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Abstract

A constructive method is provided that outputs a directed graph which is named a broken crown
graph, containing 5n− 9 vertices and k Hamiltonian cycles for any choice of integers n ≥ k ≥ 4.
The construction is not designed to be minimal in any sense, but rather to ensure that the graphs
produced remain non-trivial instances of the Hamiltonian cycle problem even when k is chosen to
be much smaller than n.
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1. Introduction

The Hamiltonian cycle problem (HCP) is a famous NP-complete problem in which one must
determine whether a given graph contains a simple cycle traversing all vertices of the graph, or
not. Such a simple cycle is called a Hamiltonian cycle (HC), and a graph containing at least one
Hamiltonian cycle is said to be a Hamiltonian graph.

Typically, randomly generated graphs (such as Erdős-Rényi graphs), if connected, are Hamil-
tonian and contain many Hamiltonian cycles. Although HCP is an NP-complete problem, for these
graphs it is often fairly easy for a sophisticated heuristic (e.g. see Concorde [1], Keld Helsgaun’s
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LKH [4] or Snakes-and-ladders Heuristic [2]) to discover one of the multitude of Hamiltonian cy-
cles through a clever search. However, some Hamiltonian graphs may contain only a small number
of Hamiltonian cycles. Among the most famous of these is the infinite family of 3-regular graphs
known as generalized Petersen graphs [7] GP(n, 2), which for n = 3 mod 6 always contain
3 Hamiltonian cycles even though the graphs can grow arbitrarily large, containing 2n vertices.
Even for dense graphs, it is possible that the number of Hamiltonian cycles is small, with Shee-
han’s infinite family of maximally uniquely-Hamiltonian graphs [6] (that is, graphs with exactly
one Hamiltonian cycle and the maximum possible ratio of edges to vertices) being one such result.

However, there are situations where it may be desirable to be able to specify the number of
Hamiltonian cycles desired in a constructed graph, without restricting the number of vertices too
heavily. Such examples are often among the most taxing for HCP algorithms, and provide excellent
instances for benchmarking. The generalized Petersen graphs GP(n, 2) for n = 1 mod 6 contain
exactly n Hamiltonian cycles, but there is no control over the order of the graph, which is fixed at
2n vertices.

In this manuscript, a constructive procedure will be presented that, for any choice of integer
n ≥ 4, outputs a directed graph of order 5n − 9 containing n Hamiltonian cycles (in a directed
sense). For each Hamiltonian cycle, there will be two directed edges which are traversed by only
that Hamiltonian cycle and none of the others. Therefore, the removal of either of these two
directed edges eliminates that Hamiltonian cycle from the graph while preserving the rest. Then,
if exactly k Hamiltonian cycles are desired, one may simply remove n−k directed edges to obtain
such a graph. Obviously, this can be performed whenever n ≥ k.

It is worth noting that the construction outlined in this manuscript is not the only such method
for constructing graphs with a controlled number of Hamiltonian cycles, or even a minimal con-
struction in any sense. Rather, the construction is designed in such a way that in addition to
providing a reasonably small graph, the structural complexity of the graph itself is not diminished
even when k is much smaller than n. To see why this is a noteworthy feature, consider the well-
known Wheel graph Wn [3] which can be thought of simply as a cycle graph of length n− 1 along
with an additional vertex v which is connected to all other vertices. It is easy to determine that
this graph contains n − 1 Hamiltonian cycles and each edge incident on v is used in exactly two
Hamiltonian cycles, so it is possible to control the number of Hamiltonian cycles to some degree by
removing these edges. However, if most of the edges are removed to ensure only a small number
of Hamiltonian cycles are present, the remaining graph is a trivial instance of HCP where almost
every vertex is degree 2 and the few remaining Hamiltonian cycles are easy to discover. Such an
example is displayed in Figure 1, where the left graph is W9 and the right graph is the modified
version with only two Hamiltonian cycles, which are trivial to find.

