Electronic Journal of
 Graph Theory and Applications

Fibonacci number of the tadpole graph

Joe DeMaio ${ }^{\text {a }}$, John Jacobson ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics,
Kennesaw State University, USA
${ }^{b}$ Moxie, Atlanta, Georgia, USA
jdemaio@kennesaw.edu, johnjacobson8128@gmail.com

Abstract

In 1982, Prodinger and Tichy defined the Fibonacci number of a graph G to be the number of independent sets of the graph G. They did so since the Fibonacci number of the path graph P_{n} is the Fibonacci number F_{n+2} and the Fibonacci number of the cycle graph C_{n} is the Lucas number L_{n}. The tadpole graph $T_{n, k}$ is the graph created by concatenating C_{n} and P_{k} with an edge from any vertex of C_{n} to a pendant of P_{k} for integers $n=3$ and $k=0$. This paper establishes formulae and identities for the Fibonacci number of the tadpole graph via algebraic and combinatorial methods.

Keywords: independent sets; Fibonacci sequence; cycles; paths Mathematics Subject Classification : 05C69

1. Introduction

Given a graph $G=(V, E)$, a set $S \subseteq V$ is an independent set of vertices if no two vertices in S are adjacent. In our illustrations, we indicate membership in an independent set S by shading the vertices in S. Let the set of all independent sets of a graph G be denoted by $I(G)$ and let $i(G)=$ $|I(G)|$. Note that $\emptyset \in I(G)$. The path graph, P_{n}, consists of the vertex set $V=\{1,2, \ldots, n\}$ and the edge set $E=\{\{1,2\},\{2,3\}, \ldots,\{n-1, n\}\}$. The cycle graph, C_{n}, is the path graph, P_{n}, with the additional edge $\{1, n\}$.

Table 1 shows initial Fibonacci and Lucas numbers. In 1982, Prodinger and Tichy defined the Fibonacci number of a graph $G, i(G)$, to be the number of independent sets (including the empty

Received: 20 June 2014, Revised: 05 August 2014, Accepted: 15 September 2014.

Figure 1. Independent sets of $P_{1} ; P_{2} ; P_{3}$; and P_{4}.

Figure 2. Independent sets of C_{3} and C_{4}.
set) of the graph G [5]. They did so because the Fibonacci number of the path graph P_{n} is the Fibonacci number F_{n+2}, and the Fibonacci number of the cycle graph C_{n} is the Lucas number L_{n}.

n	0	1	2	3	4	5	6	7	8	9
F_{n}	0	1	1	2	3	5	8	13	21	34
L_{n}	2	1	3	4	7	11	18	29	47	76

Table 1: Initial values of the Fibonacci and Lucas sequences
In [1], the authors of this paper use these graphs to combinatorially derive identities relating Fibonacci and Lucas numbers.

Example 1. $L_{n}=F_{n-1}+F_{n+1}$ for positive integers $n \geq 3$.
Proof. On the one hand we know that $i\left(C_{n}\right)=L_{n}$. On the other hand, vertex 1 is either a member of the independent set or it is not. If not, then any independent set from P_{n-1}, formed by vertices 2 through n, can be selected in $i\left(P_{n-1}\right)$ ways. If in the set, then the remaining members can be selected in $i\left(P_{n-3}\right)$ ways from the path formed by vertices 3 through $n-1$, since vertices 2 and n can not be selected. Hence, $L_{n}=i\left(C_{n}\right)=i\left(P_{n-3}\right)+i\left(P_{n-1}\right)=F_{n-1}+F_{n+1}$.

The Fibonacci sequence and the Lucas sequence are famous examples of the more general form called the Gibonacci sequence [3]. For integers $G_{0}=a$ and $G_{1}=b$, the Gibonacci sequence is defined recursively as $G_{n}=G_{n-1}+G_{n-2}$ for positive integers $n \geq 2$. Do other graphs exist whose Fibonacci numbers form a Gibonacci sequence?

The tadpole graph, $T_{n, k}$, is the graph created by concatenating C_{n} and P_{k} with an edge from any vertex of C_{n} to a pendent of P_{k} for integers $n \geq 3$ and $k \geq 0$. For ease of reference we label the vertices of the cycle c_{1}, \ldots, c_{n}, the vertices of the path p_{1}, \ldots, p_{k} where c_{1} is adjacent to p_{1}.

