Electronic Journal of Graph Theory and Applications

On the non-commuting graph of dihedral group

Sanhan Muhammad Salih Khasraw*, Ivan Dler Ali, Rashad Rashid Haji
Department of Mathematics, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
sanhan.khasraw@su.edu.krd, evan.ali1@su.edu.krd, rashad.haji@su.edu.krd

Abstract

For a nonabelian group G, the non-commuting graph Γ_{G} of G is defined as the graph with vertexset $G-Z(G)$, where $Z(G)$ is the center of G, and two distinct vertices of Γ_{G} are adjacent if they do not commute in G. In this paper, we investigate the detour index, eccentric connectivity and total eccentricity polynomials of the non-commuting graph on $D_{2 n}$. We also find the mean distance of the non-commuting graph on $D_{2 n}$.

Keywords: dihedral group, non-commuting graph, detour distance, mean distance Mathematics Subject Classification : 05C12, 05C25, 05C31, 05C40
DOI: 10.5614/ejgta.2020.8.2.3

1. Introduction

The concept of non-commuting graph of a finite group has been introduced by Abdollahi et al in 2006 [1]. For a non-abelian group G, associate a graph Γ_{G} with it such that the vertex-set of Γ_{G} is $G-Z(G)$, where $Z(G)$ is the center of G, and two distinct vertices x and y are adjacent if they don't commute in G, that is, $x y \neq y x$. Several works on assigning a graph to a group and investigation of algebraic properties of group using the associated graph have been done, for example, see $[3,7,8,12,6,2]$.
All graphs are considered to be simple, which are undirected with no loops or multiple edges. Let Γ be any graph, the sets of vertices and edges of Γ are denoted by $V(\Gamma)$ and $E(\Gamma)$, respectively. The cardinality of the vertex-set $V(\Gamma)$ is called the order of the graph Γ and is denoted by $|V(\Gamma)|$ and the number of edges of the graph Γ is called the size of Γ, and denoted by $|E(\Gamma)|$. The graph Γ is called split if $V(\Gamma)=S \cup K$, where S is an independent set and the subgraph induced

[^0]by K is a complete graph. For a vertex v in Γ, the number of edges incident to v is called the degree of v and is denoted by $\operatorname{deg}_{\Gamma}(v)$. The eccentricity of a vertex v in Γ, denoted by ecc (v), is the largest distance between v and any other vertex u in Γ. For vertices u and v in a graph Γ, a $u-v$ path in Γ is $u-v$ walk with no vertices repeated. The shortest (longest) $u-v$ path in a graph Γ, denoted by $d(u, v)(D(u, v))$, is called the distance (detour distance) between vertices u and v in Γ. The detour index, eccentric connectivity and total eccentricity polynomials are defined as $D\left(\Gamma_{\Omega}, x\right)=\sum_{u, v \in V(\Gamma)} x^{D(u, v)}[11], \Xi(\Gamma, x)=\sum_{u \in V(\Gamma)} d e g_{\Gamma}(u) x^{e c c(u)}$ and $\Theta(\Gamma, x)=$ $\sum_{u \in V(\Gamma)} x^{e c c(u)}$ [10], respectively. The detour index $d d(\Gamma)$, the eccentric connectivity index and the total eccentricity $\xi^{c}(\Gamma)$ of a graph Γ are the first derivatives of their corresponding polynomials at $x=1$, respectively. A transmission of a vertex v in Γ is $\sigma(v, \Gamma)=\Sigma_{u \in V(\Gamma)} d(u, v)$. The transmission of a graph Γ is $\sigma(\Gamma)=\Sigma_{u \in V(\Gamma)} \sigma(u, \Gamma)$. The mean (average) distance of a graph Γ is $\mu(\Gamma)=\frac{\sigma(\Gamma)}{p(p-1)}$, where p is the order of Γ, see $[4,5,9]$. In this paper, we study some properties of non-commuting graph of dihedral groups. The dihedral group $D_{2 n}$ of order $2 n$ is defined by
$$
D_{2 n}=\left\langle r, s: r^{n}=s^{2}=1, s r s=r^{-1}\right\rangle
$$

