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Abstract

It is well-known that Pareto distribution and related generalizations have historically been consid-
ered suitable for modeling income and wealth distributions, among other fields. Nowadays, graphs
can be used to model many types of relations and processes in physical, biological, social, and
information systems. By combining both concepts, this paper introduces the notion of the Pareto
graph and gives some sufficient conditions to determine the existence of a giant component. A
simulation study is carried out to evaluate the performance of Pareto random graph generation. In
addition, basic graph properties of this novel kind of graph are contrasted with well-known mod-
els for random graph generation. The results are applied to real-life data that come from social
networks, under the assumption that the degree distribution is well fitted by a Generalized Pareto
distribution and compared with the fitting by other heavy-tailed distributions.
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1. Introduction

Large amounts of data can be visually represented using graphs, allowing an easier understand-
ing of patterns, possible trends, and relations. The graph model is a powerful tool for knowing
hidden information in raw data. Hence, graphs provide structures that can help make decisions.

A graph is a mathematical object widely employed in natural sciences, technological and busi-
ness environments, and other knowledge areas. Graph Theory arose with the famous Konisberg’s
bridges problem formulated by Euler in the XVIII century. Although abundant computer pro-
grams for graph generation are available nowadays, users should deal with some basic definitions
and principles. In this section, some of these elementary concepts are introduced.

1.1. Graphs and random graphs
A graph G consists of a non-empty finite set V (G) of vertices together with a finite set E(G)

(possibly empty) of edges such that:

• each edge joins two distinct vertices in V (G), and

• any two distinct vertices in V (G) are joined by at most one edge, in other words, either they
are not joined by an edge or joined by exactly one edge.

The theory of random graphs was founded by Erdős and Rényi [6, 7, 8]. In a simple manner,
we can think of a random graph as a living organism that evolves with time, which is born as a set
of n isolated vertices and develops by successively acquiring edges at random. It is interesting to
determine at what stage of the evolution a particular property of the graph is likely to arise.

Another established random graph model was proposed by Barabási and Albert [1]. They
observe the continuous expansion of large networks by the addition of new vertices that show
a proclivity to be attached to well-connected sites. Thus, their proposal is based on the feature
that the connections between vertices in many large networks follow a scale-free power-law dis-
tribution. This means that a vertex in the network interacts with k other vertices with probability
P (k) ∼ k−ω, where ω > 0 is named the power.

An automorphism of a graph is a permutation of the vertex set that preserves connections
between two vertices. In [3], the authors show that a typical random graph is similar to an ideal
regular graph, i.e. all the vertices have the same degree, whose automorphism group is transitive
on small sets of vertices. There is no such non-trivial regular graph, and in many applications,
random graphs are used precisely because they approximate an ideal regular graph.

The degree of a vertex is defined as the number of edges adjacent to this vertex. Let G be an
undirected graph with vertices V = {1, 2, . . . , n} and let d1, d2, . . . , dn be the respective degrees
of these vertices. The vector d = (d1, d2, . . . , dn) is usually called the degree sequence of G.
Considering the degree sequence as a random variable, it makes sense to study the corresponding
degree distribution.

Following the ideas developed in [15], if pk is the probability that a randomly chosen vertex
in the graph has degree k, i.e. the proportion among the total of vertices that have degree k, we
consider the generating function for the probability distribution of vertex degrees given by

G0(x) =
+∞∑
k=0

pkx
k. (1)
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Since the probability distribution is normalized and positive definite, G0(x) is also absolutely con-
vergent for all |x| ≤ 1, and hence it has no singularities in this region. Moreover, the distribution
of outgoing edges is generated by the following function

G1(x) =
G′

0(x)

G′
0(1)

. (2)

1.2. Pareto distribution
In [16], Pareto introduced the concept of Pareto distribution observing that in many popula-

tions, the number of individuals whose income exceeded a given level x was well approximated by
Cx−α for some real number C and some α > 0. Several years later, Pickands introduced what he
called a Generalized Pareto distribution in the context of the study of peaks over thresholds [17].

Throughout this paper, we use the Generalized Pareto Type II (GPDII) distribution given by its
probability density function (pdf) defined as

fP (x) =
α

σ

(
1 +

x− µ

σ

)−α−1

, (3)

and its cumulative distribution function (cdf) is defined as

FP (x) = 1−
(
1 +

x− µ

σ

)−α

, (4)

where µ ∈ R, α, σ > 0 and the support is x ≥ µ. Notice that if µ = σ we obtain the form of the
Generalized Pareto Type I pdf: fP (x) = ασαx−α−1. In Figure 1 we exhibit some GPDII density
functions contrasting different combinations of parameters.

