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Abstract

We consider the Erdős - Faber - Lovász (EFL) conjecture for hypergraphs. This paper gives an
upper bound for the chromatic number of r regular linear hypergraphs H of size n. If r ≥ 4,
χ(H) ≤ 1.181n and if r = 3, χ(H) ≤ 1.281n.
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1. Introduction

A hypergraph is a structure H = (V, (Ei : i ∈ I)) where the vertex set V is an arbitrary set,
and every Ei ⊆ V . These sets Ei are called the hyperedges of the hypergraph[11].

The degree of a vertex v in H is the number of edges d(v) containing v. The rank of an edge E
is the cardinality r(e) of e. A hypergraph is said to be linear if no two hyperedges have more than
one vertex in common. A hypergraph is said to be uniform if all of its hyperedges have the same
rank. If the degree of each vertex is same then the hypergraph is called regular.

The dual hypergraph H∗ of a hypergraph H is the transpose of an incident matrix of the hyper-
graph H. Clearly the edges of H∗ are the vertices of H and vice versa, ranks swap with degrees,
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etc. The dual of a uniform hypergraph is regular and vice versa. It is easy to see that H is linear if
and only if H∗ is linear.

A coloring of a hypergraph is an assignment of colors to the vertices so that no two vertices of
an edge have the same color. A k-coloring of a hypergraph is a coloring of it where the number of
used colors is at most k [7] [8].

The chromatic number χ(H) of a hypergraph is the least number of colors needed to color the
vertices of hypergraph H so that no two vertices of an edge have the same color.

The chromatic index q(H) (or edge chromatic number) of a hypergraph is the least number of
colors needed to color the edges of hypergraph H so that no two intersecting edges have the same
color [10].

In 1972, Erdős - Faber - Lovász (EFL) conjectured [3] [4] as follows:

Conjecture 1. If H is a linear hypergraph consisting of n edges of cardinality n, then it is possible
to color the vertices with n colors so that no two vertices with the same color are in the same
edge[1].

Conjecture 2. Let H be a linear hypergraph with n vertices and no rank 1 edges. Then q(H) ≤ n
[6] .

Chang and Lawler [2] presented a simple proof that the edges of a simple hypergraph on n
vertices can be colored with at most [1.5n-2] colors. Kahn [9] showed that the chromatic number
of H is at most n + o(n). Faber [5] proves that for fixed degree, there can be only finitely many
counterexamples to EFL on this class of regular and uniform hypergraphs.

In this paper we are using the dual graph version of the Conjecture 2, we gave an upper bound
for the chromatic number of r regular linear hypergraphs H of size n. If r ≥ 4, χ(H) ≤ 1.181n
and if r = 3, χ(H) ≤ 1.281n.

2. Results

Theorem 2.1. Let H be a linear hypergraph of size n.

1. If H is r regular (r ≥ 4) then χ(H) ≤ 1.181n.
2. If H is 3 regular then χ(H) ≤ 1.281n.

Proof. Let H = (V,E) be a linear hypergraph of size n and H is r regular (r ≥ 3). Let
E1, E2, . . . En be the edges of H . Since H is r regular and |E| = n, for every Ei ∈ E, |Ei| ≤⌊
n−1
r−1

⌋
≤ n−1

2
, then |V | ≤ n(n−1)

r(r−1)
≤ n

3

⌊
n−1
r−1

⌋
= N(say). Let C = {1, 2, 3, . . . , αn} be the set of

available colors. Since degree of each vertex is r, for every vertex vi ∈ V , there exists r edges
Ei1 , Ei2 , . . . Eir which are incident at the vertex vi.

For i = 1 to N

Step 1. Color vi with smallest color not already seen in ∪jEij . If no such color exist go to Step 2.
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Step 2. find a color c such that ∀ vk ∈ ∪jEij with col(vk) = c (at most r such vk) ∃ colors ck /∈
colors assigned to ∪j=1,2,...,rEkj .

Recolor each such vk with ck and color vi with c. If no such c found, abort the process.

Claim: For α sufficiently large, α ≥ 1, procedure dose not abort.
Suppose procedure aborts at vi. That means all αn colors seen in ∪jEij \ {vi} at vertices that

cannot be recolored. Pick one such vertex for each color, set S. |S| = αn. For vertices v ∈ S, v
sees all αn colors. At most |Eij | of these are seen in the edge EIj ∋ v. The rest are seen outside
Eij . v places a token on each vertex it sees colored with a color not in Eij .

v places ≥ αn− |Eij | tokens.
So total number of tokens places ≥ |S|.(αn− |Eij |) ≥ αn(αn−

⌊
n−1
r−1

⌋
).

How many tokens can be placed on a single vertex u?
If u ∈ ∪jEIj , then say u ∈ Ei1 . By H is r regular, u belongs to r−1 other edges E ′

1, E
′
2, . . . , E

′
r−1.

By linearity property, at most one vertex each on Ei2 , Ei3 , . . . , Eir lies on E ′
1, and same for E ′

2and
so on. So, at most (r − 1)2 vertices of S can place a token on u.