2. Crown Subgraph

In order to produce the desired graph, it is first necessary to introduce a parametrised family of
subgraphs for each integer n ≥ 4.
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Figure 1. The Wheel Graph W9 and the modified version with edges removed to ensure only 2 Hamiltonian cycles
remain.

Definition 2.1. The Crown Subgraph with parameter n that is a natural number greater than or
equal to 4, denoted by Cn, is a directed subgraph containing 5n − 10 vertices, and the following
directed edges:

• (i, i+ 1) and (i+ 1, i) for all i = 1, . . . , 5n− 11,

• (1, 5n− 10) and (5n− 10, 1),

• (2n, 2n− 2) and (5n− 10, 2),

• (2n+ 3i, 2n− 2− 2i), for all i = 1, . . . , dn−4
2
e,

• (5n− 10− 3i, 2i+ 2), for all i = 1, . . . , bn−4
2
c.

Suppose that the subgraph Cn is included inside a larger graph. Then there will be a set of
incoming edges that go into Cn from other vertices in the larger graph, and a set of outgoing edges
that depart from Cn. Consider the situation where there are n incoming edges and n outgoing edges
(each of which has a label from 1 to n), which are incident on the following vertices:

• Incoming edge labelled i is incident to vertex 2i− 1 for all i = 1, . . . , n,

• Outgoing edge labelled 1 is incident from vertex 5n− 10,

• Outgoing edge labelled 2 is incident from vertex 1,

• Outgoing edge labelled n− 1 is incident from vertex 2n− 1,

• Outgoing edge labelled n is incident from vertex 2n,

• Outgoing edge labelled i+ 2 is incident from vertex 5n− 9− 3i for all i = 1, . . . , bn−4
2
c,

• Outgoing edge labelled n−1− i is incident from vertex 2n−1+3i for all i = 1, . . . , dn−4
2
e.
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The Crown Subgraph is illustrated in Figures 2 and 3, showing the subgraph before and after
the addition of the incoming/outgoing edges. Because of the way the figure is displayed, vertices
1, . . . , 2n − 1 are referred to as top vertices and the remaining vertices are referred to as bottom
vertices. Notice that the incoming edges are all incident to the top vertices.

Figure 2. The Crown Subgraph with parameter n. The top-left vertex is labelled 1, and the vertex labellings increase
in a clockwise fashion.

Theorem 2.1. Any Hamiltonian cycle in a graph containing Cn must only traverse a single incom-
ing edge and a single outgoing edge, and both edges must have the same label. Furthermore, there
is only one path a Hamiltonian cycle may take between any given pair of incoming and outgoing
edges.

Proof. The boundary cases (ie incoming edges 1, 2, n − 1 and n) must be considered separately
from the other cases. Specifically, incoming edges 1 and n will be considered together as the first
case, and incoming edges 2 and n − 1 will be considered together as the second case. Then the
more general cases will be considered together as a third case. In each case, the proof will follow
a similar pattern. Multiple possibilities will be examined, and all but one of them will lead to a
contradiction in the sense that it will be impossible to avoid creating a short cycle. The remaining
possibility will be to traverse the entirety of Cn and depart via the corresponding outgoing edge.

Case 1: Suppose the HC enters Cn via incoming edge 1. There are then three choices - the HC
may either depart Cn immediately via outgoing edge 2, travel right to vertex 2, or down to vertex
5n− 10. If the HC departs Cn immediately, then Cn must be re-entered at a different time. During
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Figure 3. The Crown Subgraph with parameter n and incoming and outgoing edges attached.

this alternative visit, vertex 2 needs to be visited, which can either occur by entering into one of the
top vertices, and travelling left along the top vertices until vertex 2 is reached, or by first travelling
to vertex 5n − 10 and then up to vertex 2. In the former case, a contradiction is reached because
vertex 2 then cannot be departed without creating a short cycle. In the latter case, upon travelling
up to vertex 2, the only option is to continue right along the top vertices. However, eventually the
vertex which was used to re-enter Cn will be reached again, creating a short cycle. Since neither
of the cases work, it is clear that the HC cannot immediately depart Cn after arriving via incoming
edge 1.

