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Abstract

Given two graphs G and H , a (G,H)-multidecomposition of Kn is a partition of the edges of
Kn into copies of G and H such that at least one copy of each is used. We give necessary and
sufficient conditions for the existence of (C6, C6)-multidecomposition of Kn where C6 denotes a
cycle of length 6 and C6 denotes the complement of C6. We also characterize the cardinalities of
leaves and paddings of maximum (C6, C6)-multipackings and minimum (C6, C6)-multicoverings,
respectively.
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1. Introduction

Let G and H be graphs. Denote the vertex set of G by V (G) and the edge set of G by E(G).
A G-decomposition of H is a partition of E(H) into a set of edge-disjoint subgraphs of H each
of which is isomorphic to G. Graph decompositions have been extensively studied. This is par-
ticularly true for the case where H ∼= Kn, see [2] for a recent survey. A G-decomposition of
Kn is sometimes referred to as a G-design of order n. As an extension of a graph decomposition
we can permit more than one graph, up to isomorphism, to appear in the partition. A (G,H)-
multidecomposition of Kn is a partition of E(Kn) into a set of edge-disjoint subgraphs each of
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which is isomorphic to either G or H , and at least one copy of G and one copy of H are elements
of the partition. When a (G,H)-multidecomposition of Kn does not exist, we would like to know
how “close” we can get. More specifically, define a (G,H)-multipacking of Kn to be a collection
of edge-disjoint subgraphs of Kn each of which is isomorphic to either G or H such that at least
one copy of each is present. The set of edges in Kn that are not used as copies of either G or
H in the (G,H)-multipacking is called the leave of the (G,H)-multipacking. Similarly, define
a (G,H)-multicovering of Kn to be a partition of the multiset of edges formed by E(Kn) where
some edges may be repeated into edge-disjoint copies of G and H such that at least one copy of
each is present. The multiset of repeated edges is called the padding. A (G,H)-multipacking
is called maximum if its leave is of minimum cardinality, and a (G,H)-multicovering is called
minimum if its padding is of minimum cardinality. The term multidesign is used to encompass
multidecompositions, multipackings, and multicoverings.

A natural way to form a pair of graphs is to use a graph and its complement. To this end,
we have the following definition which first appeared in [1]. Let G and H be edge-disjoint, non-
isomorphic, spanning subgraphs of Kn each with no isolated vertices. We call (G,H) a graph pair
of order n if E(G) ∪ E(H) = E(Kn). For example, the only graph pair of order 4 is (C4, E2),
where E2 denotes the graph consisting of two disjoint edges. Furthermore, there are exactly 5
graph pairs of order 5. In this paper we are interested in the graph pair formed by a 6-cycle,
denoted C6, and the complement of a 6-cycle, denoted C6.

Necessary and sufficient conditions for multidecompositions of complete graphs into all graph
pairs of orders 4 and 5 were characterized in [1]. They also characterized the cardinalities of
leaves and paddings of multipackings and multicoverings for the same graph pairs. We advance
those results by solving the same problems for a graph pair of order 6, namely (C6, C6). Note that
C6 is sometimes referred to as the 3-prism, but we used the former notation for brevity. We first
address multidecompositions, then multipackings and multicoverings. Our main results are stated
in the following three theorems.

Theorem 1.1. The complete graph Kn admits a (C6, C6)-multidecomposition of Kn if and only if
n ≡ 0, 1 (mod 3) with n ≥ 6, except n ∈ {7, 9, 10}.

Theorem 1.2. For each n ≡ 2 (mod 3) with n ≥ 8, a maximum (C6, C6)-multipacking of Kn

has a leave of cardinality 1. Furthermore, a maximum (C6, C6)-multipacking of K7 has a leave of
cardinality 6, and a maximum (C6, C6)-multipacking of either K9 or K10 has a leave of cardinality
3.

