On the domination and signed domination numbers of zero-divisor graph

Ebrahim Vatandoost, Fatemeh Ramezani
Department of Basic Science,
Imam Khomeini International University, Qazvin, Iran.

vatandoost@sci.ikiu.ac.ir, ramezani@ikiu.ac.ir

Abstract

Let R be a commutative ring (with 1) and let $Z(R)$ be its set of zero-divisors. The zero-divisor graph $\Gamma(R)$ has vertex set $Z^{*}(R)=Z(R) \backslash\{0\}$ and for distinct $x, y \in Z^{*}(R)$, the vertices x and y are adjacent if and only if $x y=0$. In this paper, we consider the domination number and signed domination number on zero-divisor graph $\Gamma(R)$ of commutative ring R such that for every $0 \neq x \in Z^{*}(R), x^{2} \neq 0$. We characterize $\Gamma(R)$ whose $\gamma(\Gamma(R))+\gamma(\overline{\Gamma(R)}) \in\{n+1, n, n-1\}$, where $\left|Z^{*}(R)\right|=n$.

Keywords: domination number, signed domination number, zero-divisor graph Mathematics Subject Classification : 05C25, 05C50 DOI: 10.5614/ejgta.2016.4.2.3

1. Introduction

The study on graphs from algebraic structures is an interesting subject for mathematician. In recent years, many algebraists as well as graph theorists have focused on the zero-divisor graph of rings. In [1], Anderson and Livingston introduced the zero-divisor graph of a commutative ring R with identity, denoted by $\Gamma(R)$, as the graph with vertices $Z^{*}(R)=Z(R) \backslash\{0\}$, the set of nonzero zero-divisors of R , and for distinct vertices x and y are adjacent if and only if $x y=0$.
A dominating set for Γ is a subset D of V such that every vertex not in D is adjacent to at least

Received: 22 June 2014, Revised: 28 August 2016, Accepted: 4 September 2016.
one member of D. The domination number is the number of vertices in a smallest dominating set for Γ and denoted by $\gamma(\Gamma)$. Oystein Ore introduced the terms "dominating set" and " domination number" in [10] and has proved if Γ has n vertices and no isolated vertices, then $\gamma(\Gamma) \leq \frac{n}{2}$.
For a vertex $v \in V(\Gamma)$, the closed neighborhood $N[v]$ of v is the set consisting of v and all of its neighbors. For a function $g: V(\Gamma) \longrightarrow\{-1,1\}$ and a vertex $v \in V$ we define $g[v]=$ $\sum_{u \in N[v]} g(u)$. A signed dominating function of Γ is a function $g: V(\Gamma) \longrightarrow\{-1,1\}$ such that $g[v]>0$ for all $v \in V(\Gamma)$. The weight of a function g is $\omega(g)=\sum_{v \in V(\Gamma)} g(v)$. The signed domination number $\gamma_{s}(\Gamma)$ is the minimum weight of a signed dominating function on Γ. A signed dominating function of weight $\gamma_{s}(\Gamma)$ is called a $\gamma_{s}(\Gamma)$-function. This concept was defined in [3] and has been studied by several authors (see for instance $[4,7,8,13,14]$). For a graph Γ the set of all vertices of Γ is denoted by $V(\Gamma)$. If Γ is a graph, then the complement of Γ, denoted by $\bar{\Gamma}$ is a graph with vertex set $V(\Gamma)$ in which two vertices are adjacent if and only if they are not adjacent in Γ. A graph is said to be connected if each pair of vertices are joined by a walk. The number of edges in a shortest walk joining v_{i} and v_{j} is called the distance between v_{i} and v_{j} and denoted by $d\left(v_{i}, v_{j}\right)$. The maximum value of the distance function in a connected graph Γ is called the diameter of Γ and denoted by diam (Γ). The complete graph K_{n} is the graph with n vertices in which each pair of vertices are adjacent. The corona $\Gamma_{1} \circ \Gamma_{2}$ is the graph formed by one copy of Γ_{1} and $\left|V\left(\Gamma_{1}\right)\right|$ copies of Γ_{2} where the i th vertex of Γ_{1} is adjacent to every vertex in the i th copy of Γ_{2}.

In this work, we consider the domination and signed domination number on zero-divisor graph $\Gamma(R)$ for commutative ring R. The main results are in the following.

