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Abstract
This paper establishes explicit combinatorial characterizations for fundamental structural proper-
ties of Cayley signed graphs defined on finite Abelian groups. We derive precise necessary and
sufficient conditions for balance, clusterability, and sign-compatibility of both these graphs and
their line graphs. By leveraging the prime factorization structure of the underlying group G, we
prove that the signed graph Σ is balanced precisely when 2 appears among the prime factors of G.
Furthermore, we demonstrate that the line graph L(Σ) is balanced if and only if G ∼= Z2 ×Z2α for
α ∈ {1, 2}.
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1. Introduction

Signed graphs, introduced in Harary’s seminal work [6], provide a powerful mathematical
framework for modeling networks with both positive and negative interactions. The study of bal-
ance and related structural properties has found applications across mathematics, computer sci-
ence, and social network analysis [11, 4].

When the underlying graph possesses algebraic structure as a Cayley graph Cay(G,S) of a
group G, the inherent symmetry enables stronger characterization results. Previous work by Sinha
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and Garg [10] investigated unitary Cayley signed graphs, while Zaslavsky’s comprehensive frame-
work [11, 12, 13] provides the theoretical foundation for signed graph theory.

Our work bridges these domains by offering explicit, computable criteria for Cayley signed
graphs on finite Abelian groups. The novelty lies in providing concrete combinatorial characteri-
zations rather than existential conditions. Whereas Zaslavsky’s general theorems establish abstract
necessary and sufficient conditions, our results yield directly verifiable criteria based on group
structure.

We focus on groups of the form:

G = Zp1 × Zp
α1
1 p

α2
2 ···pαk

k

where p1, p2, . . . , pk are distinct primes and αi ≥ 1.

2. Preliminaries

Let (G, ·) be a finite Abelian group and S = S−1 a symmetric subset excluding the identity.
The Cayley graph Cay(G,S) has vertex set G and edge set {{v, vs} | v ∈ G, s ∈ S} and it is easy
to see that a Cayley graph Cay(G,S) is |S|-regular [3, 5].

A signed graph Σ = (Γ, σ) consists of an underlying graph Γ = (V,E) and signature function
σ : E → {+,−}. Σ is all-positive (all-negative) if all its edges are positive (negative)(see Figure
1). Moreover, it is said to be homogeneous if it is either all-positive or all-negative and hetero-
geneous otherwise. d−(v) (d+(v)) represents the number of negative (positive) edges incident at
v in Σ. A marked signed graph is an ordered pair Σµ = (Σ, µ), where Σ = (Γ, σ) is a sigraph
and µ : V (Σ) −→ {+,−} is a function, called a marking of Σ (see [11, 12, 13]). Recently some
properties such as domination and diameter of Abelian Cayley graphs have been investigated (see
[7, 8]).

(0, 0) (0, 1)

(1, 0) (1, 1)

Σ = Cay(Z2 × Z2,Φ)

Red vertices: Φ = {(1, 0), (0, 1)}

Figure 1. Cayley signed graph Σ = (Cay(Z2 × Z2,Φ), σ). Solid blue edges: positive, Dashed red edges: negative.
This graph is balanced.

The line sigraph L(Σ) [2] has vertices representing edges of Σ, with adjacency defined by
shared vertices. An edge ef in L(Σ) is negative exactly when both e and f are negative in Σ (see
Figure 2).
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e3

Original Σ

Line signed graph L(Σ)

Figure 2. Construction of line signed graph L(Σ) from signed graph Σ. Note how edge e2e3 in L(Σ) is negative since
both e2 and e3 are negative in Σ.

A cycle is positive if it contains an even number of negative edges. A signed graph is balanced
if all cycles are positive [6], clusterable if vertices can be partitioned with positive edges within
clusters and negative edges between clusters [4], and sign-compatible if there exists a consistent
vertex marking [9].

We examine Σ = (Γ, σ) where:

Γ = Cay(Zp1 × Zp
α1
1 p

α2
2 ···pαk

k
,Φ)

with Φ = φp1 × φp
α1
1 p

α2
2 ···pαk

k
, and:

σ(ab) =

{
+, if a ∈ Φ or b ∈ Φ,

−, otherwise.

3. Main Results

This section presents the core theoretical contributions of our work, offering explicit combi-
natorial and algebraic characterizations for the structural properties of the defined family of Cay-
ley signed graphs. We establish concrete, computable criteria for fundamental properties such as
balance, clusterability, and sign-compatibility, moving beyond abstract existential conditions. Fur-
thermore, we analyze the behavior of the line graph L(Σ) and provide precise formulas for key
invariants like the frustration index. Each theoretical result is underpinned by a rigorous proof
and is accompanied by illustrative examples to demonstrate its direct application. Our findings
bridge the abstract theory of signed graphs with practical computation, providing verifiable tools
for analyzing networks with inherent group symmetry.