Theorem 1.3. For each n ≡ 2 (mod 3) with n ≥ 8, a minimum (C6, C6)-multicovering of Kn has
a padding of cardinality 2. Furthermore, a minimum (C6, C6)-multicovering of K7 has a padding
of cardinality 6, and a minimum (C6, C6)-multicoveirng of either K9 or K10 has a padding of
cardinality 2.

Let G and H be vertex-disjoint graphs. The join of G and H , denoted G∨H , is defined to be the
graph with vertex set V (G)∪V (H) and edge set E(G)∪E(H)∪{{u, v} : u ∈ V (G), v ∈ V (H)}.
We use the shorthand notation

∨t
i=1Gi to denote G1 ∨ G2 ∨ · · · ∨ Gt, and when Gi

∼= G for all
1 ≤ i ≤ t we write

∨t
i=1 G. For example, K12

∼=
∨4

i=1K3.
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For notational convenience, let (a, b, c, d, e, f) denote the copy of C6 with vertex set {a, b, c, d, e,
f} and edge set {{a, b}, {b, c}, {c, d}, {d, e}, {e, f}, {a, f}}, as seen in Figure 1. Let [a, b, c; d, e, f ]
denote the copy of C6 with vertex set {a, b, c, d, e, f} and edge set

{{a, b}, {b, c}, {a, c}, {d, e}, {e, f}, {d, f}, {a, d}, {b, e}, {c, f}}.

C6 C6

Figure 1. Labeled copies of C6 and C6, denoted by (a, b, c, d, e, f) and [a, e, c; d, b, f ], respectively.

Next, we state some known results on graph decompositions that will help us prove our main
result. Sotteau’s theorem gives necessary and sufficient conditions for complete bipartite graphs
(denoted by Km,n when the partite sets have cardinalities m and n) to decompose into even cycles
of fixed length. Here we state the result only for cycle length 6.

Theorem 1.4 (Sotteau [5]). A C6-decomposition of Km,n exists if and only if m ≥ 4, n ≥ 4, m
and n are both even, and 6 divides mn.

Another celebrated result in the field of graph decompositions is that the necessary conditions
for a Ck-decomposition of Kn are also sufficient. Here we state the result only for k = 6.

Theorem 1.5 (Šajna [4]). Let n be a positive integer. A C6-decomposition of Kn exists if and only
if n ≡ 1, 9 (mod 12).

The necessary and sufficient conditions for a C6-decomposition of Kn are also known, and
stated in the following theorem.

Theorem 1.6 (Kang et al. [3]). Let n be a positive integer. A C6-decomposition of Kn exists if and
only if n ≡ 1 (mod 9).

2. Multidecompositions

We first establish the necessary conditions for a (C6, C6)-multidecomposition of Kn.

Lemma 2.1. If a (C6, C6)-multidecomposition of Kn exists, then

1. n ≥ 6, and
2. n ≡ 0, 1 (mod 3).
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Proof. Assume that a (C6, C6)-multidecomposition of Kn exists. It is clear that condition (1)
holds. Considering that the edges of Kn are partitioned into subgraphs isomorphic to C6 and C6,
we have that there exist positive integers x and y such that

(
n
2

)
= 6x + 9y. Hence, 3 divides

(
n
2

)
,

which implies n ≡ 0, 1 (mod 3), and condition (2) follows.

2.1. Small examples of multidecompositions
In this section we present various non-existence and existence results for (C6, C6)-multidecom-

positions of small orders. The existence results will help with our general constructions.

2.1.1. Non-existence results
The necessary conditions for the existence of a (C6, C6)-multidecomposition of Kn fail to be

sufficient in exactly three cases, namely n = 7, 9, 10. We will now establish the non-existence of
(C6, C6)-multidecompositions of Kn for these cases.

Lemma 2.2. A (C6, C6)-multidecomposition of K7 does not exist.