for any $n \geq 3$, and the center of $D_{2 n}$ is $Z\left(D_{2 n}\right)=\left\{\begin{array}{ll}\{e\}, & \text { if } n \text { is odd; } \\ \left\{e, r^{\frac{n}{2}}\right\}, & \text { if } n \text { is even. }\end{array}\right.$ Throughout this article, we assume that $\Omega_{1}=\left\{r^{i}: 1 \leq i \leq n\right\}-Z\left(D_{2 n}\right)$, and $\Omega_{2}=\left\{s r^{i}: 1 \leq i \leq n\right\}$. This article is organized as follows: In the present section, we give some important definitions and notations. In Section 2, we study some basic properties of the non-commuting graph Γ_{Ω} of $D_{2 n}$. We see that Γ_{Ω} is a split graph if n is an odd integer.
In Section 3, we find the detour index, eccentric connectivity and total eccentricity polynomials of the non-commuting graph Γ_{Ω}. In Section 4, we find the mean distance of the graph Γ_{Ω}.

2. Some properties of the non-commuting graph of $D_{2 n}$

Recall that, for any $n \geq 3, D_{2 n}=\left\langle r, s: r^{n}=s^{2}=1, s r s=r^{-1}\right\rangle, \Omega_{1}=\left\{r^{i}: 1 \leq i \leq\right.$ $n\}-Z\left(D_{2 n}\right)$, and $\Omega_{2}=\left\{s r^{i}: 1 \leq i \leq n\right\}$.

We start with the following lemma, which has been proved in [1].
Lemma 2.1. Let G be any non-abelian finite group and a be any vertex of Γ_{G}. Then deg ${\Gamma_{G}}(a)=$ $|G|-\left|C_{G}(a)\right|$, where $C_{G}(a)$ is the centralizer of the element a in the group G.

According to the above lemma, we can state the following.
Theorem 2.1. In the graph Γ_{Ω}, where $\Omega=\Omega_{1} \cup \Omega_{2}$, we have

1. $\operatorname{deg}_{\Gamma_{\Omega}}\left(r^{i}\right)=n$ for any n,
2. $d e g_{\Gamma_{\Omega}}\left(s r^{i}\right)= \begin{cases}2 n-2, & \text { if } n \text { is odd } ; \\ 2 n-4, & \text { if } n \text { is even } .\end{cases}$

Proof. 1. Since $C_{D_{2 n}}\left(r^{i}\right)=\left\{r^{i}: 1 \leq i \leq n\right\}$, then, from Lemma 2.1, $d e g_{\Gamma_{\Omega}}\left(r^{i}\right)=\left|D_{2 n}\right|-$ $\left|C_{D_{2 n}}\left(r^{i}\right)\right|=2 n-n=n$.
2. If n is odd, then $C_{D_{2 n}}\left(s r^{i}\right)=\left\{e, s r^{i}\right\}$ for all $i, 1 \leq i \leq n$. This follows that $d e g_{\Gamma_{\Omega}}\left(s r^{i}\right)=2 n-2$ for all $1 \leq i \leq n$. If n is even, then $C_{D_{2 n}}\left(s r^{i}\right)=\left\{e, r^{\frac{n}{2}}, s r^{i}, s r^{\frac{n}{2}+i}\right\}$ for all $1 \leq i \leq n$. Thus, $d e g_{\Gamma_{\Omega}}\left(s r^{i}\right)=2 n-4$ for all $1 \leq i \leq n$.

Theorem 2.2. Let Γ_{Ω} be a non-commuting graph on $D_{2 n}$.

