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Abstract

Let G be a simple and finite graph. A graph is said to be decomposed into subgraphs H1 and
H2 which is denoted by G = H1 � H2, if G is the edge disjoint union of H1 and H2. If G =
H1 �H2 �H3 � · · ·�Hk, where H1,H2,H3, ..., Hk are all isomorphic to H , then G is said to be
H-decomposable. Futhermore, if H is a cycle of length m then we say that G is Cm-decomposable
and this can be written as Cm|G. Where G⇥H denotes the tensor product of graphs G and H , in
this paper, we prove the necessary and sufficient conditions for the existence of C4-decomposition
of Km ⇥Kn. Using these conditions it can be shown that every even regular complete multipartite
graph G is C4-decomposable if the number of edges of G is divisible by 4.
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1. Introduction

Let Cm, Km and Km�I denote cycle of length m, complete graph on m vertices and complete
graph on m vertices minus a 1-factor respectively. By an m-cycle we mean a cycle of length m.
Let Kn,n denote the complete bipartite graph with n vertices in each bipartition set and Kn,n � I

denote Kn,n, with a 1-factor removed. All graphs considered in this paper are simple and finite. A
graph is said to be decomposed into subgraphs H1 and H2 which is denoted by G = H1 �H2, if
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G is the edge disjoint union of H1 and H2. If G = H1 �H2 � · · ·�Hk, where H1,H2, ..., Hk are
all isomorphic to H , then G is said to be H-decomposable. Futhermore, if H is a cycle of length
m then we say that G is Cm-decomposable and this can be written as Cm|G. A k-factor of G is a
k-regular spanning subgraph. A k-factorization of a graph G is a partition of the edge set of G into
k-factors. A Ck-factor of a graph is a 2-factor in which each component is a cycle of length k. A
resolvable k-cycle decomposition (for short k-RCD) of G denoted by Ck||G, is a 2-factorization
of G in which each 2-factor is a Ck-factor.

For two graphs G and H their tensor product G ⇥ H has vertex set V (G) ⇥ V (H) in which
two vertices (g1, h1) and (g2, h2) are adjacent whenever g1g2 2 E(G) and h1h2 2 E(H). From
this, note that the tensor product of graphs is distributive over edge disjoint union of graphs, that is
if G = H1 �H2 � · · ·�Hk, then G⇥H = (H1 ⇥H)� (H2 ⇥H)� · · ·� (Hk ⇥H). Now, for
h 2 V (H), V (G)⇥h = {(v, h)|v 2 V (G)} is called a column of vertices of G⇥H corresponding
to h. Further, for y 2 V (G), y⇥V (H) = {(y, v)|v 2 V (H)} is called a layer of vertices of G⇥H

corresponding to y. It is true that Km ⇥ K2 is isomorphic to the complete bipartite graph Km,m

with the edges of a perfect matching removed, i.e. Km ⇥K2
⇠= Km,m � I , where I is a 1-factor of

Km,m.
The lexicographic product G ⇤ H of two graphs G and H is the graph having the vertex set

V (G)⇥ V (H), in which two vertices (g1, h1) and (g2, h2) are adjacent if either g1, g2 2 E(G); or
g1 = g2 and h1, h2 2 E(H).

For very recent works on decomposition of graphs, see [6, 8]. The problem of finding Ck-
decomposition of K2n+1 or K2n� I where I is a 1-factor of K2n, is completely settled by Alspach,
Gavlas and Šajna in two different papers (see [2, 17]). A generalization to the above complete
graph decomposition problem is to find a Ck-decomposition of Km ⇤ Kn, which is the complete
m-partite graph in which each partite set has n vertices. The study of cycle decompositions of
Km ⇤ Kn was initiated by Hoffman et al. [7]. In the case when p is a prime, the necessary and
sufficient conditions for the existence of Cp-decomposition of Km ⇤ Kn, p � 5 is obtained by
Manikandan and Paulraja in [11, 12, 14]. Billington [3] has studied the decomposition of complete
tripartite graphs into cycles of length 3 and 4. Furthermore, Cavenagh and Billington [5] have
studied 4-cycle, 6-cycle and 8-cycle decomposition of complete multipartite graphs. Billington
et al. [4] have solved the problem of decomposing (Km ⇤ Kn) into 5-cycles. Similarly, when
p � 3 is a prime, the necessary and sufficient conditions for the existence of C2p-decomposition
of Km ⇤ Kn is obtained by Smith (see [19]). For a prime p � 3, it was proved in [20] that C3p-
decomposition of Km ⇤ Kn exists if the obvious necessary conditions are satisfied. As the graph
Km⇥Kn

⇠= Km⇤Kn�E(nKm) is a proper regular spanning subgraph of Km⇤Kn. It is therefore
natural to think about the cycle decomposition of Km ⇥Kn.

The results in [11, 12, 14] also gives the necessary and sufficient conditions for the existence
of a p-cycle decomposition, (where p � 5 is a prime number) of the graph Km ⇥ Kn. In [13] it
was shown that the tensor product of two regular complete multipartite graph is Hamilton cycle
decomposable. Muthusamy and Paulraja in [15] proved the existence of Ckn-factorization of the
graph Ck ⇥ Kmn, where mn 6= 2(mod 4) and k is odd. Paulraja and Kumar [16] showed that
the necessary conditions for the existence of a resolvable k-cycle decomposition of tensor product
of complete graphs are sufficient when k is even. In a recent work by the present authors, it was
proven that the necessary and sufficient conditions for the decomposition of the graph Km ⇥ Kn
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into cycles of length six is that m or n ⌘ 1 or 3 (mod 6) (see [1]).
In this paper, we prove the necessary and sufficient conditions for Km ⇥Kn, where m,n � 2, to
have a C4-decomposition. Among other results, here we prove the following main result.