Theorem 1.1. $\gamma_{s}(\Gamma(R))=n$ if and only if $\Gamma(R)$ is isomorphic to $K_{1, n-1}$ or $K_{3} \circ K_{1}$.
Theorem 1.2. Let $|R|$ be odd. Then $\gamma_{s}(\Gamma(R))=n-2$ if and only if $\Gamma(R)$ is a cycle C_{4}.
Theorem 1.3. $\gamma(\Gamma(R))+\gamma(\overline{\Gamma(R)})=n$ if and only if $\Gamma(R)$ is a cycle C_{4} or a path P_{3}.
Theorem 1.4. $\gamma(\Gamma(R))+\gamma(\overline{\Gamma(R)})=n-1$ if and only if $\Gamma(R)$ is isomorphic to a $K_{1,3}$ or a $K_{3} \circ K_{1}$.

2. Preliminaries

First we give some facts that are needed in the next sections.
Theorem 2.1. [1] Let R be a commutative ring. Then $\Gamma(R)$ is connected and $\operatorname{diam}(\Gamma(R)) \leq 3$. Moreover, if $\Gamma(R)$ contains a cycle, then $\operatorname{girth}(\Gamma(R)) \leq 7$.

Theorem 2.2. [1] Let R be a finite commutative ring with $|\Gamma(R)| \geq 4$. Then $\Gamma(R)$ is a star graph if and only if $R=Z_{2} \times F$ where F is a finite field. In particular, if $\Gamma(R)$ is a star graph, then $|\Gamma(R)|=p^{n}$ for some prime p and $n \geq 0$. Conversely, each star graph of order p can be realized as $\Gamma(R)$.

Theorem 2.3. [10] If a graph Γ has n vertices and no isolated vertices, then $\gamma(\Gamma) \leq \frac{n}{2}$.

Theorem 2.4. [9] For any graph Γ with n vertices:
i. $\gamma(\Gamma)+\gamma(\bar{\Gamma}) \leq n+1$.
ii. $\gamma(\Gamma) \gamma(\bar{\Gamma}) \leq n$.

Theorem 2.5. [11][5] For a graph Γ with even order n and no isolated vertices, $\gamma(\Gamma)=\frac{n}{2}$ if and only if the components of Γ are the cycle C_{4} or the corona $H \circ K_{1}$ where H is a connected graph.
Lemma 2.1. [8] Let Γ be a complete graph of order n, then

$$
\gamma_{s}(\Gamma)=\left\{\begin{array}{l}
1 \quad n \text { is odd } \\
2 \quad n \text { is even }
\end{array}\right.
$$

Theorem 2.6. [8] Let Γ be a graph with n vertices, then
i. $\gamma_{s}(\Gamma)+\gamma_{s}(\bar{\Gamma})=2 n$ and $\gamma_{s}(\Gamma) \gamma_{s}(\bar{\Gamma})=n^{2}$ if and only if $\Gamma \in\left\{P_{1}, P_{2}, \bar{P}_{2}, P_{3}, \bar{P}_{3}, P_{4}\right\}$, where P_{i} is a path on i vertices.
ii. $\gamma_{s}(\Gamma)+\gamma_{s}(\bar{\Gamma})=2 n-2$ and $\gamma_{s}(\Gamma) \gamma_{s}(\bar{\Gamma})=n^{2}-2 n$ for exactly 12 graph in Figure 1.

Figure 1. $\gamma_{s}(\Gamma)+\gamma_{s}(\bar{\Gamma})=2 n-2$ and $\gamma_{s}(\Gamma) \gamma_{s}(\bar{\Gamma})=n^{2}-2 n$.
Lemma 2.2. [8] A graph Γ has $\gamma_{s}(\Gamma)=n$ if and only if every $v \in \Gamma$ is either isolated, an endvertex or adjacent to an endvertex.

On the domination and signed domination numbers of zero-divisor graph $\mid \quad$ E. Vatandoost et al.

3. Signed domination number on zero-divisor graph

Throughout this paper, R is a commutative ring such that $\left|Z^{*}(R)\right|=n$ and for every non-zero element $x, x^{2} \neq 0$. Also $\overline{\Gamma(R)}$ denotes the complement graph of the zero-divisor graph on R.