Both, Pareto and Generalized Pareto distributions have been used by many authors to model
data in several fields. Just to mention some examples, the distribution of business firms by size [22],
the distribution of incomes between an enumerable infinity of income ranges [4], the study of
speculative markets and other economic phenomena [12], single-channel industrial waiting line
process [10], and the distribution of wealth [23].

In [9] the authors introduce a good model to analyze synthetic aperture radar (SAR) images
called the G0

I family distribution whose pdf is defined as

fG0
I
(z) =

LLΓ(L− α)

γαΓ(−α)Γ(L)
· zL−1

(γ + zL)L−α
(5)

where −α, γ, z > 0 and L ≥ 1. The involved parameters are related to texture (α), scale (γ), and
number of looks (L). It is evident that in the single look case (L = 1), considering the texture
parameter as −α, the scale parameter as σ and µ = 0, (5) reduces to a particular case of (3).

The Pareto distribution has the property of being heavy-tailed, which means that for all t ≥ 0,
FP (x+t) ∼ FP (x) as x → +∞. There exist other families of distribution that are heavy-tailed, for
example, the Log-Normal and the Weibull distributions. The pdf of the Log-Normal distribution
with parameters µℓ ∈ R (log-mean) and σℓ > 0 (log-standard deviation), is defined for x > 0 as

fLN(x) =
1

xσ
√
2π

exp

{
− [ln(x)− µℓ]

2

2σ2
ℓ

}
. (6)
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Figure 1: Examples of Generalized Pareto Type II density functions varying the values of the parameters.

Meanwhile, the pdf of the Weibull distribution with parameters κ > 0 (shape) and λ > 0 (scale),
is defined for x > 0 as

fW (x) =
κ

λ

(x
λ

)κ−1

exp
[
−
(x
λ

)κ]
. (7)

The objective of this paper is to study some properties of Pareto graphs defined as those graphs
for which their degree distribution follows a GPDII with µ = 0. Section §2 is devoted to deducing
a way to compute the generating function for the component sizes and give sufficient conditions for
the presence or absence of a giant component. Section §3 presents the results of a simulation study
to generate Pareto random graphs varying the values of the parameters. This approach includes the
percentage of right generation, as well as some local and global metrics in the approximation of the
degree probabilities. Moreover, a simulation is conducted to study some properties related to the
connectivity of a random graph generated by different models. Section §4 contains applications to
real-world social networks and the assessment of the goodness of fit compared with other heavy-
tailed degree distributions. Finally, in Section §5 we include some concluding remarks.

2. Pareto graphs

We say that a random graph is a Pareto graph if the degree distribution follows a Generalized
Pareto Distribution of Type II with µ = 0. If we call X ∼ GPDII the variable that models the
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degree distribution, applying the Right Riemann sum, we have that

pk = P (X = k) = P (k ≤ X < k + 1) = FP (k + 1)− FP (k) =

= 1−
(
1 +

k + 1

σ

)−α

− 1 +

(
1 +

k

σ

)−α

= σα[(σ + k)−α − (σ + k + 1)−α].
(8)

It is clear that pk > 0 for all non-negative integer k.
In this case, the generating function for x ≥ 0 is

G0(x) = σα

+∞∑
k=0

[(σ + k)−α − (σ + k + 1)−α]xk. (9)

Notice the following

G0(1) =
+∞∑
k=0

pk =
+∞∑
k=0

FP (k + 1)− FP (k) =

=
lim

n → +∞

n∑
k=0

FP (k + 1)− FP (k) =
lim

n → +∞ FP (n+ 1)− FP (0).

(10)

Since FP (0) = 0 and limx→+∞ FP (x) = 1 by cdf properties, it holds that G0(1) = 1. Moreover,
by derivation

G′
0(x) = σα

+∞∑
k=1

k[(σ + k)−α − (σ + k + 1)−α]xk−1, (11)

which implies that

G′
0(1) = σα

+∞∑
k=1

k[(σ + k)−α − (σ + k + 1)−α] = σα

+∞∑
k=1

1

(σ + k)α
. (12)

By comparison with p-series, G′
0(1) is well defined if α > 1. Hence, replacing in (2) by the

expression obtained in (12),

G1(x) =
1

η

+∞∑
k=1

k[(σ + k)−α − (σ + k + 1)−α]xk−1, (13)

where η =
∑+∞

k=1(σ + k)−α.

2.1. Component sizes
A connected component of an undirected graph is a subgraph in which any two vertices are

connected to each other by a collection of edges, but no vertex in the component can have an
edge to another component. The size of a graph is defined as the number of edges (see for in-
stance [13]). The largest component of a graph is called its giant component, which is a unique
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and distinguishable component containing a significant fraction of all the vertices dwarfing all the
other components [18].