Proof. Assume the existence of a (C6, C6)-multidecomposition of K7, call it G. There must exist
positive integers x and y such that

(
7
2

)
= 21 = 6x + 9y. The only solution to this equation is

(x, y) = (2, 1); therefore, G must contain exactly one copy of C6. However, upon examing the
degree of each vertex contained in the single copy of C6 we see that there must exist a non-negative
integer p such that 6 = 2p + 3. This is a contradiction. Thus, a (C6, C6)-multidecomposition of
K7 cannot exist.

Lemma 2.3. A (C6, C6)-multidecomposition of K9 does not exist.

Proof. Assume the existence of a (C6, C6)-multidecomposition of K9, call it G. There must exist
positive integers x and y such that

(
9
2

)
= 36 = 6x + 9y. The only solution to this equation is

(x, y) = (3, 2); therefore, G must contain exactly two copies of C6.
Turning to the degrees of the vertices in K9, we have that there must exist positive integers p

and q such that 8 = 2p + 3q. The only possibilities are (p, q) ∈ {(4, 0), (1, 2)}. Note that K6

does not contain two edge-disjoint copies of C6. Since G contains exactly two copies of C6, there
must exist at least one vertex a ∈ V (K9) that is contained in exactly one copy of C6. However,
this contradicts the fact that vertex a must be contained in either 0 or 2 copies of C6. Thus, a
(C6, C6)-multidecomposition of K9 cannot exist.

Lemma 2.4. A (C6, C6)-multidecomposition of K10 does not exist.

Proof. Assume the existence of a (C6, C6)-multidecomposition of K10, call it G. There must exist
positive integers x and y such that

(
10
2

)
= 45 = 6x+ 9y. Thus, (x, y) ∈ {(6, 1), (3, 3)}; therefore,

G must contain at least one copy of C6. However, if G consists of exactly one copy of C6, then the
vertices of K10 which are not included in this copy would have odd degrees remaining after the
removal of the copy of C6. Thus, the case where (x, y) = (6, 1) is impossible.

Upon examining the degree of each vertex in K10, we see that there must exist positive integers
p and q such that 9 = 2p + 3q. The only solutions to this equation are (p, q) ∈ {(3, 1), (0, 3)}.
From the above argument, we know that G contains exactly 3 copies of C6, say A,B, and C. Let

136



www.ejgta.org

Multidesigns for the graph pair formed by the 6-cycle and 3-prism | Gao and Roberts

X = V (A) ∩ V (B). It must be the case that |X| ≥ 2 since K10 has 10 vertices. It also must
be the case that |X| ≤ 5 since K6 does not contain two copies of C6. If |X| ∈ {2, 3}, then
V (C) ∩ (V (A)4 V (B)) 6= ∅, where4 denotes the symmetric difference. This implies that there
exists a vertex in V (Kn) that is contained in exactly 2 copies of C6 in G, which is a contradiction.

Observe that any set consisting of either 4 or 5 vertices in C6 must induce at least 3 or 6 edges,
respectively. Furthermore, X ⊆ V (C) due to the degree constraints put in place by the existence
of G. If |X| = 4 or |X| = 5, then X must induce at least 9 or at least 18 edges, respectively. This
is a contradiction in either case. Thus, no (C6, C6)-multidecomposition of K10 exists.

2.1.2. Existence results
We now present some multidecompositions of small orders that will be useful for our general

recursive constructions.

Example 1. K13 admits a (C6,C6)-multidecomposition.

Let V (K13) = {1, 2, . . . , 13}. The following is a (C6,C6)-multidecomposition of K13.{
[1, 2, 3; 7, 9, 8], [1, 4, 5; 9, 12, 10], [3, 4, 6; 7, 11, 10], [2, 5, 6; 8, 12, 11]

}
∪
{
(13, 1, 6, 8, 5, 11), (13, 2, 4, 7, 6, 12), (13, 3, 5, 9, 4, 10), (13, 7, 12, 3, 9, 6),

(13, 8, 10, 2, 7, 5), (13, 9, 11, 1, 8, 4), (1, 10, 3, 11, 2, 12)
}

Example 2. K15 admits a (C6,C6) -multidecomposition.