Lemma 3.1. The cycle C_{n} is a zero-divisor graph of a ring if and only if $n=4$.
Proof. Let $\Gamma(R)$ be the zero-divisor graph of a commutative ring R. Since $\operatorname{girth}(\Gamma(R)) \leq 7$, then $n \leq 7$. On the contrary, let $\Gamma(R) \simeq C_{n}$ and $n \geq 5$ or $n=3$. If $n \geq 5$, then $a_{1}-a_{2}-\ldots-a_{n}-a_{1}$. So $a_{1}+a_{3} \in \operatorname{ann}\left(a_{2}\right)=\left\{0, a_{1}, a_{3}\right\}$ and so $a_{1}+a_{3}=0$. Thus $a_{4} a_{1}=0$. This is impossible. Let $\Gamma(R)$ be K_{3}. Then $Z(R)=\{0, a, b, c\}$. So $\operatorname{ann}(a)=\{0, b, c\}$ and $a n n(b)=\{0, a, c\}$. Thus $b=-c=a$. This is a contradiction. Conversely, the zero divisor graph of ring $Z_{3} \times Z_{3}$ is a cycle C_{4}.

Proof of Theorem 1.1. Let $\gamma_{s}(\Gamma(R))=n$. Since $\Gamma(R)$ is a connected graph, by Lemma 2.2, every vertex is an endvertex or adjacent to an end-vertex. If $x \in Z^{*}(R)$ and $\operatorname{deg}(x)=1$, then $\operatorname{ann}(x)=\{0, y\}$ where $x y=0$. So $O(y)=2$ in group $(R,+)$. Hence $|R|$ has even order. Let $A=\{a ; \operatorname{deg}(a)>1\}$. Since $\operatorname{diam}(\Gamma(R)) \leq 3$, the induced subgraph on A is a complete graph. Consider four cases:

Case 1. If $|A|=1$, then $\Gamma(R)$ is $K_{1, n-1}$.
Case 2. Let $A=\{a, b\}$. Then $\operatorname{ann}(a) \cap \operatorname{ann}(b)=\{0\}$. Suppose that $u \in \operatorname{ann}(a)$ and $v \in \operatorname{ann}(b)$. Since $\operatorname{deg}(a), \operatorname{deg}(b)>1$, then $\operatorname{deg}(u)=\operatorname{deg}(v)=1$ and also $u v a=u v b=0$. Hence, $u v \in \operatorname{ann}(a) \cap \operatorname{ann}(b)$ and so $u v=0$. This is a contradiction by $\operatorname{deg}(u)=\operatorname{deg}(v)=1$.

Case 3. Let $A=\{a, b, c\}$. Let $E(a)$ be the set of endvertex adjacent to a. Since $b, c \in a n n(a)$ and $O(a)=O(b)=2$, $\operatorname{ann}(a)$ is a subgroup of $(R,+)$ of even order. Hence $|E(a)|$ is odd. The same conclusion can be drawn for b, c. We claim that $|E(a)|=1$. On the contrary, suppose that $|E(a)| \geq 3$. There is no loos of generality in assuming $E(a)=\left\{x_{1}, x_{2}, x_{3}\right\}$. So $\operatorname{ann}(a)=\left\{0, b, c, x_{1}, x_{2}, x_{3}\right\}$. Hence $x_{1}=-x_{3}$ and $O\left(x_{2}\right)=2$ or $O\left(x_{i}\right)=2$ for $i \in\{1,2,3\}$. In the both cases, $x_{1}+x_{2}, x_{2}+x_{3} \neq 0$. Let $y \in E(b)$. Then $x_{1} y a=x_{1} y b=0$. So $x_{1} y \in \operatorname{ann}(a) \cap \operatorname{ann}(b)=\{0, c\}$. Since $\operatorname{deg}(y)=1, x_{1} y=c$. In the same manner we can see that $x_{2} y=x_{3} y=c$. Hence $y\left(x_{1}+x_{2}\right)=y\left(x_{2}+x_{3}\right)=2 c=0$. Thus $x_{1}+x_{2}, x_{2}+x_{3} \in \operatorname{ann}(y)=\{0, b\}$. So $x_{1}+x_{2}=x_{2}+x_{3}=b$ and so $x_{1}=x_{3}$. This is a contradiction. Therefore $|E(a)|=|E(b)|=|E(c)|=1$ and $\Gamma(R)$ is $K_{3} \circ K_{1}$.