Using that all components in the infinite configuration model are locally tree-like, the authors
in [15], showed that there exists a correspondence between the distributions of the degrees and the
component sizes by applying generation functions. More precisely, let H1(x) be the generating
function for the distribution of the sizes of components that are reached by choosing a random
edge and following it to one of its ends. If there exists a giant component, we exclude it from
H1(x).

Let qk be the probability that the initial site has k edges coming out of it other than the edge we
came in along. Applying the “powers” property, H1(x) must satisfy a self-consistency condition
of the form

H1(x) =
∑
k

xqk[H1(x)]
k. (14)

Note that each such component is associated with the end of an edge. If H0 =
∑+∞

n=1 h(n)x
n is the

generating function for the size of the whole component and realizing that qk is the coefficient of
xk in the generating function G1(x), we have the following system of equations{

H0(x) = xG0

(
H1(x)

)
,

H1(x) = xG1

(
H1(x)

)
.

(15)

We can apply the Lagrange inversion formula [2] to solve (15). This method says that if A(x)
and R(x) are formal power series satisfying that

A(x) = xR
(
A(x)

)
, (16)

then for a formal power series F (x), it holds that

[xn]F
(
A(x)

)
=

1

n
[tn−1]F ′(t)Rn(t), (17)

where [xn]S(x) indicates the coefficient of xn in the formal series S(x). Considering A(x) =
H1(x), R(x) = G1(x) and F (x) = G0(x), for n > 1 it holds that

h(n) = [xn−1]G0

(
H1(x)

)
=

1

n− 1
[tn−2]G′

0(t)G
n−1
1 (t) =

1

n− 1
[tn−2]G′

0(1)G
n
1 (t). (18)

This, applying (2) and (12), we conclude that if α > 1, then

h(n) =
σαη

n− 1
[tn−2]Gn

1 (t). (19)

However, there are limits in searching for an exact solution of (19), even if performing numerical
computations, due to the complexity of the generating functions in the case of Pareto graph. The-
ses difficulties arise because of the implementation of the inverse generation function transform.
In [11], the author rewrites (19) using the concept of convolution power.
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Recall that for two distributions f and g, we can define a binary multiplicative operation for
k > 0 as follows

f(k) ∗ g(k) =
k∑

i=0

f(i)g(k − i). (20)

Moreover, the convolution given in (20) can be inductively extended to the convolution power in
the following manner:

f(k)∗n = f(k)∗n−1 ∗ f(k), (21)

where f(k)∗0 = 1 by definition.
Now, using the results obtained in [11], the general expression for the component size distribu-

tion for Pareto graphs looks like

h(n) =


[kFP (k + 1)− kFP (k)]

∗n(2n− 2)

(n− 1)(ησα)n−1
(2n− 2) if n > 1,

FP (1) if n = 1.
(22)

Let α > 1, we present the first four values of h(n) to show the complexity of the form as n
increases:

h(1) = FP (1) = 1− σα(σ + 1)−α,

h(2) =
1

ησα
[FP (2)− FP (1)]

2

=
σα

η
[(σ2 + 2σ + 1)−α + (σ2 + 4σ + 4)−α − 2(σ2 + 3σ + 2)−α],

h(3) =
1

2(ησα)2
6[FP (2)− FP (1)]

2[FP (3)− FP (2)] =

=
3σα

η2
[(σ3 + 6σ2 + 12σ + 8)−α + (σ3 + 4σ2 + 5σ + 2)−α

− (σ3 + 5σ2 + 7σ + 3)−α − 2(σ3 + 5σ2 + 8σ + 4)−α

− (σ3 + 7σ2 + 16σ + 12)−α + 2(σ3 + 6σ2 + 11σ + 6)−α],

h(4) =
1

3(ησα)3
{12[FP (2)− FP (1)]

3[FP (4)− FP (3)]

+ 24[FP (2)− FP (1)]
2[FP (3)− FP (2)]