Let V (K15) = {1, 2, . . . , 15}. The following is a (C6,C6)-multidecomposition of K15.{
[1, 5, 10; 6, 8, 12], [4, 8, 13; 9, 11, 15], [7, 11, 1; 12, 14, 3], [10, 14, 4; 15, 2, 6],

[13, 2, 7; 3, 5, 9]
}

∪
{
(1, 12, 11, 13, 5, 15), (4, 15, 14, 1, 8, 3), (7, 3, 2, 4, 11, 6), (10, 6, 5, 7, 14, 9),

(13, 9, 8, 10, 2, 12), (1, 2, 11, 3, 6, 13), (4, 5, 14, 6, 9, 1), (7, 8, 2, 9, 12, 4),

(10, 11, 5, 12, 15, 7), (13, 14, 8, 15, 3, 10)
}

Example 3. K19 admits a (C6, C6)-multidecomposition.

Let V (K19) = {1, 2, . . . , 19}. The following is a (C6, C6)-multidecomposition of K19.{
[2, 11, 14; 17, 4, 18], [3, 12, 15; 18, 5, 19], [4, 13, 16; 19, 6, 11], [5, 14, 17; 11, 7, 12],

[6, 15, 18; 12, 8, 13], [7, 16, 19; 13, 9, 14], [8, 17, 11; 14, 10, 15], [9, 18, 12; 15, 2, 16],

[10, 19, 13; 16, 3, 17]
}

∪
{
(2, 12, 14, 3, 11, 1), (3, 13, 15, 4, 12, 1), (4, 14, 16, 5, 13, 1), (5, 15, 17, 6, 14, 1),

(6, 16, 18, 7, 15, 1), (7, 17, 19, 8, 16, 1), (8, 18, 11, 9, 17, 1), (9, 19, 12, 10, 18, 1),

(10, 11, 13, 2, 19, 1), (2, 3, 10, 4, 9, 5), (2, 6, 8, 7, 3, 4), (2, 7, 4, 5, 3, 8),

(2, 10, 8, 4, 6, 9), (3, 6, 10, 5, 7, 9), (5, 6, 7, 10, 9, 8)
}
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2.2. General constructions for multidecompositions
Lemma 2.5. If n ≡ 0 (mod 6) with n ≥ 6, then Kn admits a (C6, C6)-multidecomposition.

Proof. Let n = 6x for some integer x ≥ 1. Note that K6x
∼=
∨x

i=1K6. On each copy of K6

place a (C6, C6)-multidecomposition of K6. The remaining edges form edge-disjoint copies of
K6,6, which admits a C6-decomposition by Theorem 1.4. Thus, we obtain the desired (C6, C6)-
multidecomposition of Kn.

Lemma 2.6. If n ≡ 1 (mod 6) with n ≥ 13, then Kn admits a (C6, C6)-multidecomposition.

Proof. Let n = 6x+ 1 for some integer x ≥ 2. The proof breaks into two cases.
Case 1: x = 2k for some integer k ≥ 1. Notice that K12k+1

∼= K1 ∨
(∨k

i=1 K12

)
. Each of

the k copies of K13 formed by K1 ∨ K12 admits a (C6, C6)-multidecomposition by Example 1.
The remaining edges form edge-disjoint copies of K12,12, which admits a C6-decomposition by
Theorem 1.4. Thus, we obtain the desired (C6, C6)-multidecomposition of Kn.
Case 2: x = 2k + 1 for some integer k ≥ 2. Notice that K12k+7

∼= K1 ∨K6 ∨
(∨k

i=1 K12

)
. The

single copy of K19 formed by K1∨K6∨K12 admits a (C6, C6)-multidecomposition by Example 3.
The remaining k−1 copies of K13 formed by K1∨K12 each admit a (C6, C6)-multidecomposition
by Example 1. The remaining edges form edge-disjoint copies of either K6,12 or K12,12. Both of
these graphs admit C6-decompositions by Theorem 1.4. Thus, we obtain the desired (C6, C6)-
multidecomposition of Kn.