1. If $\Omega=\Omega_{1}$, then $\Gamma_{\Omega}=\bar{K}_{l}$, where $l=\left|\Omega_{1}\right|$.
2. If $\Omega=\Omega_{2}$, then
$\Gamma_{\Omega}= \begin{cases}K_{n}, & \text { if } n \text { is odd } ; \\ K_{n}-\frac{n}{2} K_{2}, & \text { if } n \text { is even } .\end{cases}$
where $\frac{n}{2} K_{2}$ denotes $\frac{n}{2}$ copies of K_{2}.
Proof. 1. The centralizer of $r^{i}, 1 \leq i \leq n$, is $C_{D_{2 n}}\left(r^{i}\right)=\left\{r^{i}: 1 \leq i \leq n\right\}$ of size n, then there is no edge between any pair of vertices in $\Gamma_{\Omega_{1}}$. Thus, $\Gamma_{\Omega_{1}}=\bar{K}_{l}$, where $l=\left|\Omega_{1}\right|$.
3. When n is odd. Since the element $s r^{i}$, where $i=1,2, \ldots, n$, has centralizer $C_{D_{2 n}}\left(s r^{i}\right)=$ $\left\{e, s r^{i}\right\}$ of size 2 , so let $\Omega=\Omega_{2}=\left\{s r, s r^{2}, \ldots, s r^{n}\right\}$. Then the subgraph $\Gamma_{\Omega}=K_{n}$ is complete.
When n is even. Since $C_{D_{2 n}}\left(s r^{i}\right)=\left\{e, r^{\frac{n}{2}}, s r^{i}, s r^{\frac{n}{2}+i}\right\}$ for all $1 \leq i \leq n$. Then there is no edge between the vertices $s r^{i}$ and $s r^{\frac{n}{2}+i}$ in Γ_{Ω} for all $1 \leq i \leq n$. Therefore, $\Gamma_{\Omega}=K_{n}-\frac{n}{2} K_{2}$

Theorem 2.3. Let $n \geq 3$ be an odd integer and H be a subset of $D_{2 n}-Z\left(D_{2 n}\right)$. Then $\Gamma_{H}=K_{1, n-1}$ if and only if $H=\left\{s r^{i}, r, r^{2}, \cdots, r^{n-1}\right\}$ for some i.

Proof. Suppose that $\Gamma_{H}=K_{1, n}$. By Theorem 2.1, $H=\left\{s r^{i}, r, r^{2}, \cdots, r^{n-1}\right\}$ for some i. Conversely, suppose $H=\left\{s r^{i}, r, r^{2}, \cdots, r^{n-1}\right\}$. Then $C_{H}\left(s r^{i}\right)=\left\{s r^{i}\right\}$ and $C_{H}\left(r^{j}\right)=\left\{r, r^{2}, \cdots\right.$, $\left.r^{n-1}\right\}$ for $1 \leq j<n$. Thus, $\Gamma_{H}=K_{1, n-1}$.

Corollary 2.1. Let $n \geq 3$ be an odd integer and $\Omega=\Omega_{1} \cup \Omega_{2}$. Then Γ_{Ω} is a split graph.
Proof. The proof follows from Theorem 2.2 and Theorem 2.3.

Theorem 2.4. Let Γ_{Ω} be a non-commuting graph on $D_{2 n}$, where $\Omega=\Omega_{1} \cup \Omega_{2}$. We have

$$
\left|E\left(\Gamma_{\Omega}\right)\right|= \begin{cases}\frac{3 n(n-1)}{2}, & \text { if } n \text { is odd } \\ \frac{3 n(n-2)}{2}, & \text { if } n \text { is even } .\end{cases}
$$

Proof. It is clear that $\Omega_{1} \cap \Omega_{2}=\emptyset$ and $\Omega_{1} \cup \Omega_{2}=D_{2 n}-Z\left(D_{2 n}\right)=\Omega$. According to n, there are two cases to consider.
Case 1. If n is odd, then the subgraph induced by Ω_{1} has no edges and the subgraph induced by Ω_{2} is complete. Thus, the number of edges in Γ_{Ω} is sum of the number of edges in $\left\langle\Omega_{2}\right\rangle$ and the number of edges from set of vertices in Ω_{1} to set of vertices in Ω_{2}. Therefore, $\left|E\left(\Gamma_{\Omega}\right)\right|=$ $\frac{n(n-1)}{2}+n(n-1)=\frac{3 n(n-1)}{2}$.
Case 2. If n is even, then the subgraph induced by Ω_{1} has no edges and the subgraph induced by Ω_{2} has $\frac{n(n-1)}{2}-\frac{n}{2}=\frac{n(n-2)}{2}$ edges. Thus, the number of edges in Γ_{Ω} is sum of the number of edges in $\left\langle\Omega_{2}\right\rangle$ and the number of edges from set of vertices in Ω_{1} to set of vertices in Ω_{2}. Therefore, $\left|E\left(\Gamma_{\Omega}\right)\right|=\frac{n(n-2)}{2}+n(n-2)=\frac{3 n(n-2)}{2}$.