2} =

=
4σα

3η3
[2(σ4 + 8σ3 + 24σ2 + 32σ + 16)−α + (σ4 + 6σ3 + 12σ2 + 10σ + 3)−α

− (σ4 + 7σ3 + 15σ2 + 13σ + 4)−α − 4(σ4 + 7σ3 + 18σ2 + 20σ + 8)−α

− 5(σ4 + 9σ3 + 30σ2 + 44σ + 24)−α + (σ4 + 10σ3 + 36σ2 + 56σ + 32)−α

+ 2(σ4 + 6σ3 + 13σ2 + 12σ + 4)−α + 2(σ4 + 8σ3 + 20σ2 + 24σ + 9)−α

+ 2(σ4 + 10σ3 + 37σ2 + 60σ + 36)−α − 7(σ4 + 7σ3 + 17σ2 + 17σ + 6)−α

+ 3(σ4 + 8σ3 + 21σ2 + 22σ + 8)−α + 11(σ4 + 8σ3 + 23σ2 + 28σ + 12)−α

− 3(σ4 + 9σ3 + 28σ2 + 36σ + 16)−α].
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2.2. Giant component
Throughout this section, we consider a Pareto graph with degree distribution given as in (3)

with µ = 0 and α > 1.
In [15] the authors prove that the phase transition at which a giant component first appears is

given when G′
1(1) = 1. This fact implies a necessary and sufficient condition for the existence of

a giant component which settles that ∑
k

k(k − 2)pk > 0. (23)

For Pareto graphs, using (8), we can simplify (23) to the following form

∑
k

k(k− 2)[(σ+ k)−α − (σ+ k+1)−α] > 0 ⇐⇒
+∞∑
k=1

k(k − 2)

(σ + k)α︸ ︷︷ ︸
S1

−
+∞∑
k=1

k(k − 2)

(σ + k + 1)α︸ ︷︷ ︸
S2

> 0. (24)

In order to obtain a simpler form of this inequality, we can observe that

• the term with denominator (σ + 1)α only appears in S1 with coefficient −1,

• the term with denominator (σ + 2)α only appears in S2 with coefficient 1,

• the term with denominator (σ + 3)α only appears in S1 with coefficient 3.

• the term with denominator (σ + k)α for k ≥ 4 appears in both S1 and S2 with coefficient
k(k − 2)− (k − 1)(k − 3) = 2k − 3.

Thus, the next result follows immediately.

Corollary 2.1. There exists a giant component in a Pareto graph if and only if
∑+∞

k=1
2k−3

(σ+k)α
is

positive. (Notice that the only negative term in this sum appears when k = 1.)

Proposition 2.1. For fixed values α, σ ∈ R+, we consider f(x) = (2x − 3)(σ + x)−α. If α > 1
and 3α < ln(5)σ, then f(4) > −f(1).

Proof. Notice that

f(4) > −f(1) ⇐⇒ 5

(σ + 4)α
>

1

(σ + 1)α
⇐⇒ σ >

4− 51/α

51/α − 1
. (25)

We are going to prove that

4− 51/α

51/α − 1
<

3

ln(5)
α ⇐⇒

(
3α + 4 ln(5)

3α + ln(5)

)α

< 5. (26)

Since the left-hand side of the second inequality in (26) defines a monotonous decreasing function
of α whose limit to positive infinity is equal to 5, the mentioned inequality is satisfied, and so (25)
is also true by the hypothesis 3α < ln(5)σ.
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Corollary 2.2. If a Pareto graph is such that 3α < ln(5)σ, then there exists a giant component.

Proof. It is straightforward by Proposition 2.1 and Corollary 2.1.

Proposition 2.2. If σ ≥ α, then there exists a giant component for a Pareto graph.

Proof. Consider the function

g(x) =
1

(x+ 2)x
+

3

(x+ 3)x
+

5

(x+ 4)x
− 1

(x+ 1)x
. (27)

Thus,

g′(x) =
(x+ 1) ln(x+ 1) + x

(x+ 1)x+1
− (x+ 2) ln(x+ 2) + x

(x+ 2)x+1
− 3

(x+ 3) ln(x+ 3) + x

(x+ 3)x+1

− 5
(x+ 4) ln(x+ 4) + x

(x+ 4)x+1
.

(28)

Applying specific software, we can see that g′(x) is continuous and negative in [0,+∞), as
shown in Figure 2. This implies that g(x) is monotonous decreasing in [0,+∞). Moreover,
limx→+∞ g(x) = 0 and g(0) = 8 > 0. By continuity, g(x) > 0 for all x ≥ 0.

-9

-6

-3

0

0 1 2 3 4 5
 x

 g
'(x

)

Figure 2: Plot of the derivative of g(x) given in (28).

Suppose now that α = σ. In this case, g(α) represents the sum of the first four terms in the
sum given in Corollary 2.1 that has been proved to be positive. As a consequence, there exists a
giant component for a Pareto graph with α = σ.