Lemma 2.7. If n ≡ 3 (mod 6) with n ≥ 15, then Kn admits a (C6, C6) -multidecomposition.

Proof. Let n = 6x+ 3 for some integer x ≥ 2. The proof breaks into two cases.
Case 1: x = 2k for some integer k ≥ 1. Notice that K12k+3

∼= K1 ∨ K14 ∨
(∨k−1

i=1 K12

)
.

The remainder of the proof is similar to the proof of Case 1 of Lemma 2.6 where the ingredients
required are C6-decompositions of K12,12, and K12,14, as well as (C6, C6)-multidecompositions of
K13 and K15.
Case 2: x = 2k + 1 for some integer k ≥ 1. Notice that K12k+9

∼= K1 ∨ K8 ∨
(∨k

i=1K12

)
.

The remainder of the proof is similar to the proof of Case 2 of Lemma 2.6 where the ingredients
required are C6-decompositions of K9 (which exists by Theorem 1.5), K8,12, and K12,12, as well
as a (C6, C6)-multidecomposition of K13.

Lemma 2.8. If n ≡ 4 (mod 6) with n ≥ 16, then Kn admits a (C6, C6) -multidecomposition.

Proof. Let n = 6x + 4 where x ≥ 2 is an integer. Note that K6x+4
∼= K10 ∨

(∨x−1
i=1 K6

)
.

The remainder of the proof is similar to the proof of Case 2 of Lemma 2.6 where the ingredients
required are C6-decompositions of K6,6 and K6,10, a C6-decomposition of K10 (which exists by
Theorem 1.6), as well as a (C6,C6)-multidecomposition of K6.

Combining Lemmas 2.5, 2.6, 2.7, and 2.8, we have proven Theorem 1.1.
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3. Maximum Multipackings

Now we turn our attention to (C6, C6)-multipackings in the cases where (C6, C6)- multide-
compositions do not exist.

3.1. Small examples of maximum multipackings
Example 4. A maximum (C6, C6)-multipacking of K7 has a leave of cardinality 6.

Note that the number of edges used in a (C6, C6)-multipacking of any graph must be a multiple
of 3, since gcd(6, 9) = 3. Since no (C6, C6)-multidecomposition of K7 exists the next possibility
is a leave of cardinality 3. However, the equation 18 = 6x + 9y has no positive integer solutions.
Thus, the minimum possible cardinality of a leave is 6. Let V (K7) = {1, ..., 7}. The following is
a (C6, C6)-multipacking of K7, with leave {{1, 7}, {2, 7}, {3, 7}, {4, 7}, {5, 7}, {6, 7}}.

{[1, 3, 5; 4, 6, 2], (1, 2, 3, 4, 5, 6)}

Example 5. A maximum (C6, C6)-multipacking of K8 has a leave of cardinality 1.

Let V (K8) = {1, ..., 8}. The following is a (C6, C6)-multipacking of K8, with leave {3, 6}.

{[2, 5, 7; 4, 1, 8], (1, 2, 3, 4, 5, 6), (1, 3, 5, 8, 6, 7), (3, 8, 2, 6, 4, 7)}

Example 6. A maximum (C6, C6)-multipacking of K9 has a leave of cardinality 3.

Let V (K9) = {1, ..., 9}. The following is a (C6, C6)-multipacking of K9, with leave
{{2, 4}, {2, 9}, {4, 9}}.

{[1, 2, 3; 6, 5, 4], [1, 4, 7; 9, 8, 3], [2, 6, 8; 7, 9, 5], (1, 5, 3, 6, 7, 8)}

Example 7. A maximum (C6, C6)-multipacking of K10 has a leave of cardinality 3.

A (C6, C6)-multipacking of K10 with a leave of cardinality 3 can be obtained by starting with a
C6-decomposition of K10. Then remove three vertex-disjoint edges from one copy of C6, forming
a C6. This gives us the desired (C6, C6)-multipacking of K10 where the three removed edges form
the leave.