Figure 3. The Tadpole Graph $T_{n, k}$.

Example 2. Independent sets on $T_{3,2}$

Figure 4. $T_{3,2}$.

$$
I\left(T_{3,2}\right)=\left\{\emptyset,\left\{c_{1}\right\},\left\{c_{2}\right\},\left\{c_{3}\right\},\left\{p_{1}\right\},\left\{p_{2}\right\},\left\{c_{1}, p_{2}\right\},\left\{c_{2}, p_{1}\right\},\left\{c_{2}, p_{2}\right\},\left\{c_{3}, p_{1}\right\},\left\{c_{3}, p_{2}\right\}\right\}
$$

Theorem 1.1. $i\left(T_{n, k}\right)=i\left(T_{n, k-1}\right)+i\left(T_{n, k-2}\right)$.
Proof. We show that $I\left(T_{n, k}\right)=I\left(T_{n, k-1}\right) \cup I\left(T_{n, k-2}\right)$ where $I\left(T_{n, k-1}\right) \cap I\left(T_{n, k-2}\right)=\emptyset$. Partition $I\left(T_{n, k}\right)$ into two disjoint subsets: sets where p_{k} is shaded and sets where p_{k} is not shaded. For every independent set in $I\left(T_{n, k-2}\right)$, add an unshaded vertex p_{k-1} followed by a shaded vertex p_{k} to the end of the path graph. For every independent set in $I\left(T_{n, k-1}\right)$, add an unshaded vertex p_{k} to the end of the path graph. Therefore, $i\left(T_{n, k}\right)=i\left(T_{n, k-1}\right)+i\left(T_{n, k-2}\right)$.
Theorem 1.2. $i\left(T_{n, k}\right)=i\left(T_{n-1, k}\right)+i\left(T_{n-2, k}\right)$.
Proof. Again, we show that $I\left(T_{n, k}\right)=I\left(T_{n-1, k}\right) \cup I\left(T_{n-2, k}\right)$ where $I\left(T_{n-1, k}\right) \cap I\left(T_{n-2, k}\right)=\emptyset$. Label any three consecutive vertices of $T_{n, k}$ of degree two from the cycle as $n-1, n$ and 1 . For every independent set in $I\left(T_{n-2, k}\right)$, if vertex 1 is shaded (then vertex $n-2$ is not shaded), insert a shaded vertex $n-1$ and an unshaded vertex n, thus creating all independent sets of $T_{n, k}$ that include both 1 and $n-1$. If vertex 1 is not shaded, then insert a shaded vertex n and unshaded vertex $n-1$ creating all independent sets where vertex n is shaded. For every independent set in $I\left(T_{n-1, k}\right)$, insert an unshaded vertex n which finally creates all independent sets where either 1 or $n-1$ is shaded or none of $n-1, n$ and 1 are shaded. Therefore, $i\left(T_{n, k}\right)=i\left(T_{n-1, k}\right)+i\left(T_{n-2, k}\right)$.

It is immediate that $i\left(T_{n, 0}\right)=L_{n}$ since $T_{n, 0} \cong C_{n}$. Computing $i\left(T_{3,2}\right)=11$ and $i\left(T_{4,1}\right)=12$ allows us to effortlessly fill in the following table since by Theorems 1.1 and 1.2, every row and column forms a Gibonacci sequence.

	k	0	1	2	3	4	5	6	7	8	9	10
n												
3		4	7	11	18	29	47	76	123	199	322	521
4		7	12	19	31	50	81	131	212	343	555	898
5		11	19	30	49	79	128	207	335	542	877	1419
6		18	31	49	80	129	209	338	547	885	1432	2317
7		29	50	79	129	208	337	545	882	1427	2309	3736
8		47	81	128	209	337	546	883	1429	2312	3741	6053
9		76	131	207	338	545	883	1428	2311	3739	6050	9789
10	123	212	335	547	882	1429	2311	3740	6051	9791	15842	