If σ > α, then σ = α + b with b > 0. This change produces horizontal shifts of the function
g(x), as it is displayed in Figure 3. Hence, the sign of g(x) remains positive and we can also prove
the presence of a giant component in an analogous way as above.
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Figure 3: Examples of horizontal shifts of the function g(x) given in (27), considering different values of b in the
function g+(x) = (x+ b+ 2)−x + 3(x+ b+ 3)−x + 5(x+ b+ 4)−x − (x+ b+ 1)−x.

Proposition 2.3. If α > 4 and 2σ ≤ α− 4, then there is no giant component for a Pareto graph.

Proof. We consider the function f(x) given in 2.1. Hence,

f ′(x) = 0 ⇐⇒ 2(σ + x)− α(2x− 3)

(σ + x)α+1
= 0 ⇐⇒ x =

3α + 2σ

2α− 2
. (29)

Notice that the denominator in f ′(x) is always positive and the numerator is represented by a linear
function with a negative gradient so that the critical point obtained in (29) is a maximum of f(x).

The hypothesis 2σ ≤ α− 4 says that the maximum value of f(x) is achieved at x0 ≤ 2. Thus,
if ak = f(k), (ak)k≥2 is a decreasing succession of positive terms and

+∞∑
k=3

ak <

∫ +∞

2

f(x)dx = lim
b→+∞

[
2x− 3

(1− α)(σ + x)α−1
− 2

(1− α)(2− α)(σ + x)α−2

] ∣∣∣∣b
2

=
2

(1− α)(2− α)(σ + 2)α−2
− 1

(1− α)(σ + 2)α−1

=
2 + α + 2σ

(1− α)(2− α)(σ + 2)α−1
.

(30)

Therefore,

∞∑
k=1

ak <
2 + α + 2σ

(1− α)(2− α)(σ + 2)α−1
+

1

(σ + 2)α︸ ︷︷ ︸
a2

− 1

(σ + 1)α︸ ︷︷ ︸
a1

:= u(α, σ). (31)
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The right hand side in (31) defines a function u(α, σ) that takes values under zero on the region
{(α, σ) ∈ R2/α > 4, 0 < σ ≤ (α − 4)/2}, as it is exhibit in Figure 4. It is clear now that the
condition of Corollary 2.1 is false and so, it is impossible that a giant component arises.
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Figure 4: Plot of the function u(α, σ) defined in the right hand side of (31) in the domain defined by the hypothesis of
Proposition 2.3 .

We summarize the previous results for Pareto graphs in Figure 5, where the zones colored in
green point to the existence of a giant component, meanwhile, the red ones correspond to the ab-
sence of giant components. The isolated points are examples of manual proof selected to illustrate
other cases.

3. Simulation

This section is devoted to presenting two types of simulation. In the first stage, we study the
performance of Pareto graph generation providing an assessment of its efficacy and describing
some observed properties. The second stage concerns comparing some characteristics of random
graphs generated by different models.

3.1. Pareto graph generation behavior
We perform our experiment for graphs with n vertices considering n = 10, 50, 100, 1000. We

chose as possible vertex degrees those in the interval [0, b] varying b = 1, 2, 4, 6, 10, 20. Finally, we
set the GPDII parameters as µ = 0, α = 1.1, 2, 5, 10, 20, and σ = 1, 2, 5, 10, 20. In this election,
we are considering different types of textures for SAR images.

For each of these parameter combinations and each degree interval vertex, we generated R =
1000 GPDII sequences of n degrees in the correspondent interval applying the rejection method.
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Figure 5: According to the values of the parameters for a Pareto graph, regions for which a giant component exists are
indicated in green, and regions where a giant component does not exist are marked in red.

Then, for each of these degree sequences, we generated a random graph whose vertices respect
the degrees in the sequence and we then computed the degree distribution using the igraph
library [5] from R. Since the existence of such graphs is guaranteed as long as the sum of all the
degrees is even, we computed the percentage of right graph generation, named efficacy. Due to the
GPDII asymptotic behavior (cf. Figure 1), we also registered the absence of some degrees in the
simulations.

Taking into account the efficacy in the graph generation, we worked with balanced samples of
size 450 for each combination of parameters. Let f̂(k) be the obtained approximation to the degree
distribution f(k), we found the following metrics:

• the bias at the point k, defined by E[f̂(k)]− f(k), where E[·] denotes the expected value,

• the variance at the point k, defined by E{f̂(k)− E[f̂(k)]}2,

• the L∞ norm or sup absolute error (SAE), defined by SAE[f̂(k)] = supk |f̂(k) − f(k)|.
This global measure enables us to obtain an estimation and representation of the whole
density in this case we are using a non-parametric estimation.

In the first trials, we also considered the case σ = 0.1 which was aborted because it showed
problems when applying the rejection method due to the enormous maximum value the pdf takes
in the degree intervals, (cf. Figure 1).