Example 8. A maximum (C6, C6)-multipacking of K11 has a leave of cardinality 1.

Let V (K11) = {1, ..., 11}. The following is a (C6, C6)-multipacking of K11, with leave {1, 2}.

{[1, 7, 10; 9, 6, 3], [1, 5, 6; 4, 10, 2], [2, 5, 7; 11, 8, 4], [1, 3, 11; 8, 2, 9]}
∪{(3, 4, 9, 10, 6, 8), (4, 5, 9, 7, 11, 6), (3, 5, 11, 10, 8, 7)}

Example 9. A maximum (C6, C6)-multipacking of K17 has a leave of cardinality 1.
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Let V (K17) = {1, ..., 17}. The following is a (C6, C6)-multipacking of K17, with leave
{1, 10}.{

[2, 3, 5; 7, 8, 1], [3, 6, 4; 9, 8, 10], [2, 4, 9; 6, 5, 7]
}

∪
{
(2, 12, 5, 10, 11, 14), (2, 10, 17, 4, 13, 11), (4, 7, 13, 14, 5, 15), (4, 11, 15, 8, 16, 12),

(1, 15, 14, 16, 5, 17), (3, 12, 11, 17, 6, 15), (1, 2, 16, 7, 14, 4), (2, 13, 5, 8, 14, 17),

(7, 15, 10, 13, 9, 17), (1, 13, 6, 9, 11, 16), (1, 9, 12, 7, 3, 11), (3, 10, 12, 8, 4, 16),

(3, 13, 16, 6, 12, 14), (2, 8, 13, 17, 12, 15), (6, 10, 16, 15, 9, 14), (5, 9, 16, 17, 8, 11),

(1, 3, 17, 15, 13, 12), (1, 6, 11, 7, 10, 14)
}

3.2. General Constructions of maximum multipackings
Lemma 3.1. If n ≡ 2 (mod 6) with n ≥ 14, then Kn admits a (C6, C6)-multipacking with leave
cardinality 1.

Proof. Let n = 6x + 2 for some integer x ≥ 2. Notice that K6x+2
∼= K2 ∨

(∨x
i=1K6

)
. Let

{u, v} = V (K2). Each of the x copies of K8 formed by K2 ∨K6 admit a (C6, C6)-multipacking
with leave cardinality 1 by Example 5. Note that we can always choose the leave edge to be
{u, v} in each of these multipackings. The remaining edges form edge disjoint copies of K6,6,
each of which admits a C6-decomposition by Theorem 1.4. Thus, we obtain the desired (C6, C6)-
multipacking of Kn.

Lemma 3.2. If n ≡ 5 (mod 6) with n ≥ 11, then Kn admits a (C6, C6)-multipacking with leave
cardinality 1.

Proof. Let n = 6x+ 5 for some integer x ≥ 1.
Case 1: x = 2k for some integer k ≥ 1. Notice that K12k+5

∼= K1 ∨K16 ∨
(∨k−1

i=1 K12

)
. Each of

the k− 1 copies of K13 formed by K1 ∨K12 admit a (C6, C6)-multidecomposition by Example 1.
The copy of K17 formed by K1 ∨K16 admits a (C6, C6)-multipacking with leave of cardinality 1
by Example 9. The remaining edges form edge disjoint copies of K12,12 or K12,16, each of which
admits a C6-decomposition by Theorem 1.4. Thus, we obtain the desired (C6, C6)-multipacking
of Kn.
Case 2: x = 2k + 1 for some integer k ≥ 1. Notice that K12k+11

∼= K1 ∨K10 ∨
(∨k

i=1K12

)
. On

each of the k copies of K13 formed by K1∨K12 admit a (C6, C6)-multidecomposition by Example
1. The copy of K11 formed by K1 ∨K10 admits a (C6, C6)-multipacking with leave of cardinality
1 by Example 8. The remaining edges form edge disjoint copies of K12,12 or K10,12, each of which
admits a C6-decomposition by Theorem 1.4. Thus, we obtain the desired (C6, C6)-multipacking
of Kn.