Table 2: Fibonacci Numbers for the Tadpole Graph, $T_{n, k}$
It is easy to directly compute the Fibonacci number of any Tadpole graph.
Theorem 1.3. $i\left(T_{n, k}\right)=L_{n+k}+F_{n-3} F_{k}$.
Proof. We proceed with two base cases and strong induction on k. Suppose $k=0$. Then $i\left(T_{n, 0}\right)=$ $i\left(C_{n}\right)=L_{n}+F_{n-3} F_{0}=L_{n}$. For $k=1$, combinatorially, $i\left(T_{n, 1}\right)=i\left(C_{n}\right)+i\left(P_{n-1}\right)=L_{n}+F_{n+1}$. Now algebraically,

$$
\begin{aligned}
L_{n}+F_{n+1} & =L_{n+1}-L_{n-1}+F_{n}+F_{n-1} \\
& =L_{n+1}-F_{n-2}+F_{n-1} \\
& =L_{n+1}+F_{n-3} F_{1} .
\end{aligned}
$$

Finally, for general $k \geq 2$,

$$
\begin{aligned}
i\left(T_{n, k+1}\right) & =i\left(T_{n, k}\right)+i\left(T_{n, k-1}\right) \\
& =L_{n+k}+F_{n-3} F_{k}+L_{n+k-1}+F_{n-3} F_{k-1} \\
& =L_{n+k+1}+F_{n-3} F_{k+1} .
\end{aligned}
$$

Theorem 1.4. For $n \geq 3$ and $k \geq 0$,

1. $L_{n+k}=F_{n-1} F_{k+1}+F_{n+1} F_{k+2}-F_{n-3} F_{k}$;
2. $L_{n+k}=F_{n+1} F_{k}+L_{n} F_{k+1}-F_{n-3} F_{k}$;
3. $L_{n+k}=F_{n-1} F_{k+2}+F_{n+k+1}-F_{n-3} F_{k}$.

Proof. For 1, we know that there are $L_{n+k}+F_{n-3} F_{k}$ independent sets on the tadpole graph $T_{n, k}$. Now we partition $I\left(T_{n, k}\right)$ into two disjoint sets: sets that contain c_{1} and sets that do not. If c_{1} is included in the independent set then c_{2}, c_{n} and p_{1} are not. Hence, there are $i\left(P_{n-3}\right) i\left(P_{k-1}\right)=$ $F_{n-1} F_{k+1}$ such sets. If c_{1} is not included in the independent set then there are $i\left(P_{n-1}\right) i\left(P_{k}\right)=$ $F_{n+1} F_{k+2}$ such sets. So, $L_{n+k}+F_{n-3} F_{k}=F_{n-1} F_{k+1}+F_{n+1} F_{k+2}$ and the result follows.

For 2, we partition $I\left(T_{n, k}\right)$ into two disjoint sets: sets that contain p_{1} and sets that do not. If p_{1} is included in the independent set then c_{1}, and p_{2} are not. Hence, there are $i\left(P_{n-1}\right) i\left(P_{k-2}\right)=F_{n+1} F_{k}$ such sets. If p_{1} is not included in the independent set then there are $i\left(C_{n}\right) i\left(P_{k-1}\right)=L_{n} F_{k+1}$ such sets. So $L_{n+k}+F_{n-3} F_{k}=F_{n+1} F_{k}+L_{n} F_{k+1}$ and the result follows.

For 3, we partition $I\left(T_{n, k}\right)$ into two disjoint sets: sets that contain c_{n} and sets that do not. If c_{n} is included in the independent set then c_{1} and c_{n-1} are not. Hence, there are $i\left(P_{n-3}\right) i\left(P_{k}\right)=$ $F_{n-1} F_{k+2}$ such sets. If c_{n} is not included in the independent set then there are $i\left(P_{n-1+k}\right)=F_{n+k+1}$ such sets. So, $L_{n+k}+F_{n-3} F_{k}=F_{n-1} F_{k+2}+F_{n+k+1}$ and the result follows.