3. Detour index, eccentric connectivity and total eccentricity polynomials of non-commuting graphs on $D_{2 n}$

Theorem 3.1. Let Γ_{Ω} be a non-commuting graph on $D_{2 n}$, where $\Omega=\Omega_{1} \cup \Omega_{2}$. Then for any $u, v \in \Gamma_{\Omega}$,

$$
D(u, v)= \begin{cases}2 n-2, & \text { if } n \text { is odd } \\ 2 n-3, & \text { if } n \text { is even } .\end{cases}
$$

Proof. There are two cases. When n is odd. From Theorem 2.2 and Theorem 2.3, we see that no two vertices in Ω_{1} are adjacent, any pair of distinct vertices in Ω_{2} are adjacent, and each vertex in Ω_{1} is adjacent to every vertex in Ω_{2}. Then for all $u, v \in \Omega$, there is a $u-v$ path of length $2 n-2$. When n is even. Again, no two vertices in Ω_{1} are adjacent, each vertex in Ω_{1} is adjacent to every vertex in Ω_{2}, and any pair of distinct vertices u and v in Ω_{2} are adjacent if $u, v \notin\left\{s r^{i}, s r^{\frac{n}{2}+i}\right\}$ for $1 \leq i \leq \frac{n}{2}$. So, for all $u, v \in \Omega$, there is a $u-v$ path of length $2 n-3$.

Theorem 3.2. Let Γ_{Ω} be a non-commuting graph on $D_{2 n}$, where $\Omega=\Omega_{1} \cup \Omega_{2}$. Then

$$
D\left(\Gamma_{\Omega}, x\right)= \begin{cases}(n-1)(2 n-1) x^{2 n-2}, & \text { if } n \text { is odd } ; \\ (n-1)(2 n-3) x^{2 n-3}, & \text { if } n \text { is even. }\end{cases}
$$

Proof. Case 1. n is odd. Since $\left|\Gamma_{\Omega}\right|=2 n-1$, there are $\binom{2 n-1}{2}=(n-1)(2 n-1)$ possibilities of distinct pairs of vertices. By Theorem 3.1, $D(u, v)=2 n-2$ for any $u, v \in \Gamma_{\Omega}$. Then $D\left(\Gamma_{\Omega}, x\right)=$ $\sum_{\{u, v\}} x^{D(u, v)}=\binom{2 n-1}{2} x^{2 n-2}=(n-1)(2 n-1) x^{2 n-2}$.
Case 2. n is even. We have that $\left|\Gamma_{\Omega}\right|=2 n-2$ and the possibility of taking distinct pairs of vertices form Γ_{Ω} is $\binom{2 n-2}{2}=(n-1)(2 n-3)$. From Theorem 3.1, we deduce that $D\left(\Gamma_{\Omega}, x\right)=$ $\sum_{\{u, v\}} x^{D(u, v)}=\binom{2 n-2}{2} x^{2 n-3}=(n-1)(2 n-3) x^{2 n-3}$.

Corollary 3.1. For the graph Γ_{Ω},

$$
d d\left(\Gamma_{\Omega}\right)= \begin{cases}2(n-1)^{2}(2 n-1), & \text { if } n \text { is odd } ; \\ (n-1)(2 n-3)^{2}, & \text { if } n \text { is even } .\end{cases}
$$

Proof. It is clear that $d d\left(\Gamma_{\Omega}\right)=\left.\frac{d}{d x}\left(D\left(\Gamma_{\Omega}, x\right)\right)\right|_{x=1}$. From Theorem 3.2, the result follows.
Theorem 3.3. Let Γ_{Ω} be a non-commuting graph on $D_{2 n}$, where $\Omega=\Omega_{1} \cup \Omega_{2}$.