Combining Lemmas 3.1 and 3.2 along with Examples 4, 6, and 7 we have proven Theorem 1.2.

4. Minimum Multicoverings

Now we turn our attention to minimum (C6, C6)-multicoverings in the cases where (C6, C6)-
multidecompositions do not exist.
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4.1. Small examples of minimum multicoverings
Example 10. A minimum (C6, C6)-multicovering of K7 has a padding of cardinality 6.

We first rule out the possibility of a minimum (C6, C6)-multicovering of K7 with a padding of
cardinality 3. The only positive integer solution to the equation 24 = 6x + 9y is (x, y) = (1, 2).
In such a covering there would be one vertex left out of one of the copies of C6. It would be
impossible to use all edges at this vertex with the remaining copies of C6 and C6. Thus, the best
possible cardinality of a padding is 6. Let V (K7) = {1, ..., 7}. The following is a minimum
(C6, C6)-multicovering of K7, with padding of {{1, 2}, {1, 5}, {1, 6}, {3, 6}, {4, 5}, {5, 6}}.

{[1, 2, 3; 6, 5, 4], (1, 4, 7, 6, 3, 5), (1, 6, 2, 4, 5, 7), (1, 2, 7, 3, 6, 5)}

Example 11. A minimum (C6, C6)-multicovering of K8 has a padding of cardinality 2.

Let V (K8) = {1, ..., 8}. The following is a minimum (C6, C6)-multicovering of K8, with
padding of {{1, 8}, {3, 5}}.

{[1, 2, 8; 4, 3, 5], [1, 5, 6; 3, 7, 8], (1, 7, 2, 6, 4, 8), (2, 4, 7, 6, 3, 5)}

Example 12. A minimum (C6, C6)-multicovering of K9 has a padding of cardinality 3.

A (C6, C6)-multicovering of K9 with a padding of cardinality 3 can be obtained by starting
with a C6-decomposition of K9 which exists by Theorem 1.5. One of the copies of C6 contained in
this decomposition can be transformed into a copy of C6 by carefully adding 3 edges. This gives
us the desired (C6, C6)-multicovering of K9 where the three added edges form the padding.

Example 13. A minimum (C6, C6)-multicovering of K10 has a padding of cardinality 3.

A (C6, C6)-multicovering of K10 with a padding of cardinality 3 can be obtained by starting
with a C6-decomposition of K10. One copy of C6 can be transformed into two copies of C6 by
carefully adding three edges. This gives us the desired (C6, C6)-multicovering of K10 where the
three added edges form the padding.

Example 14. A minimum (C6, C6)-multicovering of K11 has a padding of cardinality 2.

Let V (K11) = {1, ..., 11}. The following is a minimum (C6, C6)-multicovering of K11, with
padding of {{3, 4}, {8, 11}}.

{[1, 2, 11; 6, 5, 7], [1, 3, 5; 10, 2, 9], [4, 6, 10; 7, 9, 8]}
∪
{
(3, 4, 5, 8, 11, 6), (1, 8, 2, 7, 3, 9), (2, 4, 9, 11, 8, 6), (1, 4, 3, 11, 10, 7),

(3, 8, 4, 11, 5, 10)
}

Example 15. A minimum (C6, C6)-multicovering of K17 has a padding of cardinality 2.

Let V (K17) = {1, ..., 17}. Apply Theorem 1.5 and let B1 be a C6-decomposition on the copy
of K9 formed by the subgraph induced by the vertices {9, . . . , 17}. Apply Theorem 1.4 and let B2
be a C6-decomposition of the copy of K6,8 formed by the subgraph of K17 with vertex bipartition

141



www.ejgta.org

Multidesigns for the graph pair formed by the 6-cycle and 3-prism | Gao and Roberts

(A,B) where A = {1, . . . , 8} and B = {12, . . . , 17}. The following is a minimum (C6, C6)-
multicovering of K17, with padding of {{3, 5}, {7, 8}}.