In terms of the efficacy of the generation, we observed that it is similar for all the considered
numbers of vertices, except for
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• α = 5 and σ = 1, • α = 10 and σ = 2, • α = 20 and σ = 5,

where the percentage of efficacy is extremely better if n = 10. The degree interval seems to make
no difference either.

We had a very good performance (even up the 90%) when:

• α = 10 and σ = 1, • α = 20 and σ = 1, 2.

The performance is acceptable (between 75% and 90%) for n = 10 when:

• α = 5 and σ = 1, • α = 10 and σ = 2.

For the rest of the cases, the percentage of generation efficacy is between 45% and 60%. These
features are exhibited in Figure 6 which shows the percentage of the efficacy in the graph genera-
tion, where the gray and grey dotted horizontal lines represent 90% and 75%, respectively.

s = 1 s = 2 s = 5 s = 10 s = 20

a
=

1.1
a

=
2

a
=

5
a

=
10

a
=

20

12 4 6 10 20 12 4 6 10 20 12 4 6 10 20 12 4 6 10 20 12 4 6 10 20

60

80

100

60

80

100

60

80

100

60

80

100

60

80

100

Degree

E
ff

ic
ac

y 
(i

n 
pe

rc
en

ta
ge

)

 n 10 50 100 1000

Figure 6: Percentage of efficacy in the generation of Pareto graph with n vertices, according to the values of the
distribution parameters.

We could see that in the following cases, the obtained graphs are conformed by isolated points,
i.e. all the vertices have degree zero:
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• α = 10, σ = 1, and
n = 10,

• α = 20, σ = 1, for all
values of n,

• α = 20, σ = 2, and
n = 10, 50.

As the upper limit of the degree interval increases, the absence of high degrees is notorious for
big values of α and small values of σ. We illustrate this phenomenon in Figure 7 in which we mark
the degrees that do not appear in the generated random graphs.
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Figure 7: Missed degrees in the interval [0, 10] when generating a Pareto random graph with n vertices, according to
the different values of the distribution parameters.

Figure 8 represents one of the graphics we used to analyze the error produced when approxi-
mating the probability that a vertex has a degree equal to k using the generated random graphs. In
this figure, we plot the biases where the pairs denote the values (α, σ) and p(k) is the probability
that a vertex has a degree equal to k.

After this study, we observed the following:

• The differences in the results are imperceptible to the variation in the amount of vertices in
the graph.

• The largest biases come from overestimation.

• The biases are very small, ordering from least to greatest, when
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Figure 8: Some examples of the biases in the degree distribution for Pareto graph generation with 10 vertices, according
to the values of the distribution parameters and the interval [0, b] for the allowed degrees.

– α = 20 and σ = 1, – α = 10 and σ = 1, – α = 20 and σ = 2.

• In general we can see that the worst approximations hold for smaller degrees.

• In Figure 9 we sum up the cases for which the approximation is not so good.

We choose Figure 10 as an example to introduce the tools employed in the variance study, with
the same notation as above.

We point out the following features:

• For graphs that are trees; i.e. each vertex has only degree 0 or 1, the variances for these
degrees are similar. On the other hand, the variance decreases as the degree increases.

• If we notice by ⋎n the upper bound for the variance in the n-vertex graph generation, we
see that ⋎10 = 0.025, ⋎50 = 10−12⋎10, ⋎100 = 10−1⋎10 and ⋎1000 = 10−2⋎10. So that the
variance declines as the number of vertices grows.

• In Figure 11 we exhibit all the cases in which the variance is almost insignificant.

In the analysis of the SAE, we refer to Figure 12 to conclude the following:
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Figure 9: Combinations of distribution parameters in which the degree distribution approximation biases are unsatis-
factory.
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Figure 10: Some examples of the variance in the degree distribution for Pareto graph generation with 10 vertices,
according to the values of the distribution parameters and the interval [0, b] for the allowed degrees.
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Figure 11: Combinations of distribution parameters in which the variance produced in the estimation of degree distri-
bution is negligible.

– The SAE is low for α = 1.1 and σ = 1, 2, 5; except for large degrees in the case
n = 50.

– The SAE is low for α = 1.1 and σ = 10, 20; when the degrees are not small, except in
the case n = 50.

– The SAE is acceptable when α = 2, except for n = 50 considering small values of σ
and big degrees.

– In general, the SAE is near to one for α = 5, 10, 20.
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Figure 12: SAE computation for all the cases considered in the simulation study.