1. When n is odd, then

$$
\operatorname{ecc}(v)= \begin{cases}2, & \text { if } v \in \Omega_{1} \\ 1, & \text { if } v \in \Omega_{2} .\end{cases}
$$

2. When n is even, then $\operatorname{ecc}(v)=2$ for each $v \in \Omega$.

Proof. 1. When n is odd. There is no edge between any pair of vertices in Ω_{1} and each vertex in Ω_{2} is adjacent to every vertex in Ω. So the maximum distance between any vertex of Ω_{1} and the other vertices in Ω is 2 and the maximum distance between any vertex of Ω_{2} and the other vertices in Ω is 1 .
2. When n is even. Again, There is no edge between any pair of vertices in Ω_{1}. Also, each vertex in Ω_{1} is adjacent to every vertex in Ω_{2}. Thus, $e c c(v)=2$ for each $v \in \Omega_{1}$. By Theorem 2.2, the subgraph $\Gamma_{\Omega_{2}}$ is not a complete graph because there is no edge between the vertices $s r^{i}$ and $s r^{i+\frac{n}{2}}$. This means that the maximum distance between any vertex in Ω_{2} and any other vertex in Ω is 2 , so $\operatorname{ecc}(v)=2$ for each $v \in \Omega_{2}$.

From the above theorem, we can have the following.
Theorem 3.4. Let Γ_{Ω} be a non-commuting graph on $D_{2 n}$, where $\Omega=\Omega_{1} \cup \Omega_{2}$. Then
1.

$$
\Xi\left(\Gamma_{\Omega}, x\right)= \begin{cases}n(n-1) x^{2}+2 n(n-1) x, & \text { if } n \text { is odd } \\ 3 n(n-2) x^{2}, & \text { if } n \text { is even }\end{cases}
$$

2.

$$
\Theta\left(\Gamma_{\Omega}, x\right)= \begin{cases}(n-1) x^{2}+n x, & \text { if } n \text { is odd } ; \\ 2(n-1) x^{2}, & \text { if } n \text { is even }\end{cases}
$$

Proof. The proof follows directly from Theorem 2.1 and Theorem 3.3.
From the above theorem, one can obtain the eccentric connectivity index and the total eccentricity of a graph Γ_{Ω} from their corresponding polynomials by computing their first derivatives at $x=1$.

Corollary 3.2. Let Γ_{Ω} be a non-commuting graph on $D_{2 n}$, where $\Omega=\Omega_{1} \cup \Omega_{2}$. Then

$$
\xi^{c}\left(\Gamma_{\Omega}\right)= \begin{cases}4 n(n-1), & \text { if } n \text { is odd } \\ 6 n(n-2), & \text { if } n \text { is even } .\end{cases}
$$

4. The mean distance of the graph Γ_{Ω}

Through this section we find the mean (average) distance of the graph Γ_{Ω}.
Lemma 4.1. In the graph Γ_{Ω}, where n is odd, the transmission of each vertex r^{i} is $\sigma\left(r^{i}, \Gamma_{\Omega}\right)=$ $3 n-4$ for all $1 \leq i \leq n-1$ and the transmission of a vertex sr ${ }^{i}$ is $\sigma\left(s r^{i}, \Gamma_{\Omega}\right)=2 n-2$ for all $1 \leq i \leq n$.
Proof. The vertex-set of the graph Γ_{Ω} is $V\left(\Gamma_{\Omega}\right)=\left\{r^{i}, s r^{j}: 1 \leq i<n, 1 \leq j \leq n\right\}$. Then $\left|V\left(\Gamma_{\Omega}\right)\right|=2 n-1$, where n is odd. A vertex r^{i} is adjacent with all vertices $s r^{j}$ for all $1 \leq j \leq n$, so, $d\left(r^{i}, s r^{j}\right)=1$ for all $1 \leq i \leq n-1$ and all $1 \leq j \leq n$. While a vertex r^{i} is not adjacent to r^{j} for all $i \neq j, 1 \leq i \leq n-1$ and $1 \leq j \leq n$, then $d\left(r^{i}, r^{j}\right)=2$ for all $1 \leq i \leq n-1,1 \leq j \leq n$ and $i \neq j$. So,

$$
\sigma\left(r^{i}, \Gamma_{\Omega}\right)=\Sigma_{\substack{1 \leq j<n \\ j \neq i}} d\left(r^{i}, r^{j}\right)+\Sigma_{1 \leq j \leq n} d\left(r^{i}, s r^{j}\right)=2(n-2)+n=3 n-4
$$