3.1. Balance Characterization
In this subsection we focus on determining when the entire signed graph is balanced. It pro-

vides a clear necessary and sufficient condition, linking the balance of the graph directly to the
presence of the prime 2 in the group’s structure.
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Theorem 3.1. Let Σ = (Γ, σ) with Γ = Cay(Zp1 × Zp
α1
1 p

α2
2 ···pαk

k
,Φ). Then Σ is balanced if and

only if 2 appears among the prime factors of G.

Proof. (⇒) Suppose Σ balanced but all pi ≥ 3. The cycle C = ((0, 1), (1, 0), (2, 0), (0, 1)) con-
tains exactly one negative edge, contradiction.

(⇐) If 2 is prime factor, bipartite structure ensures negative edges appear in pairs.

Example 3.1. Consider Σ = (Cay(Z2 ×Z4,Φ), σ). Here G = Z2 ×Z4, so 2 is a prime factor. The
graph decomposes into:

V (Σ1) = {(1, 1), (1, 3), (0, 0), (0, 2)}
V (Σ2) = {(1, 0), (1, 2), (0, 1), (0, 3)}

Component Σ1 is all-positive, Σ2 is all-negative. Both components are balanced, confirming The-
orem 3.1.

Proposition 3.1. Let Σ = (Γ, σ) with Γ = Cay(Zp1 × Zp
α1
1 p

α2
2 ···pαk

k
,Φ) containing prime factor 2.

Then Σ contains exactly |Φ|2 positive edges.

Proof. Assume p1 = 2. Then Σ decomposes into:

V (Σ1) = {(1, v) | v odd} ∪ {(0, v) | v even}
V (Σ2) = {(0, v) | v odd} ∪ {(1, v) | v even}

Each vertex in Φ connects to all |Φ| vertices in {(0, v) | v even}, yielding |Φ|2 positive edges.

Group Structure Positive Edges Negative Edges Total Edges Balance

Z2 × Z2α |Φ|2 |Φ|2 2|Φ|2 Balanced
Zp × Zpα (p ≥ 3) |Φ|2 pα−1|Φ| |Φ|2 + pα−1|Φ| Unbalanced
Zp × Zpq (p, q ≥ 3) |Φ|2 |Φ|(2p+ q − 3) |Φ|2 + |Φ|(2p+ q − 3) Unbalanced

Example 3.2. Let Σ = (Cay(Z3×Z3,Φ), σ). Here G = Z3×Z3, all primes are odd (p1 = 3). The
cycle C = ((0, 1), (1, 2), (2, 0), (0, 1)) contains exactly one negative edge, making Σ unbalanced.
This confirms the necessity direction of Theorem 3.1.

Balanced Cases

Z2 × Z2

Z2 × Z4

Z2 × Z2α

✓

Unbalanced Cases

Z3 × Z3

Z5 × Z5

Zp × Zpq

×

Figure 3. Balance characterization with examples. Green: balanced cases, Red: unbalanced cases.
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Theorem 3.2. Let Σ = (Γ, σ) with Γ = Cay(Zp1 ×Zp
α1
1 p

α2
2 ···pαk

k
,Φ). Then L(Σ) is balanced if and

only if G ∼= Z2 × Z2α for α ∈ {1, 2}.

Proof. (⇒) If L(Σ) balanced but G differs, vertex (0, 1) has d−((0, 1)) ≥ 2, violating [1, Theorem
2.7].

(⇐) For specified G, Σ switching equivalent to all-positive graph [13].

Example 3.3. For G = Z2×Z8 (α = 3), we have L(Σ) unbalanced. But for G = Z2×Z4 (α = 2),
L(Σ) is balanced. This illustrates the precise condition in Theorem 3.2.

3.2. Clusterability and Sign-Compatibility
This subsection explores two related properties: clusterability (the ability to partition the graph

into like-signed clusters) and sign-compatibility (the existence of a consistent vertex marking). It
establishes that for this graph family, clusterability is equivalent to balance, while sign-compatibility
is a universal property.

Theorem 3.3. [4] Let S be any signed graph. Then S has a clustering if and only if S contains no
cycle having exactly one negative line.

Theorem 3.4. Let Σ = (Γ, σ) with Γ = Cay(Zp1 × Zp
α1
1 p

α2
2 ···pαk

k
,Φ). Then Σ is clusterable if and

only if balanced.