Case 4. Let $A=\left\{a_{1}, \ldots, a_{t}\right\}$ and $t>3$. Then $\operatorname{ann}\left(a_{i}\right)=\left\{0, a_{1}, \ldots, \hat{a}_{i}, \ldots a_{t}\right\} \cup E\left(a_{i}\right)$ for $i \in$ $\{1, \ldots, t\}$. So $\bigcap_{i=1}^{t-2}$ ann $\left(a_{i}\right)=\left\{0, a_{t-1}, a_{t}\right\}$. Hence $a_{t-1}=-a_{t}$. Since $N\left(a_{t-1}\right) \neq N\left(a_{t}\right)$, this is impossible.

Corollary 3.1. If $\gamma_{s}(\Gamma(R))=n$, then $\gamma_{s}(\overline{\Gamma(R)}) \in\{0,3\}$.

Figure 2. $\overline{K_{3} \circ K_{1}}$.

Proof. By Theorem 1.1, $\Gamma(R) \simeq K_{1, n-1}$ or $K_{3} \circ K_{1}$. If $\Gamma(R) \simeq K_{1, n-1}$, then $\overline{\Gamma(R)}$ is $K_{1} \cup K_{n-1}$. Since $|Z(R)|$ is even, then n is odd and so $\gamma_{s}\left(K_{n-1}\right)=2$ and $\gamma_{s}(\overline{\Gamma(R)})=3$. If $\Gamma(R) \simeq K_{3} \circ K_{1}$, then $\overline{\Gamma(R)}$ is the graph in Figure 2. Let $V_{1}=\{x, y, z\}$ and $V_{2}=\{a, b, c\}$. Define $f: V(\overline{\Gamma(R)}) \longrightarrow$ $\{-1,+1\}$ such that

$$
f(u)= \begin{cases}-1 & u \in V_{1} \\ +1 & u \in V_{2}\end{cases}
$$

It is clear that f is a signed dominating function and $\omega(f)=0$. If g is a function such that $\omega(g)<0$, then g is not a signed dominating function. Therefore $\gamma_{s}(\overline{\Gamma(R)})=0$.

Corollary 3.2. If $\gamma_{s}(\Gamma(R))=n$, then $|R| \in\left\{2^{k}, 2 p^{k}\right\}$ where p is prime.
Proof. By Theorem 1.1, $\Gamma(R) \simeq K_{1, n-1}$ or $K_{3} \circ K_{1}$. If $\Gamma(R) \simeq K_{1, n-1}$, then by Theorem $2.2, R \simeq Z_{2} \times F$ where F is a finite field. So $|R|=2 p^{k}$. Let $\Gamma(R) \simeq K_{3} \circ K_{1}$. Let $V(\Gamma(R))=\left\{a_{i}, x_{i} ; \operatorname{deg}\left(x_{i}\right)=1, \operatorname{deg}\left(a_{i}\right)=3,1 \leq i \leq 3\right\}$. So $|R|$ is even. If $p||R|(p$ is odd prime number), then there is $0 \neq r \in R$ such that $O(r)=p$. Hence $p r=0$. Also $(p-1) a_{i}=0$. Thus $r a_{i}=r\left(p a_{i}\right)=0$. So $r \in \operatorname{ann}\left(a_{i}\right)$ for every $1 \leq i \leq 3$. Hence $r=0$. This is a contradiction. Therefore $|R|=2^{k}$.

The Proof of Theorem 1.2 Since $|R|$ is odd, $\delta \geq 2$. Let $x \in R$ and $\operatorname{deg}(x)=2 k+1$. Then $|\operatorname{ann}(x)|=2 k+2$. This is a contradiction by $|R|$ is odd. So all vertices have even degree. Since $\operatorname{diam}(\Gamma(R)) \leq 3$, there are three cases:

Case 1. If $\operatorname{diam}(\Gamma(R))=1$, then $\Gamma(R)$ is complete graph K_{n}. Since all vertices have even degree, n is odd and so $\gamma_{s}(\Gamma(R))=1$. Hence $n=3$ and $\Gamma(R)$ is K_{3}. This is impossible by Lemma 3.1.