3.2. Graph generation models comparison
In this experiment, for the number of vertices n = 5, 10, 50, we generated R = 1000 undirected

random graphs with possible loops, using the following models:
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• ER: Erdős and Rényi with probability p = 0.5 for the creation of each possible new edge, by
using the function sample gnp in R.

• BA: Scale-Free Barabási and Albert with power ω = 1, by using the function sample pa
in R.

• P1: Pareto graph by applying the rejection method in the interval [0, 10] with parameters
µ = 0, α = 1, and σ = 3.

• P2: Pareto graph by applying the rejection method in the interval [0, 10] with parameters
µ = 0, α = 1, and σ = 5.

• P3: Pareto graph by applying the rejection method in the interval [0, 10] with parameters
µ = 0, α = 2, and σ = 2.

For illustrative purposes, Figure 13 shows the appearance of a graph generated by each one of
these models and varying the number of vertices.

For each model and for each n, we computed the following:

• percentage of connected and non-connected graph (Table 1 shows these results),

• number of connected components in the graph (Figure 14 shows the distribution of these
amounts),

• number of isolated nodes in the graph, i.e. vertices with a null degree, (Figure 15 shows the
distribution of these amounts).

Table 1: Percentage of connected (C) and non-connected (NC) graphs with n vertices in each group.

Model

ER BA P1 P2 P3

C NC C NC C NC C NC C NC

n = 5 69.1 30.9 100.0 0.0 23.4 76.6 35.8 64.2 3.0 97.0
n = 10 98.1 1.9 100.0 0.0 7.6 92.4 18.5 81.5 0.1 99.9
n = 50 100.0 0.0 100.0 0.0 0.0 100.0 0.1 99.9 0.0 100.0

It is observed that as the number of vertices increases the number of connected Erdős-Rényi
and Barabási-Albert graphs also increases. On the other hand, the number of connected Pareto
graphs, as well as the number of isolated nodes in this kind of graph, decreases. This is a clear
consequence of the heavy-tailed condition satisfied by the Pareto distribution. The behavior of
these features is similar for random graphs generated by the models ER and BA.
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(b) Graph generated by ER with n = 10.
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(c) Graph generated by ER with n = 50.
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(e) Graph generated by BA with n = 10.
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(f) Graph generated by BA with n = 50.
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(h) Graph generated by P1 with n = 10.

1
2

3

4 5

6

7

8

9

10

11

12

1314

15

16

17

18

19

20

21

22

23

24
25

26

27

28

29

30

31

32

33 34

35

36

3738
39

40

41

42

43

44

45

46

47

48

49

50

(i) Graph generated by P1 with n = 50.
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(k) Graph generated by P2 with n = 10.
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(l) Graph generated by P2 with n = 50.
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(o) Graph generated by P3 with n = 50.

Figure 13: Random graph with n vertices generated by different models.
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Figure 14: Distribution of the number of components in n-vertex random graphs generated by different models.
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Figure 15: Distribution of the number of isolated nodes in n-vertex random graphs generated by different models.
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4. Application to real social networks

All the data we use in this section are obtained from [21].
Emphasizing the application of graphs to real-world systems, the term network is sometimes

defined to mean a graph in which the attributes are associated with the vertices and the edges. For
instance, the vertices can be the names of the people belonging to a social group, meanwhile, the
edges represent some kind of interconnection among them. Particularly, we are going to work with
the following social networks:

• Brightkite was a location-based social networking website in which users were able to check
in at places by using text messaging or one of the mobile applications and they were able
to see who was nearby and who had been there before. The service was created in 2007 by
Brady Becker, Martin May, and Alan Seideman who previously founded the SMS notifica-
tion service Loopnote. In April 2009 Brightkite was acquired by the mobile social network
Limbo. The dataset contains all links among users.

• Hamsterster is about the friendships and family links between users of an intended ironi-
cally website for tailless rodents. The dataset contains all friendships among the users.

• Wikipedia is a free encyclopedia written collaboratively by volunteers around the world.
The dataset contains all the Wikipedia voting data from the creation of Wikipedia till January
2008, where a directed edge from node i to node j represents that user i voted on user j.

In the whole analysis we implement the software R [19]. We obtained graphs from the data with
the function graph.edgelist from library igraph [5]. The number of vertices and edges of
each graph appears in Table 2.

Table 2: Dataset graph information.

