdés and Rado [4]. For the case of k = 2, with G1,G2 are
complete balanced multipartite graphs, the numbers can be derived from re-
sult Burger and van Vuuren [3]. The exact values of bipartite Ramsey numbers
b(Ps, P;) = ma(Ps, P;) of two paths can be obtained from a special case of some
results of Gyarfds and Lehel [6], and Faudree and Schelp [5]. Furthermore, Hat-
tingh and Henning [7] determined the exact values of bipartite Ramsey numbers
b(Py,, K1 ). In this paper, we establish the exact values of the size multipartite
Ramsey numbers m;(Ps, P;) of two paths with s = 2, 3.

2 Main results
In this note, we prove the following theorem.
Theorem 1. Ifn =3 then m;(Ps, P,) =[] for s =2,3.
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Proof. Let k = f%} If all edges of F' = K, (,—1) are colored by blue then F' con-
tains neither red P, (and Ps) nor blue P, for n > 3. Therefore, m;(Ps, P,) > k
for s = 2,3 and n > 3. It easy to see that m;(P,, P,) < k, and so m;(Ps, P,,)) = k.
Now, we prove that m;(Ps, P,,) < k. Let all edges of F' = K}, be colored by
red or blue, so that F' contains no red P3. To show that F' contains a blue path
P,, on n vertices, consider the following three cases.

Case 1. j = 2.

Let Vi={a, ag, ..., ar } and Vo={by, ba, ..., by } be the partite sets of F'. If all edges
of F' are blue then the proof is complete. Now, suppose F' contains r red edges,
r < k. Since there is no red Ps, these red edges are independent. Without loss
of generality, we may assume that the r red edges are: a1by, asbs, - ,a.b,.. If ris
odd then a1baazby - - - ar_2b,_1a:b1a2b3ay - - by _2a, _1brary1br 110042002 - - arby
is a blue path with at least n vertices in F. Now, if r is even then we have a blue
path aibsazby - - - a,_3br_2a,_1bra,_2br_3a,_4---bzazbia,

br—1Gr41br41 - - - agby, with at least n vertices in F.

Case 2. j = 3.

If all edges of F are blue then it is finished. Let Vi, V5 and V3 be the partite sets
of F. Now, assume, without loss of generality, there exist r, s and t red edges
connecting V; to Vo, Vi to V3, and V5 to V3, respectively. By considering these
red edges, partition V7, Vo and V3 as follow: V3 = RiUX USy, Vo = RoUY UT,
and Vg = Sg UZUTg, where |R1‘ = ‘R2| =T, |Sl| = |53| = s and |T2| = |T3| =1
so that all edges connecting R; to R, S to S3 and T to T3 are red. Next,
without loss of generality, assume r < s < ¢. This implies that |Z| < |Y| < |X].
Observe that there exist three independent blue paths: (i) path , P, of 2r vertices
connecting all vertices of R; and some of S3 with the initial vertex a € Ry and
the terminal vertex b € Ss, (ii) path Py of 2r vertices connecting all vertices of
R5 and some of T3 with the initial vertex ¢ € Ry and the terminal vertex d € T3,
(iii) path Py of 2s vertices connecting all vertices of Sy and some of T, with the
initial vertex e € Th and the terminal vertex f € Sp, see Fig.1.(i). We can the
join all these paths into one larger blue path ,Ps:=,FPy.Fy.Ps. This path has
4r 4 2s vertices, see Fig.1.(ii).

Let denote by A, B and C the subsets of Ty, S3 and T3, respectively, which
contain all vertices not in the above three blue paths. Then, we have |Y|+|A4| =
|X] and [B|+]Z|+|C] = |X|+|B| = |X|+(s—), and (s—r) = [Y| ~|Z] < |X].
We will show that there exists a blue path connecting X, Y UA and BUZUC
with at least 3|X| + (s — ) vertices.