Proof. (⇒) Suppose Σ is clusterable. For the forward implication, suppose for contradiction that
Σ is clusterable but unbalanced. Using Theorem 3.1, pi ≥ 3 for any i = 1, 2, . . . , k. Since all
pi ≥ 3 we have (2, 2) ∈ Φ and also it is adjacent to vertices (0, 1) and (1, 0). We now consider
the cycle C = ((0, 1), (2, 2), (1, 0), (0, 1)) in Σ. By the definition of σ, we have σ((0, 1)(2, 2)) =
σ((2, 2)(1, 0)) = + and σ((1, 0)(0, 1)) = −. Hence C is a cycle with exactly one negative edge.
Therefore, according to Theorem 3.3, Σ can not be clusterable, a contradiction to the hypothesis.
Hence one of the prime factors is 2 so Σ is balanced.

(⇐) Suppose Σ is balanced. Thus all cycles of Σ are positive. So the number of negative
edges in them is even. Hence it can not include the cycle with a single negative edge. Therefore,
according to Theorem 3.3, Σ is clusterable.

Example 3.4. Consider Σ = (Cay(Z2 × Z6,Φ), σ). Since 2 is a prime factor, Σ is balanced
by Theorem 3.1, hence clusterable by Theorem 3.3. The clustering is given by the bipartition
V (Σ1) ∪ V (Σ2).

Example 3.5. For Σ = (Cay(Z3 × Z3,Φ), σ), though unbalanced, we can find a sign-compatible
marking. Assign + to vertices in Φ and − to others. This satisfies the sign-compatibility conditions
[9].

Theorem 3.5. Let Σ = (Γ, σ) with Γ = Cay(Zp1 × Zp
α1
1 p

α2
2 ···pαk

k
,Φ) and pi ≥ 2. Then Σ is

sign-compatible.

Proof. Signature definition prevents the existence of forbidden configurations S1 and S2 from [9].
The natural marking µ(v) = + if v ∈ Φ, µ(v) = − otherwise, satisfies sign-compatibility.
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(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5)

(1, 0) (1, 1) (1, 2) (1, 3) (1, 4) (1, 5)

Σ = Cay(Z2 × Z6,Φ)

Blue vertices: V (Σ1), Red vertices: V (Σ2)

Figure 4. Cayley signed graph Σ = (Cay(Z2 × Z6,Φ), σ). Solid blue edges: positive, Dashed red edges: negative.
This graph is balanced and clusterable.

(0, 0) (0, 1)

(1, 0) (1, 1)

(0, 2)

(1, 2)

Blue: positive marking, Red: negative marking
This marking shows sign-compatibility

Figure 5. Sign-compatible marking for Σ = Cay(Z2 × Z3,Φ). Negative edges connect differently marked vertices.

Group Structure Balanced Clusterable Sign-Compatible L(Σ) Balanced Example

Z2 × Z2 Yes Yes Yes Yes Fig. 1
Z2 × Z4 Yes Yes Yes Yes Ex. 3.1
Z2 × Z8 Yes Yes Yes No Ex. 3.4
Z3 × Z3 No No Yes No Ex. 3.2
Z3 × Z6 No No Yes No Ex. 4.2

3.3. Edge Sign Characterization
This brief subsection formally restates the rule for determining the sign of any edge in the graph

based on the relationship of its endpoints to the generating set Φ, providing a foundational tool for
subsequent proofs.

Lemma 3.1 (Edge Sign Characterization). Let Σ be the Cayley signed graph as defined. For an
edge e = {u, v} corresponding to the generator s ∈ Φ (so that v = us), the sign of e is given by:

σ(e) = + if and only if u ∈ Φ or us ∈ Φ.

Otherwise, σ(e) = −.

Proof. This follows directly from the definition of the signature σ(ab) = + if a ∈ Φ or b ∈ Φ. For
the edge e = {u, us}, we have a = u and b = us. Thus, σ(e) = + if u ∈ Φ or us ∈ Φ.
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Prime factors include 2 Σ balanced Σ clusterable

G ∼= Z2 × Z2α L(Σ) balanced

Ex: Z2 × Z6 Ex: Z2 × Z4 Ex: Z2 × Z2

Ex: Z2 × Z4 (α = 2) Ex: Z2 × Z2

Figure 6. Relationships between properties with concrete examples. Green: always true, Yellow: specific condition
required.

3.4. Switching Equivalence
In this subsection we investigate when the signed graph can be transformed into an all-positive

graph by switching the signs of vertex neighborhoods. It provides a precise algebraic condition on
the group structure for this equivalence to hold.