If u /∈ ∪jEIj , then col(u) is seen in S, say on S ∩ Ei1 . then no vertex in S ∩ Ei1 will place a
token on u. The r edges through u intersects Ei2 , Ei3 , . . . , Eir in at most one vertex. So, there are
at most r(r − 1) vertices of S can place a token on u. Therefore number of token per vertex is at
most r(r − 1).

|S|. (minimum number of token placed by v ∈ S) ≤ (number of token) ≤ (number of vertices)
(number of tokens per vertex)

|S|(αn− |EIj |) ≤ (number of tokens) ≤ n
r

⌊
n−1
r−1

⌋
r(r − 1)

αn(αn−
⌊
n−1
r−1

⌋
) ≤ n

⌊
n−1
r−1

⌋
(r − 1)

n(α2n− α
⌊
n−1
r−1

⌋
) ≤ n(

⌊
n−1
r−1

⌋
(r − 1))

(α2n− α
⌊
n−1
r−1

⌋
) ≤ (

⌊
n−1
r−1

⌋
(r − 1))

α2n− α
⌊
n−1
r−1

⌋
− (r − 1)

⌊
n−1
r−1

⌋
≤ 0.

Let A =
⌊
n−1
r−1

⌋
, then the above inequality is α2n− αA− (r − 1)A ≤ 0.

Consider α2n− αA− (r − 1)A = P (α), then the zeros are A±
√

A2+4(r−1)An

2n
. P (0) = −(r −

1)A < 0, so for all α > β =
A+

√
A2+4(r−1)An

2n
, P (α) > 0.

Choosing α so that α > β, we conclude that with αn colors the procedure successfully colors
V .

The value of β:

β =
A+

√
A2+4(r−1)An

2n
where A =

⌊
n−1
r−1

⌋
≤ n

r−1
= nB, where B = 1

r−1
.

≤ nB+
√
n2B2+4n2

2n

= B+
√
B2+4
2

Case 1. If r ≥ 4.
β ≤ B+

√
B2+4
2

≤ 1.180460 · · · < 1.181 (B = 1
r−1

)
Then for every α > β, χ(H) ≤ αn. Therefore χ(H) ≤ 1.181n.
Case 2. If r = 3
β ≤ B+

√
B2+4
2
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= 1
4
+
√

1
16

+ 1 (B = 1
r−1

= 1
2
)

=
√

17
16

+ 0.25

=
√
1.0625 + 0.25

= 1.0307764 · · ·+ 0.25 < 1.281.
Therefore χ(H) ≤ 1.281n.

From the above theorem one can observe that the upper bound of chromatic number of r regular
linear hypergraphs H of size n is depends on the value of β, where β ≤ B+

√
B2+4
2

(B = 1
r−1

).
Clearly as r increases the value of β will decrease. Therefore if r ≥ 5, then the upper bound of
χ(H) is even smaller than 1.181n.

Theorem 2.2. Let H be a linear uniform hypergraph of size n. If ∆(H) ≥ n
2

then χ(H) ≤ 1.25n.

Proof. Let H = (V, {E1, E2, . . . En}) be a linear uniform hypergraph of size n and ∆(H) ≥ n
2
.

Let v be a maximum degree vertex, δ(v) = m and v is incident with the edges E1, E2, . . . Em. In
any Ei there are at most

⌊
n−1
d−1

⌋
vertices of degree d. Arrange the vertices of H in non increasing

order of degree. We will color the vertices in this order, using [1.25n] colors. Assume we next
color a vertex v of degree k ≥ 4. At this point only vertices of degree k or greater have been
assigned colors. At this stage in each edge incident with vertex v there are at most

⌊
n−1
k−1

− 1
⌋

vertices have been colored, which implies there are at most k
⌊
n−1
k−1

− 1
⌋
< [1.25n] colors are used

to the vertices incident to the edges which are incident to v. That means there will be an unused
color for v. For vertices of degree 4, 3 and 2 we apply the following method.

Partition the vertices of degree d into two sets Ad and Bd, where Ad be the set of all degree
d vertices which are not incident with any of the edges E1, E2, . . . , Em and Bd be the remaining
degree d vertices. First assign the colors to the vertics are in Ad, at this stage in any edge there are
at most

⌊
n/2
d−1

− 1
⌋

vertices have been colored for d = 4, 3, 2. Therefore always there is a free
color for assigning to the vertices of Ad. For d = 4, 3, while assigning colors to the vertix u from
Bd, there are (d − 1)

⌊
n−1
d−1

− 1
⌋
+

⌊
n/2
d−1

− 1
⌋
< [1.25n] vertices have been colored. Therefore

always there is a free color for assigning to the vertices of Bd. For d = 2, let u ∈ B2 be the vertex
we have to color. Let u ∈ Ei, Ej for some i, j, then the vertex v is in either Ei or Ej but not both.
Assume v is in Ei, then in Ei there are at most n

2
− 1 vertices have been colored, that means there

are at least 3n
4
+ 1 colors are free from Ei. Ej has at most n − 2 vertices have been colored and

it has at least n
4
+ 2 colors free from Ej . Let X be the set of free colors from Ei and Y be the set

of free colors from Ej . If Ei ∩ Ej ̸= ∅ there is a free color to assign to the vertex u. If not, there
exist two degree two vertices p, q such that p ∈ Ei, q ∈ Ej and p, q ∈ Ek for some k and color of
p in Y , color of q in X . Sincethe sum of number of free colors from Ei and number of free colors
from Ej is > n and the number of vertices in Ek is at most n − 1, we can make either color of p
or color q be free and this color to be assigned to u. if such Ek is not available then the number of
vertices colored in Ei ∪ Ej < 1.25n .

Corollary 2.1. Let H be a linear uniform hypergraph of size n. If H has at least n
2

independent
edges then χ(H) ≤ 1.25n.
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[4] P. Erdős, On the combinatorial problems which I would most like to see solved, Combinator-
ica, 1 (1981), no. 1, 25–42.
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