B1 ∪ B2 ∪ {[1, 2, 3; 6, 5, 4], [1, 4, 8; 7, 2, 6]}
∪
{
(1, 5, 7, 8, 3, 9), (1, 10, 3, 7, 4, 11), (2, 8, 7, 11, 6, 9)

}
∪
{
(5, 11, 8, 9, 7, 10), (3, 5, 9, 4, 10, 6), (2, 11, 3, 5, 8, 10)

}
4.2. General constructions of minimum multicoverings
Lemma 4.1. If n ≡ 2 (mod 6) with n ≥ 8, then Kn admits a minimum (C6, C6)-multicovering
with a padding of cardinality 2.

Proof. Let n = 6x+2 for some integer x ≥ 1. Notice that K6x+2
∼= K8∨

(∨x−1
i=1 K6

)
. Each of the

x− 1 copies of K6 admit a (C6, C6)-multidecomposition by Lemma 2.5. The copy of K8 admits a
(C6, C6)-multicovering with a padding of cardinality 2 by Example 11. The remaining edges form
edge disjoint copies of K6,6 or K6,8, each of which admit a C6-decomposition by Theorem 1.4.
Thus, we obtain the desired (C6, C6)-multicovering of Kn.

Lemma 4.2. If n ≡ 5 (mod 6) with n ≥ 11, then Kn admits a minimum (C6, C6)- multicovering
with a padding of cardinality 2.

Proof. Let n = 6x+ 5 for some integer x ≥ 1. The proof breaks into two cases.
Case 1: x = 2k for some integer k ≥ 1. Notice that K12k+5

∼= K1 ∨ K4 ∨
(∨k

i=1K12

)
. One

copy of K17 is formed by K1 ∨ K4 ∨ K12, and admits a (C6, C6)-multicovering with a padding
of cardinality 2 by Example 15. The k − 1 copies of K13 formed by K1 ∨K12 admit a (C6, C6)-
multidecomposition by Example 1. The remaining edges form edge disjoint copies of K12,12 or
K4,12, each of which admits a C6-decomposition by Theorem 1.4. Thus, we obtain the desired
(C6, C6)-multicovering of Kn.
Case 2: x = 2k + 1 for some integer k ≥ 1. Notice that K12k+11

∼= K1 ∨K4 ∨K6 ∨
(∨k

i=1K12

)
.

One copy of K11 is formed by K1 ∨K4 ∨K6, and admits a (C6, C6)-multicovering with a padding
of cardinality 2 by Example 14. The k copies of K13 formed by K1 ∨ K12 admit a (C6, C6)-
multidecomposition by Example 1. The remaining edges form edge disjoint copies of K12,12,
K4,12, or K6,12, each of which admits a C6-decomposition by Theorem 1.4. Thus, we obtain the
desired (C6, C6)-multicovering of Kn.

Combining Lemmas 4.1 and 4.2, we have proven Theorem 1.3.

5. Conclusion

The cardinalities of the leaves of maximum (C6, C6)-multipackings and paddings of minimum
(C6, C6)-multicoverings of Kn have been characterized. However, the achievable structures of
these leaves and paddings are still yet to be characterized. This leads to the following open ques-
tion.

Open Problem 1. For each positive integer n, characterize all possible graphs (multigraphs)
which are leaves (paddings) of a (C6, C6)-multipacking (multicovering) of Kn.
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Furthermore, it would be of interest to know when a (C6, C6)-multidecomposition of Kn exists
with p copies of C6 and q copies of C6 where (p, q) is any solution to the equation 6p+ 9q =

(
n
2

)
.

This leads to the following open problem.

Open Problem 2. Let p, q and n be positive integers for which 6p+9q =
(
n
2

)
. Determine whether

a (C6, C6)-multidecomposition of Kn exists with p copies of C6 and q copies of C6.
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