2. Tadpole Triangle

We turn Table 2 into a triangular array where the (n, k) entry for $n \geq 3$ and $k \geq 0$ will be denoted $t_{n, k}$. Row n will represent the class of tadpole graphs with a total of n vertices. As the value of k increases by 1 through each row of the triangle, the cycle subgraph shrinks by one vertex and the length of the path subgraph increases by one. Thus, $t_{n, k}$ represents the number of independent sets on the Tadpole graph with n vertices with a path of length k (and thus, a cycle of length $n-k)$. Hence, $t_{n, k}=i\left(T_{n-k, k}\right)$. By Theorem 1.3, $t_{n, k}=L_{n}+F_{n-k-3} F_{k}$.

Table 3: The Triangular Array of Fibonacci Numbers of the Tadpole Graph
As noted before, $t_{n, 0}=i\left(T_{n, 0}\right)=L_{n}$. Casual observation seems to indicate the rows the tadpole triangle are symmetric.

Theorem 2.1. $t_{n, k}=t_{n, n-k-3}$
Proof. Theorem 1.3 provides a quick, algebraic proof of the symmetry of rows since $t_{n, n-k-3}=$ $i\left(T_{k+3, n-k-3}\right)=L_{n}+F_{k} F_{n-k-3}=i\left(T_{n-k, k}\right)=t_{n, k}$.

Proof. For a combinatorial proof of the symmetry in rows, consider c_{2} in both $T_{k+3, n-k-3}$ and $T_{n-k, k}$. As before, we partition the tadpole graphs into two disjoint sets: those that contain c_{2} and those that do not. Both tadpole graphs contain n vertices. Thus, the number of independent sets that do not contain c_{2} in each tadpole graph is the number of independent sets on the path with
$n-1$ vertices. Independent sets that contain c_{2}, do not contain c_{1}. This decomposes the tadpole graph into two disjoint paths. For both tadpole graphs, disjoint paths of length k and $n-k-3$ are created. Both tadpole graphs lead to the same decomposition and $t_{n, k}=t_{n, n-k-3}$.
Theorem 2.2. $t_{n, k+1}-t_{n, k}=(-1)^{k} F_{n-2 k-4}$ for $0 \leq k \leq\left\lfloor\frac{n-3}{2}\right\rfloor$.
Proof. Algebraically,

$$
\begin{aligned}
t_{n, k+1}-t_{n, k} & =L_{n}+F_{n-k-4} F_{k+1}-\left(L_{n}+F_{n-k-3} F_{k}\right) \\
& =F_{n-k-4} F_{k+1}-F_{n-k-3} F_{k} \\
& =(-1)^{k} F_{n-2 k-4} \text { by d'Ocagne's Identity. }
\end{aligned}
$$

Proof. Combinatorially we proceed by initially considering the mapping

$$
\Psi(S)=\left\{\begin{array}{c}
S \text { for }\left\{c_{2}, c_{n-k}\right\} \nsubseteq S \\
\left(S \backslash\left\{c_{2}\right\}\right) \cup\left\{c_{1}\right\} \text { for }\left\{c_{2}, c_{n-k}\right\} \subseteq S
\end{array}\right.
$$

from $I\left(T_{n-k, k}\right)$ to $I\left(T_{n-k-1, k+1}\right)$ as illustrated in Figure 5. The identity mapping pairs together most independent sets but encounters obvious problems since independent sets in $I\left(T_{n-k, k}\right)$ that contain both c_{2} and c_{n-k} do not map to $I\left(T_{n-k-1, k+1}\right)$, and independent sets in $I\left(T_{n-k-1, k+1}\right)$ that contain both c_{1} and c_{n-k} have no pre-image in $I\left(T_{n-k, k}\right)$. If c_{2} and c_{n-k} are both in the independent set, then remove c_{2} from the independent set while including c_{1} to create an independent set in $I\left(T_{n-k-1, k+1}\right)$ to upgrade the identity mapping to $\Psi(S)$. We now have two subtle issues which provide the value of $t_{n, k+1}-t_{n, k}$. Independent sets in $I\left(T_{n-k, k}\right)$ that contain the subset $\left\{p_{1}, c_{2}, c_{n-k}\right\}$ have no image. There are $i\left(P_{n-k-5}\right) i\left(P_{k-2}\right)=F_{n-k-3} F_{k}$ such sets. Independent sets in $I\left(T_{n-k-1, k+1}\right)$ that contain the subset $\left\{c_{1}, c_{2}, c_{n-k}\right\}$ have no pre-image. There are $i\left(P_{n-k-6}\right) i\left(P_{k-1}\right)=F_{n-k-4} F_{k+1}$ such sets. Once again, $t_{n, k+1}-t_{n, k}=F_{n-k-4} F_{k+1}-F_{n-k-3} F_{k}=$ $(-1)^{k} F_{n-2 k-4}$.