Suppose instead that after arriving via incoming edge 1, the HC travels down to vertex 5n−10.
This vertex is adjacent to the degree 2 vertex 5n− 9 and so the HC must travel there immediately.
However, then the same argument as above can be used to show that it is now impossible to visit
vertex 2 without needing to create a short cycle. So this option also induces a contradiction. The
only remaining option is to travel from vertex 1 straight to vertex 2. Then, the HC must continue
along all of the top vertices. However, once it visits vertex 2n − 1, all of the incoming edges are
incident to vertices which have already been visited. Therefore Cn cannot be re-entered, and so
all vertices in Cn must be visited before departing. The only path left which visits the remaining
vertices is to travel down to vertex 2n, and go left along the bottom vertices until vertex 5n− 10 is
reached, and outgoing edge 1 is used to depart. This is the only valid path that may be used as part
of a HC going through incoming and outgoing edges 1.

Due to symmetry, an equivalent argument can be used to prove the theorem for incoming edge
n.

Case 2: Suppose the HC enters Cn via incoming edge 2. There are then two choices - the
HC may go left to vertex 2, or right to vertex 4. Suppose it goes left to vertex 2. By the same
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argument as in Case 1, the HC must then visit vertex 4 before it departs Cn, since it will otherwise
be impossible to re-enter and visit it later without creating a short cycle. Vertex 4 must be visited
from one of the bottom vertices, or else a short cycle is created. Therefore, from vertex 3 the HC
must travel through vertices 2, 1, 5n−10, 5n−9, 5n−8, 5n−7 and then up to vertex 4. However,
vertex 5n − 7 is adjacent to the degree 2 vertex 5n − 6, and so this path cannot be used in a HC
without later creating a short cycle.

The only remaining alternative is to go right to vertex 4, after entering via incoming edge 2.
Similarly to the previous argument, the HC must then visit vertex 2 before it departs Cn. The only
valid way to do this is to travel right along all the top vertices, then down to vertex 2n, and left
along all the bottom vertices until vertex 5n− 10 is reached. At this stage the HC can either travel
to vertices 1 or 2, but clearly travelling to vertex 1 means vertex 2 can’t be visited without creating
a short cycle, so the remaining option is to travel from 5n− 10 to vertex 2, then on to vertex 1, and
to depart via outgoing edge 2. This is the only valid path that may be used as part of a HC going
through incoming and outgoing edges 2.

Due to symmetry, an equivalent argument can be used to prove the theorem for incoming edge
n− 1.

Case 3: Suppose the HC enters Cn via incoming edge i + 2 for some i ∈
[
1, . . . , bn−4

2
c
]
,

arriving at vertex 2i + 3. The HC can then either go left to vertex 2i + 2 or right to vertex 2i + 4.
However, using an equivalent argument to that in Case 2, the HC cannot go left first, or else it
becomes impossible to later visit vertex 2i + 4 without creating a short cycle. Therefore, the HC
goes right to vertex 2i+ 4 first, and then as before, visit vertex 2i+ 2 before departing Cn. Again,
using the same arguments as previously, vertex 2i + 2 must be visited from one of the bottom
vertices, of which the only choice is vertex 5n− 10− 3i. Therefore the HC to this point enters at
vertex 2i + 3, travels right along the top vertices until vertex 2n − 1, then travels down to vertex
2n, goes left along the bottom vertices until vertex 5n − 10 − 3i, and then travels up to vertex
2i+2. It must then continue left along the top vertices until vertex 1. It cannot immediately depart
here because all vertices incident to incoming edges have now been visited, and so the remaining
vertices in Cn must be visited before departing. The only remaining option is to then travel down
to vertex 5n − 10, and go right along the bottom vertices until vertex 5n − 9 − 3i is reached, at
which time the HC departs via outgoing edge i. This is the only valid path that may be used as part
of a HC going through incoming and outgoing edges i.