Partition the sets C' = C; UC5 such that Cy consists of all end-vertices of red
edges connecting A and C, and so |Cs| = |[A] = (¢t — ) and |C1| = |B| = (s — ).
Partition the sets X = X; U X5 such that |X3| = |Cs|; Clearly | X;| = |Y|. Sup-
pose D = BU Z U (4. Note that |X5| = |A| = |Cs]|. Let Co = {a1,a2, - ,am},
Xo = {b1,ba, - ,bp}, and A = {c1,¢2,-+* ,cm}, where m = t — s. Then we
obtain a blue path a1biciagbacs - - - by, €. This path has 3(¢ — s) vertices, and
is denoted by 4, P, . Since fa, is a blue edge then by joining the two paths , Py
and o, P., we have a blue path with 4r 4 3¢t — s vertices. This resulting path,
denote by ,F,,,, starts from a and ends at ¢,,. Next, we consider the following
three subcases.
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® (i)

Fig. 1. The three blue paths form a larger blue path starting from vertex a € R; and
ending at f € S;.

Fig. 2. (i) A blue path 4P (ii) A blue path P,
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Subcase 2.1. |Z| = 0.

Since |Z] = 0 then |D| = |[BUC4| = 2|Y| = 2|X;| = 2(s — r). Then, we obtain
a blue path by connecting all vertices in X; with a half of D alternatingly, and
continuing connecting the other half of D with all the vertices in Y alternatingly.
This path starts at some vertex g € X; and ends at h € C1, and is denoted by
¢Pn (see Fig.2.(i)). Note that this path has 4(s —r) vertices. Since ¢,,g is a blue
edge then by joining the two paths P, and ,P, we have a blue path with
3(s + t) vertices. This resulting path uses all vertices of F, and so F' contains a
blue path with at least n vertices.

Subcase 2.2. 0 < |Z| < |Y].

Since |Z] < |Y| then |D| = |[BUZUC}| < 2|Y|. Then, we obtain a blue path , P,
connecting all vertices in X7 with all vertices in Y through all vertices in D one
by one each time, until all the vertices in D have been totally used. If there are
still some vertices in X; (and so in Y') left then connect directly these remaining
vertices alternatingly, see Fig.2.(ii). Since ¢,,u is a blue edge then by joining the
two paths P, and ,P,, we have a blue path with 3(|Y| + r + ¢) vertices. This
resulting path contains all the vertices of F', and so F has contains a blue path
with at least n vertices.

Subcase 2.3. |Z| = |Y]| # 0.

Since |Z| = |Y|, then s —r = 0 and so |D| = |Z|. Then we obtain a blue path
w P, connecting all vertices in D, X7, and Y alternatingly, where w € D and
z € Y. Since ¢, w is a blue edge then by joining the two paths P, and ,FP;,
we have a blue path with 3(]Y |47 +1t) vertices. This resulting path will contains
all the vertices of F'.

Case 3. j > 4.

Let V1, Va,---,V; be the partite sets of F'. Trivially, if all edges of F' are blue
then it is finished. If j even by Case 1 we have % blue paths connecting all
vertices Vi to Va, V3 to Vy, ---, Vj_;1 to V;. Each path has 2k vertices. Since

F has no a red P3 then we can concatenate these § paths into one blue path

of kj vertices. This final path will have at least n vertices. Ifj is odd then by
Case 1 we obtain % blue paths connecting all vertices Vi to Vs, V3 to Vg, -+,
Vj_a to V;_3 independently. Each path has 2k vertices. By using the method in
Case 2 we get another blue path connecting all vertices in V;_o, V;_; and V;.
Again, since F' has no red P3, we can join all these paths into one with at least
n vertices.O

Corollary 1. If n > 3 then m;(Ps,Cp) = [5] for s =2,3.

Proof. Let , P, be the final blue path obtained in the proof of Theorem 1. This
path consists of at least n vertices. Since zy is a blue edge then by joining the
two vertices x and y, we have a blue cycle C,, with at least n vertices.O
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