Proposition 3.2 (Switching to All-Positive). The signed graph Σ is switching equivalent to the
all-positive graph if and only if G ∼= Z2 × Z2α for some α ≥ 1.

Proof. (⇒) Suppose Σ is switching equivalent to an all-positive graph. Then Σ is balanced. By
the main paper’s Theorem 3.1, 2 must be a prime divisor of |G|, so G has a factor of Z2.

For Σ to be switching equivalent to all-positive, there must exist a switching function µ : V →
{+,−} such that after switching, every edge is positive. Let (0, 0) be the identity vertex, and
assume without loss of generality that µ((0, 0)) = +.

For any generator s ∈ Φ, the edge {(0, 0), s} must be positive after switching. Since its original
sign σ({(0, 0), s}) is + (as (0, 0) /∈ Φ but s ∈ Φ), this holds for any µ(s).

Now consider the consistency requirements for other edges. To maintain consistency for all
edges, consider a cycle generated by an element of odd order. The product of the original edge
signs around such a cycle will be negative, and no switching function can make the product of the
switched signs positive, leading to a contradiction. This forces the group structure to be Z2 ×Z2α .
For groups with additional odd prime factors (e.g., Z2×Z2p for an odd prime p), one can construct
cycles where the product of original signs is negative, which cannot be corrected by any switching
function, leading to contradiction.

(⇐) If G ∼= Z2×Z2α , we explicitly construct a switching function that makes all edges positive.
Define µ : G → {+,−} as:

µ((a, b)) =

{
+, if b is even,
−, if b is odd.

.

We verify that after applying this switch, every edge becomes positive. Consider an edge
{(a, b), (a′, b′)} corresponding to generator s ∈ Φ. Now by case analysis on the parity of b and b′,
one can confirm that the switched sign always equals +.
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3.5. Frustration Index
This subsection quantifies the degree of imbalance in a graph by determining its frustration

index (the minimum number of edges to remove to achieve balance). It provides an exact formula
for this index based on the size of the generating set Φ.

Theorem 3.6 (Frustration Index of Σ). Let Σ be defined on a group G whose order is not a power
of 2 (i.e., it has an odd prime factor). The frustration index ℓ(Σ) (the minimum number of edges
whose deletion results in a balanced graph) is exactly |Φ|2.

Proof. We prove both inequalities:
1. Lower bound (ℓ(Σ) ≥ |Φ|2): When G contains odd prime factors, the graph contains

an all-negative complete bipartite subgraph K|Φ|,|Φ| between specific vertex sets. To eliminate all
negative cycles in this subgraph, one must remove at least |Φ|2 edges, as this is the minimum edge
deletion set to make K|Φ|,|Φ| balanced.

2. Upper bound (ℓ(Σ) ≤ |Φ|2): Construct an edge set X with |X| = |Φ|2 whose removal
makes Σ balanced. Let X be all edges between the sets A = {(0, v) | v is even} and B = {(1, v) |
v is even}. After removing X , the graph decomposes into two components where all edges are
positive, hence balanced.

Combining both inequalities gives ℓ(Σ) = |Φ|2.

3.6. Spectral Characterization
Now we are ready to prove that the signed adjacency matrix has a spectrum symmetric about

zero if and only if the graph is balanced.

Proposition 3.3 (Eigenvalue Symmetry). Let AΣ be the signed adjacency matrix of Σ (+1 for
positive edges, −1 for negative edges). Then, the spectrum of AΣ is symmetric about zero if and
only if Σ is balanced.

Proof. (⇒) If Σ is balanced, then by Proposition 2.1 (when applicable) or by the main paper’s
Theorem 3.1, the graph has a bipartite structure that ensures spectrum symmetry. More formally,
for balanced signed graphs, there exists a diagonal matrix D with ±1 entries such that DAΣD is
the adjacency matrix of the underlying unsigned graph, which has symmetric spectrum when the
graph is bipartite.

(⇐) If the spectrum is symmetric about zero, then trace(Ak
Σ) = 0 for all odd k. If Σ were

unbalanced, it would contain a negative cycle of odd length, whose contribution to trace(Ak
Σ)

would be non-zero for the cycle length k, contradicting spectrum symmetry.

3.7. Line Graph Frustration
Considering the line graph L(Σ), we provide a formula for frustration index of L(Σ) by linking

it directly to the number of negative triangles in the original signed graph Σ.