Figure 5. Mapping $I\left(T_{n-k, k}\right)$ to $I\left(T_{n-k-1, k+1}\right)$.

Theorem 2.3. $\sum_{k=0}^{n-3}(-1)^{k} t_{n, k}=\left\{\begin{array}{c}0 \text { for even } n \\ 2 F_{n} \text { for odd } n .\end{array}\right.$
Proof. For even n the result is trivial due to the symmetry of row values. For odd n, we proceed by induction. Base cases abound from Table 3. Assume n is odd and $\sum_{k=0}^{n-3}(-1)^{k} t_{n, k}=2 F_{n}$. Moving on to the next odd value we consider

$$
\begin{aligned}
\sum_{k=0}^{n-1}(-1)^{k} t_{n+2, k} & =\left(\sum_{k=0}^{n-3}(-1)^{k} t_{n+2, k}\right)+(-1)^{n-2} t_{n+2, n-2}+(-1)^{n-1} t_{n+2, n-1} \\
& =\sum_{k=0}^{n-3}(-1)^{k} t_{n+2, k}-t_{n+2, n-2}+L_{n+2} \\
& =\left(\sum_{k=0}^{n-3}(-1)^{k}\left[t_{n, k}+t_{n+1, k}\right]\right)-L_{n+2}+F_{n+2-4}+L_{n+2} \\
& =\sum_{k=0}^{n-3}(-1)^{k} t_{n, k}+(-1)^{k} t_{n+1, k}-L_{n+2}-F_{n-2}+L_{n+2} \\
& =\left(\sum_{k=0}^{n-3}(-1)^{k} t_{n, k}\right)+\left(\sum_{k=0}^{n-2}(-1)^{k} t_{n+1, k}\right)+t_{n+1, n-2}-L_{n+2}-F_{n-2}+L_{n+2} \\
& =2 F_{n}+0+t_{n+1, n-2}-F_{n-2}=2 F_{n}+L_{n+1}-F_{n-2} \\
& =3 F_{n}+F_{n+2}-F_{n-2}=2 F_{n}+F_{n-1}+F_{n+2} \\
& =F_{n}+F_{n+1}+F_{n+2}=2 F_{n+2}
\end{aligned}
$$

Theorem 2.4. The ratio of consecutive row sums converges to the golden ratio ϕ.
Proof. The sum of row n can be written as

$$
\begin{aligned}
\sum_{k=0}^{n-3} t_{n, k} & =\sum_{k=0}^{n-3}\left(L_{n}+F_{n-k-3} F_{k}\right) \\
& =\sum_{k=0}^{n-3} L_{n}+\sum_{k=0}^{n-3} F_{n-k-3} F_{k} \\
& =(n-2) L_{n}+\frac{(n-3) L_{n-3}-F_{n-3}}{5}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{(n+1-2) L_{n+1}+\frac{(n+1-3) L_{n+1-3}-F_{n+1-3}}{5}}{(n-2) L_{n}+\frac{(n-3) L_{n-3}-F_{n-3}}{5}} \\
& =\lim _{n \rightarrow \infty} \frac{(n-1) L_{n+1}+\frac{(n-2) L_{n-2}-F_{n-2}}{5}}{(n-2) L_{n}+\frac{(n-3) L_{n-3}-F_{n-3}}{5}} \\
& =\lim _{n \rightarrow \infty} \frac{n L_{n+1}+n L_{n-2}-F_{n-2}}{n L_{n}+n L_{n-3}-F_{n-3}} \\
& =\lim _{n \rightarrow \infty} \frac{L_{n+1}+L_{n-2}}{L_{n}+L_{n-3}} \\
& =\lim _{n \rightarrow \infty} \frac{L_{n}}{L_{n-1}}=\phi .
\end{aligned}
$$

A perfect matching (or 1-factor) in a graph $G=(V, E)$ is a subset S of edges of E such that every vertex in V is incident to exactly one edge in S. In [2], Gutman and Cyvin define the L-shaped graph, $L_{p, q}$, to be the graph with $p+q+1$ copies of C_{4} as illustrated in Figure 6 by $L_{2,1}$.