for all $1 \leq i \leq n-1$. On the other hand every vertex $s r^{i}$ is adjacent with $s r^{j}$ for all $i \neq j$, $1 \leq i, j \leq n$. Therefore, $d\left(s r^{i}, s r^{j}\right)=1$, for all $i \neq j, 1 \leq i, j \leq n$. Also, every vertex $s r^{i}$ is adjacent with r^{j}, then $d\left(s r^{i}, r^{j}\right)=1$ for all $1 \leq i \leq n, 1 \leq j \leq n-1$. So,

$$
\sigma\left(s r^{i}, \Gamma_{\Omega}\right)=\Sigma_{\substack{1 \leq i, j \leq n \\ i \neq j}} d\left(s r^{i}, s r^{j}\right)+\Sigma_{1 \leq j<n} d\left(s r^{i}, r^{j}\right)=(n-1)+(n-1)=2 n-2,
$$

for all $1 \leq i \leq n$.

Lemma 4.2. In the graph Γ_{Ω}, where n is even, the transmission of each vertex r^{i} is $\sigma\left(r^{i}, \Gamma_{\Omega}\right)=$ $3 n-6$ for all $1 \leq i \leq n-1$ and the transmission of a vertex $s r^{i}$ is $\sigma\left(s r^{i}, \Gamma_{\Omega}\right)=2 n-2$ for all $1 \leq i \leq n$.

Proof. Let $M=\{1,2, \ldots, n-1\}-\{n / 2\}$. Then the vertex-set of the graph Γ_{Ω}, where n is even, is $V\left(\Gamma_{\Omega}\right)=\left\{r^{i}, s r^{j}: i \in M, 1 \leq j \leq n\right\}$. So, $\left|V\left(\Gamma_{\Omega}\right)\right|=2 n-2$. A vertex r^{i} is adjacent with all vertices $s r^{j}$ for all $i \in M$ and all $1 \leq j \leq n$. Thus, $d\left(r^{i}, s r^{j}\right)=1$ for all $i \in M$ and all $1 \leq j \leq n$. Notice that every two vertices r^{i} and r^{j} are non-adjacent for all $i, j \in M$ and $i \neq j$, then $d\left(r^{i}, r^{j}\right)=2$ for all $i, j \in M$ and $i \neq j$. So,

$$
\sigma\left(r^{i}, \Gamma_{\Omega}\right)=\Sigma_{\substack{j \in S \\ j \neq i}} d\left(r^{i}, r^{j}\right)+\Sigma_{1 \leq j \leq n} d\left(r^{i}, s r^{j}\right)=2(n-3)+n=3 n-6
$$

for all $i \in M$. Also, every vertex $s r^{i}$ is adjacent with $s r^{j}$ for all $i \neq j, 1 \leq i \leq n / 2$, and all $j \in\{1,2, \ldots, n-1\}-\{i+n / 2\}$, then $d\left(s r^{i}, s r^{j}\right)=1$, for all $j \in\{1,2, \ldots, n-1\}-\{i+n / 2\}$, and $d\left(s r^{i}, s r^{i+n / 2}\right)=2$, for all $1 \leq i \leq n / 2$. Since each vertex $s r^{i}$ is adjacent with all vertices r^{j}, for all $1 \leq i \leq n$, and $j \in M$, then $d\left(s r^{i}, r^{j}\right)=1$. Therefore,

$$
\sigma\left(s r^{i}, \Gamma_{\Omega}\right)=\Sigma_{\substack{1 \leq j \neq n \\ j \neq i}} d\left(s r^{i}, s r^{j}\right)+\Sigma_{j \in S} d\left(s r^{i}, r^{j}\right)=(n-2)+2+(n-2)=2 n-2,
$$

for all $1 \leq i \leq n$.
Theorem 4.1. The mean distance of the graph Γ_{Ω}, where n is odd, is $\mu\left(\Gamma_{\Omega}\right)=\frac{5 n-4}{4 n-2}$.
Proof. By Lemma 4.1, we see that the transmission of the graph Γ_{Ω} is

$$
\begin{aligned}
\sigma\left(\Gamma_{\Omega}\right) & =\sum_{i=1}^{n-1} \sigma\left(r^{i}, \Gamma_{\Omega}\right)+\sum_{i=1}^{n} \sigma\left(s r^{i}, \Gamma_{\Omega}\right) \\
& =(n-1)(3 n-4)+n(2 n-2) \\
& =5 n^{2}-9 n+4
\end{aligned}
$$