Case 2. If $\operatorname{diam}(\gamma(R))=3$, then there are $a, b \in Z^{*}(R)$ such that $d(a, b)=3$. Define signed dominating function $f: V(\Gamma(R)) \longrightarrow\{-1,+1\}$ such that $f(a)=f(b)=-1$ and $f(x)=1$ for $x \in Z^{*}(R) \backslash\{a, b\}$. Thus $\gamma_{s}(\Gamma(R))<n-2$. This is impossible.

Case 3. Let $\operatorname{diam}(\Gamma(R))=2$. If $\Delta=2$, then $\Gamma(R)$ is a cycle. So $\Gamma(R) \simeq C_{4}$, by Theorem 3.1. Let $\operatorname{deg}(y)=\Delta \geq 4$. Let $\operatorname{ann}(y)=\left\{0, a_{1}, \ldots, a_{t}\right\}$ where t is even and $t \geq 4$. So $O\left(a_{i}\right) \neq 2$. Hence, $-a_{i} \in \operatorname{ann}(y)$. Thus $\operatorname{ann}(y)=\left\{0, a_{1},-a_{1}, \ldots, a_{\frac{t}{2}},-a_{\frac{t}{2}}\right\}$. Let $x \in N\left(a_{1}\right)$. If there is $2 \leq j \leq \frac{t}{2}$ such that $\left\{a_{1}, a_{j}\right\} \notin E(\Gamma(R))$, then $d\left(x, a_{j}\right)>2$. Otherwise, there is $z \in N\left(a_{j}\right) \backslash \operatorname{ann}(y)$ and so $d(x, z)=3$. This is not true. So for every $x \in N\left(a_{1}\right)$, $\operatorname{deg}(x) \geq 4$. Define $f: V(\Gamma(R)) \longrightarrow\{-1,+1\}$ such that $f\left(a_{1}\right)=f\left(-a_{1}\right)=-1$ and $f(v)=1$ for every $v \in V(\Gamma(R)) \backslash\left\{a_{1},-a_{1}\right\}$. So f is a signed dominating function and so $\gamma(\Gamma(R))<n-2$. This is a contradiction.

Theorem 3.1. If $\gamma_{s}(\Gamma(R))+\gamma_{s}(\overline{\Gamma(R)})=2 n$, then $|R| \in\left\{2^{k}, 2 \times 3^{k}\right\}$.
Proof. Since $\Gamma(R)$ is a connected graph, by Theorem 2.6, $\Gamma(R)$ is one of the paths in $\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$. It is known P_{4} is not a zero-divisor graph.
If $\Gamma(R)$ is P_{1}, then $Z(R)=\{0, x\}$. So $x^{2}=0$. This is impossible.
Let $\Gamma(R)$ be P_{2}. Then $Z(R)=\{0, a, b\}$ and $O(a)=O(b)=2$. So $|R|$ is even. If $p||R|$ where p is an odd prime number, then there is $r \in R$ such that $O(r)=p$. Hence $(p-1) a=0$. Thus $r a=r(p a)=0$. So $r \in a n n(a)$ and so $r=b$. This is a contradiction. If $\Gamma(R)$ is $a-c-b$, then $\operatorname{ann}(c)=\{0, a, b\}$. So $b=-a$ and so $O(a)=3$. Also $O(c)=2$. Also by Theorem 2.2, $R \simeq Z_{2} \times F$. So $|R|=2 \times 3^{k}$.

Theorem 3.2. If $\gamma_{s}(\Gamma(R))+\gamma_{s}(\overline{\Gamma(R)})=2 n-2$, then $|R|=2 p^{k}$ where p is an odd prime.
Proof. By Theorem 2.6 and Lemma 3.1 and since $\Gamma(R)$ is a connected graph, $\Gamma(R) \in\left\{K_{1,3}, K_{1,4}, G_{1}, G_{2}\right\}$ where G_{1}, G_{2} are two graphs in Figure 3. We show that G_{1} and G_{2} are not a zero-divisor graph. If G_{1} is a zero-divisor graph, then $b(a+e)=0$. So $a+e \in \operatorname{ann}(b)=\{0, a, e\}$. Hence $e=-a$. This is contradiction by $c, d \notin \operatorname{ann}(a)$. Similar argument applies for G_{2}.
If $\Gamma(R)$ is $K_{1,3}$ or $K_{1,4}$, then likewise Corollary $3.2,|R|=2 p^{k}$.