Due to symmetric, an equivalent argument can be used to prove the theorem for outgoing edge
n− i− 1 for any i = 1, . . . , dn−4

2
e.

Since all incoming edges have now been considered, the proof is concluded.

3. Broken Crown Graph Construction

Consider a graph constructed by taking a copy of Cn and attaching each of the incoming and
outgoing edges to a single vertex v. From Theorem 2.1 it may be immediately concluded that
this graph contains exactly n Hamiltonian cycles, where the i-th Hamiltonian cycle travels from v
along incoming edge i to vertex 2i − 1, then through Cn in a unique way before finally travelling
along outgoing edge i and returning to v.
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By removing any of the incoming or outgoing edges, precisely one of the Hamiltonian cycles is
eliminated from the graph. Then, if a particular number of Hamiltonian cycles is required (bounded
above by n), one can simply remove the desired number of incoming or outgoing edges. Depending
on the desired properties of the resulting graph, it may be preferable to remove both the incoming
and outgoing edge corresponding to each eliminated Hamiltonian cycle, or just one of them.

Definition 3.1. A broken crown graph Bn,k is any graph constructed as above containing, Cn and
modified so that only k Hamiltonian cycles remain.

One beneficial property of broken crown graphs is that any broken crown graphs Bn,k and
Bn,j will be structurally quite similar graphs for any k and j. In terms of their use as benchmark
instances, retaining a similar structure while having control over the number of Hamiltonian cycles
allows a purer test of how the number of Hamiltonian cycles impacts on a given HCP algorithm.
Even if k is chosen to be much smaller than n, Bn,k is structurally no simpler than Bn,n as an
instance of HCP.

One potential concern is that the vast majority of HCP algorithms are not designed for directed
graphs such as Bn,k. This can be remedied through the use of the well known conversion from
directed HCP to undirected HCP [5]. This is done by replacing every vertex i with three vertices
j1, j2, j3 and edges (j1, j2), (j2, j3). Then for every edge going into vertex i in the original graph,
a corresponding edge in the undirected graph is incident to vertex j1. Likewise, for every edge
departing vertex i in the original graph, a corresponding edge in the undirected graph is incident
to vertex j3. This conversion is good as the set of Hamiltonian cycles in the original graph has
a 1-to-1 correspondence with the set of Hamiltonian cycles in the undirected graph. The final
undirected graph will contain 15n − 27 vertices, and between 22n + k − 40 and 21n + 2k − 40
edges (depending on whether both incoming and outgoing edges, or just one, was removed).

If some slight variation in the number of vertices is desired (ie if it not desirable for the undi-
rected graph to contain 3 mod 15 vertices) it is possible to replace vertex v with any other sub-
graph containing a unique Hamiltonian path, with the incoming edges all incident to the starting
vertex in the Hamiltonian path, and the outgoing edges all incident from the finishing vertex in
the Hamiltonian path. For example, v could be replaced by any Sheehan graph of any desired
size by simply removing any edge (a, b) which is in the unique Hamiltonian cycle, and making all
incoming edges incident to a and all outgoing edges incident from b.

Alternatively, every time an outgoing edge is removed (with the exception of outgoing edges
2 and n − 1) in the construction of a broken crown graph, one of the bottom vertices becomes
a degree 2 vertex. Since it will always be adjacent to another degree 2 vertex, it is possible to
contract these two into a single vertex. This can be repeated up to n − k times (once for each
removed outgoing edge) to have further control over the final size of the graph.

This manuscript is concluded with a visualisation of a broken crown graph B11,6, displayed in
Figure 4. In this example, five outgoing edges were removed and all incoming edges were retained.
The five enlarged vertices in Figure 4 correspond to the five outgoing edges that were removed.
The four enlarged bottom vertices could all be contracted as described above if desired.
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Figure 4. An example of a Broken Crown graph B11,6 constructed by removing outgoing edges 2, 5, 7, 8 and 9. The
11 incoming edges are labelled in order from left to right.
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