Notice that $\left|V\left(\Gamma_{\Omega}\right)\right|=2 n-1$. Therefore, $\mu\left(\Gamma_{\Omega}\right)=\frac{\sigma\left(\Gamma_{\Omega}\right)}{\mid V\left(\Gamma_{\Omega}\right)\left(\left|V\left(\Gamma_{\Omega}\right)\right|-1\right)}=\frac{5 n^{2}-9 n+4}{(2 n-1)(2 n-2)}=\frac{5 n-4}{4 n-2}$.
Theorem 4.2. The mean distance of the graph Γ_{Ω}, where n is even, is $\mu\left(\Gamma_{\Omega}\right)=\frac{5 n^{2}-14 n+12}{(2 n-2)(2 n-3)}$.
Proof. By using Lemma 4.2, we can find the transmission of the graph Γ_{Ω} which is

$$
\begin{aligned}
\sigma\left(\Gamma_{\Omega}\right) & =\sum_{\substack{i=1 \\
i \neq n / 2}}^{n-1} \sigma\left(r^{i}, \Gamma_{\Omega}\right)+\sum_{i=1}^{n} \sigma\left(s r^{i}, \Gamma_{\Omega}\right) \\
& =(n-2)(3 n-6)+n(2 n-2) \\
& =5 n^{2}-14 n+12 .
\end{aligned}
$$

Notice that $\left|V\left(\Gamma_{\Omega}\right)\right|=2 n-2$. Therefore, $\mu\left(\Gamma_{\Omega}\right)=\frac{\sigma\left(\Gamma_{\Omega}\right)}{\left|V\left(\Gamma_{\Omega}\right)\right|\left(\left|V\left(\Gamma_{\Omega}\right)\right|-1\right)}=\frac{5 n^{2}-14 n+12}{(2 n-2)(2 n-3)}$.

Acknowledgement

The authors thank the anonymous referee for his/her careful reading.

References

[1] A. Abdollahi, S. Akbari and H.R. Maimani, Non-commuting graph of a group, J. Algebra 298 (2006), 468-492.
[2] M.R. Alfuraidan and Y.F. Zakariya, Inverse graphs associated with finite groups, Electron. J. Graph Theory Appl. 5 (1) (2017), 142-154.
[3] F. Ali, M. Salman and S. Huang, On the commuting graph of dihedral group, Comm. Algebra 44 (6) (2016), 2389-2401.
[4] I. Althöfer, Average distances in undirected graphs and the removal of vertices, J. Combin. Theory Ser. B 48 (1) (1990), 140-142.
[5] H.J. Bandelt and H.M. Mulder, Distance-hereditary graphs, J. Combin. Theory Ser. B 41 (2) (1986), 182-208.
[6] S. Bera, On the intersection power graph of a finite group, Electron. J. Graph Theory Appl. 6 (1) (2018), 178-189.
[7] E.A. Bertram, Some applications of graph theory to finite groups, Discrete Math. 44 (1) (1983), 31-43.
[8] E.A. Bertram, M. Herzog and A. Mann, On a graph related to conjugacy classes of groups, Bull. Lond. Math. Soc. 22 (6) (1990), 569-575.
[9] D. Bienstock and E. Györi, Average distance in graphs with removed elements, J. Graph Theory 12 (3) (1988), 375-390.
[10] T. Došlic, M. Ghorbani and M.A. Hosseinzadeh, Eccentric connectivity polynomial of some graph operations, Util. Math. 84 (2011), 197-209.
[11] R.J. Shahkoohi, O. Khormali and A. Mahmiani, The polynomial of detour index for a graph, World Applied Sciences Journal 15 (10) (2011), 1473-1483.
[12] E. Vatandoost and M. Khalili, Domination number of the non-commuting graph of finite groups, Electron. J. Graph Theory Appl. 6 (2) (2018), 228-237.

[^0]: Received: 20 February 2019, Revised: 1 March 2020, Accepted: 29 March 2020. *Corresponding author