Figure 6. $L_{2,1}$.

$$
\begin{aligned}
& \{\{1,2\},\{3,4\},\{5,6\},\{7,10\},\{8,9\}\} \\
& \{\{1,2\},\{3,4\},\{5,8\},\{6,9\},\{7,10\}\} \\
& \{\{1,2\},\{3,5\},\{4,6\},\{7,10\},\{8,9\}\} \\
& \{\{1,2\},\{3,4\},\{5,8\},\{6,7\},\{9,10\}\} \\
& \{\{1,3\},\{2,4\},\{5,6\},\{8,9\},\{7,10\}\} \\
& \{\{1,3\},\{2,4\},\{5,8\},\{6,7\},\{9,10\}\} \\
& \{\{1,3\},\{2,4\},\{5,8\},\{6,9\},\{7,10\}\}
\end{aligned}
$$

Table 4: The seven perfect matchings of $L_{2,1}$

They show that the number of perfect matchings in $L_{p, q}$ is $F_{p+q+2}+F_{p+1} F_{q+1}$. These values correspond to the columns of the tadpole triangle. This correspondence provides a quick proof of the symmetry of rows of the tadpole triangle since $L_{p, q} \approx L_{q, p}$. We number columns starting with the center at $i=0$.

Theorem 2.5. The number of perfect matchings in $L_{p, q}$ is given by $t_{p+q+1, q-1}$, the $p^{\text {th }}$ entry in columns $\pm(p-q)$.

Proof. Since the tadpole triangle is symmetric we can assume that $p \geq q$. By Theorem 1.3,

$$
\begin{aligned}
t_{p+q+1, q-1} & =L_{p+q+1}+F_{p-1} F_{q-1} \\
& =F_{p+q+2}+F_{p+q}+F_{p-1} F_{q-1} \\
& =F_{p+q+2}+\left(F_{p+1} F_{q+1}-F_{p-1} F_{q-1}\right)+F_{p-1} F_{q-1} \\
& =F_{p+q+2}+F_{p+1} F_{q+1} .
\end{aligned}
$$

3. Future Work

In [4], Pederson and Vestergaard show that for every unicyclic graph G of order $n, L_{n} \leq$ $i(G) \leq 3 \times 2^{n-3}+1$. Furthermore they show that the minimum bound is realized only for $T_{n, 0} \approx C_{n}$ and $T_{3, n-3}$. The maximum bound occurs only for C_{4} and the graph with $n-3$ pendants adjacent to the same vertex of C_{3}. The technique of this paper can be used to precisely determine the Fibonacci number of many classes of unicyclic graphs.

Acknowledgement

The authors thank programs at Kennesaw State University and Brigham Young University for travel support when presenting this work at the Joint Mathematics Meetings in 2014 and the FortyFifth Southeastern International Conference on Combinatorics, Graph Theory, and Computing. At KSU, The Center for Excellence in Teaching and Learning's URCA program and at BYU, The Center for Undergraduate Research in Mathematics both encourage the inclusion of undergraduate students in faculty research and dissemination of results at professional conferences.

References

[1] J. DeMaio and J. Jacobson, Fibonacci and Lucas identities via graphs, Springer Proceedings in Mathematics \& Statistics: Topics from the 8th Annual UNCG Regional Mathematics and Statistics Conference,(pp. 85-92). Springer New York.
[2] I. Gutman and S. Cyvin, A result on 1-factors related to Fibonacci numbers, Fibonacci Quarterly 28(1) (1990), 81-84.
[3] T. Koshy, Fibonacci and Lucas numbers with applications, Wiley-Interscience, New York, 2001.
[4] A.S. Pederson and P.D. Vestergaard, The number of independent sets in unicyclic graphs, Discrete Applied Mathematics 152 (2005), 246-256
[5] H. Prodinger and R. Tichy, Fibonacci numbers of graphs, Fibonacci Quarterly 20(1) (1982), 16-21.