Figure 3. G_{1} and G_{2} in Theorem 3.2.

4. Domination number on zero-divisor graph

Theorem 4.1. $\gamma(\Gamma(R))=\frac{n}{2}$ if and only if $\Gamma(R)$ is a cycle C_{4} or a $K_{3} \circ K_{1}$.

Proof. Let $\gamma(\Gamma(R))=\frac{n}{2}$. By Theorem 2.5, $\Gamma(R)$ is the a cycle C_{4} or the corona $H \circ K_{1}$ where H is a connected graph. If $\Gamma(R)$ is not C_{4}, then $\Gamma(R) \simeq H \circ K_{1}$. Let $A=\left\{a_{i} ; \operatorname{deg}\left(a_{i}\right)>1\right\}$. Since $\operatorname{diam}(\Gamma(R)) \leq 3$, the induced subgraph on A is complete. If $|A|=2$, then $\Gamma(R)$ is a path P_{4}. This is impossible. If $|A|>3$, then $\bigcap_{i=1}^{t-2} \operatorname{ann}\left(a_{i}\right)=\left\{0, a_{t-1}, a_{t}\right\}$. Hence $a_{t}=-a_{t-1}$. This is a contradiction. So $|A|=3$ and so $\Gamma(R) \simeq K_{3} \circ K_{1}$. The converse is clear.

Theorem 4.2. $\gamma(\Gamma(R))+\gamma(\overline{\Gamma(R)})=n+1$ if and only if $\Gamma(R)$ is complete graph K_{n}.
Proof. Let $\gamma(\Gamma(R))+\gamma(\overline{\Gamma(R)})=n+1$. By Theorem 2.3, $\gamma(\Gamma(R)) \leq \frac{n}{2}$. So $\gamma(\overline{\Gamma(R)})>\frac{n}{2}$ and so $\overline{\Gamma(R)}$ has isolated vertex. Hence $\gamma(\Gamma(R))=1$ and $\gamma(\overline{\Gamma(R)})=n$. Thus all vertices of $\overline{\Gamma(R)}$ are isolated. Therefore $\Gamma(R) \simeq K_{n}$.

Proof of Theorem 1.3. Let $\gamma(\Gamma(R))+\gamma(\overline{\Gamma(R)})=n$. Since $\Gamma(R)$ is a connected graph, $\gamma(\Gamma(R)) \leq$ $\frac{n}{2}$. We consider following cases:

Case 1. Let $\gamma(\Gamma(R))=\frac{n}{2}$. By Theorem 4.1 and above equality, $\Gamma(R)$ is a C_{4}.
Case 2. If $\gamma(\Gamma(R))<\frac{n}{2}$, then $\gamma(\overline{\Gamma(R)})>\frac{n}{2}$. So $\overline{\Gamma(R)}$ has an isolated vertex and so $\gamma(\Gamma(R))=1$. Also $\gamma(\overline{\Gamma(R)})=n-1$. Thus $\overline{\Gamma(R)}$ is $P_{2} \cup(n-2) K_{1}$. It is clear that $n \geq 3$.

Sub case I. If $n>3$, then likewise the proof of Theorem 4.1, the contradiction reaches.

Sub case II. If $n=3$, then $\overline{\Gamma(R)} \simeq P_{2} \cup K_{1}$. So $\Gamma(R)$ is the path P_{3}.
The converse is easy.
Proof of Theorem 1.4. Let $\gamma(\Gamma(R))+\gamma(\overline{\Gamma(R)})=n-1$. Since $\Gamma(R)$ has no isolated vertices, $\gamma(\Gamma(R)) \leq \frac{n}{2}$. There are three cases:

Case 1. If $\gamma(\Gamma(R))=\frac{n}{2}$, then $\Gamma(R)$ is $K_{3} \circ K_{1}$ or C_{4} by Theorem 4.1. But $K_{3} \circ K_{1}$ is not satisfied in $\gamma(\Gamma(R))+\gamma(\overline{\Gamma(R)})=n-1$.
Case 2. Let $\gamma(\Gamma(R))=\frac{n}{2}-1$. Then $\gamma(\overline{\Gamma(R)})=\frac{n}{2}$. By Theorem 2.4, $0 \leq n \leq 6$. So $n \in\{4,6\}$.
Sub case I. Let $n=4$. Then $\gamma(\Gamma(R))=1$ and $\gamma(\overline{\Gamma(R)})=2$. So $\Gamma(R)$ is $K_{1,3}$ or G in Figure 4. Let G be a zero-divisor graph. Since $\operatorname{deg}(a)=1, O(b)=2$. On the other hand, $\operatorname{ann}(c)=\{0, b, d\}$. So $d=-b$. This is not true.
Sub case II. If $n=6$, then $\gamma(\Gamma(R))=2$ and $\gamma(\overline{\Gamma(R)})=3$. So $\overline{\Gamma(R)}$ is a graph without isolated vertex. Hence by Theorem 2.5, $\overline{\Gamma(R)}$ is $C_{4} \cup P_{2}, 3 P_{2}$ or $K_{3} \circ K_{1}$. So $\Gamma(R)$ is G_{1}, G_{2} and G_{3} in Figure 4, respectively. In graph $G_{1}, c(d+e)=0$ and so $d+e \in \operatorname{ann}(c)$. Hence $d+e=0$ or f. Thus $a d=0$ or $b d=0$. This is a contradiction. In graph $G_{2}, d+f \in \operatorname{ann}(a)$. But all cases are impossible. In graph G_{3}, Since $b(d+f)=0$, $d=-f$. So $c f=0$. This is not true.

Case 3. If $\gamma(\Gamma(R))<\frac{n}{2}-1$, then $\overline{\Gamma(R)}$ has an isolated vertex. So $\gamma(\Gamma(R))=1$ and so $\gamma(\overline{\Gamma(R)})=$ $n-2$. Hence $\overline{\Gamma(R)}$ is $P_{3} \cup(n-3) K_{1}$ or $K_{3} \cup(n-3) K_{1}$. If $n=4$, then $\Gamma(R)$ is G in Figure 4 or $K_{1,3}$ respectively. But G is not a zero-divisor graph of a ring. For $n>4$, the contradiction reached by the same method in Theorem 4.1.

Figure 4. $\Gamma(R)$ in the proof of Theorem 1.4, Cases 2 and 3.

References

[1] D. F. Anderson and P. S. Livingston, The zero divisor graph of a commutative ring, Journal of Algebra 217 (1999), 434-447.
[2] N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1993.
[3] J. E. Dunbar, S. T. Hedetniemi, M .A. Henning, and P. J. Slater, Signed domination in graphs, in: Graph Theory, Combinatorics, and Applications, (John Wiley and Sons, 1995), 311-322.
[4] O. Favaron, Signed domination in regular graphs, Discrete Mathematics 158 (1996), 287293.
[5] J. F. Fink, M. S. Jacobson, L. F. Kinch, and J. Roberts, On geraphs having domination number half their order, Periodica Mathematica Hungarica 16 (1985), 287-293.

On the domination and signed domination numbers of zero-divisor graph | E. Vatandoost et al.
[6] P. Flach and L. Volkmann, Estimations for the domination number of a graph, Discrete Mathematics 80 (1990), 145-151.
[7] Z. Füredi and D. Mubayi, Signed domination in regular graphs and set-systems, Journal of Combinatorial Theory, Series B 76 (1999), 223-239.
[8] R. Haas and T. B. Wexler, Signed domination numbers of a graph and its complement, Discrete Mathematics 283 (2004), 87-92.
[9] F. Jaeger and C. Payan, Relations du type Nordhaus-Gaddum pour le nombre d'absorption d'un graphe simple, CR Acad. Sci. Ser. A 274 (1972), 728-730.
[10] O. Ore, Theory of Graphs, Providence: American Mathematical Society, 1962.
[11] C. Payan and N. H. Xuong, Domination-balanced graphs, Journal of Graph Theory 6 (1982), 23-32.
[12] E. Vatandoost and Y. Golkhandy Pour, Domination in commuting graph and its complement, Iranian Journal of Science and Technology, Transactions A: Science, DOI: 10.1007/s40995-016-0028-5, 1-9, 2016.
[13] L. Volkman and B. Zelinka, Signed domatic number of a graph, Discrete Applied Mathematics 150 (2005), 261-267.
[14] B. Zelinka, Signed and minus domination in bipartite graphs, Czechoslovak Mathematical Journal 56 (2006), 587-590.