Graph Vertices Edges Type

Brightkite 56739 212944 Undirected
Hamsterter 2426 16629 Undirected
Wikivote 889 2913 Directed

We use the function fitgpd from library POT [20] which returns the parameters optimized
and fixed, selecting the maximum likelihood estimator. In this package, the Generalized Pareto
distribution function, for loc = u, scale = σ and shape = ξ is given by

G(x) = 1−
[
1 +

ξ(x− u)

σ

]−1/ξ

(32)

for 1 + ξ(x− u)/σ > 0 and x > u, where σ > 0.
We estimate the parameters in (3) as follows:

• µ̂ is the minimum value of the degrees in the graph,
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• α̂ is the inverse of the shape parameter in (32),

• σ̂ is the quotient between the scale and the shape parameters in (32).

In addition, we estimate the parameters involved in the pdf of the Log-Normal and Weibull distri-
butions, given in (6) and (7), respectively. These estimations were computed using the functions
elnorm for the Log-Normal distribution and eweibull for the Weibull distribution, from the
package EnvStats [14]. The obtained estimated values are in Table 3.

Table 3: Parameter estimation for heavy-tailed distributions.

Distribution

Graph Pareto Log-Normal Weibull

µ̂ α̂ σ̂ µ̂ℓ σ̂ℓ κ̂ λ̂

Brightkite 1 1.91340 9.23148 1.12612 1.15066 0.73815 5.72488
Hamsterter 1 3.35064 34.34426 1.92937 1.18774 0.85954 12.51456
Wikivote 1 6.04307 35.59667 1.34905 1.00655 0.96956 6.44806

In Figure 16, we visually compare the empirical degree distribution obtained by applying the
function degree distribution from library igraph lighted in green, with the Pareto, Log-
Normal, and Weibull distributions defined by the estimation of the parameters given in Table 3.
The three distributions seem to properly fit the real data. Since these distributions correspond
to continuous random variables and the degrees are discrete, we compute the mean square error
(MSE) to assess the goodness of fit with a quantitative measure. The MSE was computed as

MSE =
30∑
k=1

[pk − fD(k)]
2, (33)

where pk is the empirical probability of the degree k and D ∈ {P,LN,W}. The results are shown
in Table 4, where the best values are in bold.

Table 4: Mean square errors between the observed degree distribution and heavy-tailed distributions.

Graph Pareto Log-Normal Weibull

Brightkite 0.02552 0.20913 0.04347
Hamsterter 0.00194 0.00226 0.003464
Wikivote 0.00427 0.00436 0.00947

Moreover, the parameters of the Pareto distribution, which are presented in Table 3, verify the
hypothesis of Proposition 2.2 which implies that there is a giant component in the three graphs
considered.
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Figure 16: Heavy-tailed distribution approximation to the degree distribution in real social networks.

5. Conclusions and remarks

Due to the results obtained in Section §2, we can think that the existence of a giant component
is conditioned to the division into two semi-planes of the first quadrant given by the parameters α
and σ when dealing with Pareto graphs.

The simulation results indicate a good performance in graph generation for the combination of
large values of α and small values of σ. On the contrary, the global error in the approximations is
acceptable when α takes small values. In general, the variance is very small, even depreciated for
small values of σ meanwhile, α takes large values.

The Generalized Pareto Distribution of Type II showed the best fit (measured by the mean
square error) for two of the three real-world networks for which it was applied and proved to
be competitive with the Log-Normal distribution in the remaining case. Another advantage to
using the Pareto distribution to model real-world networks whose degrees follow a heavy-tailed
distribution is that the associated probability density function requires less computational cost due
to the simplicity of the involved operations.
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[16] V. Pareto, Cours d’économie politique, Librairie Droz, 2, 1964.

[17] J. Pickands III, Statistical inference using extreme order statistics, The Annals of Statistics,
3(1) (1975), 119–131.

[18] K.R. Pm, A. Mohan, and K.G. Srinivasa, Practical Social Network Analysis with Python,
Springer, 2018.

[19] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for
Statistical Computing, 2024.

114



www.ejgta.org

Pareto graphs | Andrea Rey

[20] M. Ribatet and C. Dutang, POT: Generalized Pareto distribution and peaks over threshold,
R package version, 2009, 1–1.

[21] R.A. Rossi and N.K. Ahmed, The Network Data Repository with Interactive Graph Analytics
and Visualization, AAAI, 2015.

[22] H.A. Simon and C.P. Bonini, The size distribution of business firms, The American Economic
Review, 48(4) (1958), 607–617.

[23] H.O.A. Wold and P. Whittle, A model explaining the Pareto distribution of wealth, Econo-
metrica, Journal of the Econometric Society, (1957), 591–595.

115


	Introduction
	Graphs and random graphs
	Pareto distribution

	Pareto graphs
	Component sizes
	Giant component

	Simulation
	Pareto graph generation behavior
	Graph generation models comparison

	Application to real social networks
	Conclusions and remarks