Theorem 3.7 (Frustration Index of L(Σ)). Let Σ be such that L(Σ) is unbalanced (i.e., G ̸∼=
Z2 × Z2 and G ̸∼= Z2 × Z4). Then the frustration index of the line graph, ℓ(L(Σ)), is equal to the
number of negative triangles in Σ.
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Proof. Let T be the set of negative triangles in Σ.
Lower bound: Each negative triangle in Σ generates a negative triangle in L(Σ). To elim-

inate all negative cycles in L(Σ), at least one edge must be removed from each such triangle.
These required deletions are disjoint for triangles sharing no common negative edge pairs, giving
ℓ(L(Σ)) ≥ |T |.

Upper bound: We construct an edge deletion set for L(Σ) of size |T | that achieves balance.
For each negative triangle in Σ with negative edges e and f (and positive edge g), delete the edge in
L(Σ) connecting the vertices corresponding to e and f . This targeted deletion breaks each negative
triangle in L(Σ) without creating new sources of imbalance, yielding ℓ(L(Σ)) ≤ |T |.

Therefore, ℓ(L(Σ)) = |T |.

4. Discussion and Comparison with Literature

Our explicit characterizations contrast with Zaslavsky’s general framework [11], offering di-
rectly verifiable conditions. The examples demonstrate how our criteria can be applied in practice
without extensive computation.

Compared to Sinha and Garg’s unitary Cayley graphs [10], we consider broader families while
maintaining explicit criteria. Example 3.1 shows how our balance condition directly applies to
Z2 × Z4, while Example 3.2 illustrates the unbalanced case.

The equivalence between balance and clusterability (Theorem 3.4) is clearly demonstrated in
Examples 3.1 and 3.4. The sign-compatibility universal property (Theorem 3.5) is illustrated in
Figure 5 and Example 3.5.

5. Conclusion

We established precise algebraic characterizations for Cayley signed graphs on finite Abelian
groups, supported by concrete examples that illustrate each theoretical result. Our explicit criteria
provide directly applicable tools, bridging abstract theory and practical computation.

The examples demonstrate:

• How to verify balance using prime factorization (Examples 3.1, 3.2)

• The precise conditions for line graph balance (Example 3.3)

• The relationship between balance and clusterability (Example 3.4)

• Universal sign-compatibility with explicit markings (Figure 5, Example 3.5)

While these results can be interpreted as special cases of Zaslavsky’s general framework, our
primary contribution lies in providing computationally tractable criteria tailored to this specific
family of Cayley graphs, enabling direct verification and practical applications in algebraic graph
theory.

419



www.ejgta.org

Some properties of Cayley signed graphs on finite Abelian groups | M.A. Iranmanesh and
N. Moghaddami

Acknowledgement

The authors would like to thank the anonymous reviewers for their valuable comments and
suggestions.

References

[1] M. Acharya and D. Sinha, A characterization of sigraphs whose line sigraphs and jump
sigraphs are switching equivalent, Graph Theory Notes N. Y. 44 (2003), 30–34.

[2] M. Behzad and G.T. Chartrand, Line coloring of signed graphs, Elem. Math. 24 (1969), 49–
52.

[3] N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1993.

[4] J.A. Davis, Clustering and structural balance in graphs, Human Relations 20 (1967), 181–
187.

[5] C. Godsil and G. Royle, Algebraic Graph Theory, Springer-Verlag, New York, 2001.

[6] F. Harary, On the notion of balance of a signed graph, Michigan Math. J. 2 (1953), 143–146.

[7] M.A. Iranmanesh and N. Moghaddami, Domination parameters and diameter of Abelian Cay-
ley graphs, Facta Univ. Ser. Math. Inform. 36 (2021), no. 4, 695–715.

[8] M.A. Iranmanesh and N. Moghaddami, Domination number of Cayley graphs on finite
Abelian groups, Iran. J. Sci. Technol. Trans. A Sci. 43 (2019), no. 5, 2523–2530.

[9] D. Sinha and A. Dhama, Sign-compatibility of some derived signed graphs, Indian J. Math.
55 (2013), no. 1, 95–107.

[10] D. Sinha and P. Garg, On the unitary Cayley signed graphs, Electron. J. Combin. 18 (2011),
no. 1, Paper 133, 12 pp.

[11] T. Zaslavsky, Signed graphs, Discrete Appl. Math. 4 (1982), no. 1, 47–74.

[12] T. Zaslavsky, A mathematical bibliography of signed and gain graphs and allied areas, Elec-
tron. J. Combin. (1998), Dynamic Surveys, DS8.

[13] T. Zaslavsky, Matrices in the theory of signed simple graphs, Advances in Discrete Math-
ematics and Applications, 207–229, Ramanujan Math. Soc. Lect. Notes Ser., 15, Mysore,
2008.

420