Theorem 1.1. For m,n � 2, C4|Km ⇥Kn if and only if either

1. n ⌘ 0 (mod 4) and m is odd,

2. m ⌘ 0 (mod 4) and n is odd or

3. m or n ⌘ 1 (mod 4)

Let ⇢ be a permutation of the vertex set V of a graph G. For any subset U of V , ⇢ acts as a
function from U to V by considering the restriction of ⇢ to U . If H is a subgraph of G with vertex
set U , then ⇢(H) is a subgraph of G provided that for each edge xy 2 E(H), ⇢(x)⇢(y) 2 E(G).
In this case, ⇢(H) has vertex set ⇢(U) and edge set {⇢(x)⇢(y) : xy 2 E(H)}.

Next, we give some existing results on cycle decomposition of complete graphs.

Theorem 1.2. [9] Let m be an odd integer and m � 3. If m ⌘ 1 or 3 (mod 6) then C3|Km.

Theorem 1.3. [17] Let n be an odd integer and m be an even integer with 3  m  n. The graph

Kn can be decomposed into cycles of length m whenever m divides the number of edges in Kn.

Now we have the following lemma, this lemma gives the cycle decomposition of the complete
graph Km into cycles of length 3 and 4.

Lemma 1.1. For m ⌘ 5(mod 6), there exist positive integers p and q such that Km is decomposable

into p 3-cycles and q 4-cycles.

Proof. Let the vertices of Km be 0, 1, ...,m�1. The 4-cycles are (i, i+1+2s, i�1, i+2+2s), s =
0, 1, ..., (m � i)/2 � 2, i = 1, 3, ...,m � 4. The 3-cycles are (m � 1, i � 1, i), i = 1, 3, ...,m � 2.
Hence the proof.

The following theorem is on the complete bipartite graph minus a 1-factor, it was obtained by
Ma et. al [10].

Theorem 1.4. [10] Let m and n be positive integers. Then there exist an m cycle system of Kn,n�I

if and only if n ⌘ 1 (mod 2), m ⌘ 0 (mod 2), 4  m  2n and n(n� 1) ⌘ 0 (mod m).

From the theorem above we have the following corollary.

Corollary 1.1. The graph Kn,n � I , where I is a 1-factor of Kn,n � I admits a C4 decomposition

if and only if n ⌘ 1 (mod 4).

The following result is on the complete bipartite graphs.

Theorem 1.5. [18] The complete bipartite graph Ka,b can be decomposed into cycles of length 2k
if and only if a and b are even, a � k, b � k and 2k divides ab.
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2. C4 Decomposition of Cm ⇥ Kn

We begin this section with the following lemma.

Lemma 2.1. C4|C3 ⇥K4.

Proof. Following from the definition of the tensor product of graphs, let U1 = {u1, v1, w1}, U2 =
{u2, v2, w2},..., U4 = {u4, v4, w4} form the partite sets of vertices in the product C3 ⇥ K4. For
1  i, j  4, surely U

i [ U
j , i 6= j induces a K3,3 � I , where I is a 1-factor of K3,3.

A C4 decomposition of C3 ⇥K4 is given below:
{u1, v4, u2, w3},{u1, v3, u4, w2},{u1, v2, u3, w4},{u2, v3, w2, v1},{u3, v1, w3, v4},
{u2, w1, v3, w4},{u3, w2, v4, w1},{u4, v1, w4, v2} and {u4, w1, v2, w3}

Next, we have the following lemma which follows from Lemma 2.1.

Lemma 2.2. C4|C3 ⇥K5.

Proof. Suppose we fix the 4-cycles already given in Lemma 2.1, clearly the graph which remains
after removing the edges of C3⇥K4 from C3⇥K5 can be decomposed into 3 copies of K2,4. Now,
by Theorem 1.5 the graph K2,4 can be decomposed into cycles of length 4. Hence C4|C3⇥K5.

The following theorem is an extension of Lemma 2.1 and Lemma 2.2.

Theorem 2.1. C4|C3 ⇥Kn if and only if n ⌘ 0 or 1 (mod 4).

Proof. Suppose that C4|C3 ⇥ Kn. The graph C3 ⇥ Kn has 3n(n � 1) edges. For C4|C3 ⇥ Kn it
implies that n(n� 1) ⌘ 0 (mod 4). Hence n ⌘ 0 or 1 (mod 4).
Following the definition of tensor product of graphs, let U1 = {u1, v1, w1}, U2 = {u2, v2, w2},...,
U

n = {un, vn, wn} form the partite sets of vertices in the product C3 ⇥ Kn. For 1  i, j  n,
surely U

i [ U
j , i 6= j induces a K3,3 � I , where I is a 1-factor of K3,3.

Next, we prove the sufficiency in two cases.
Case 1. Whenever n ⌘ 0(mod 4). Let n = 4t where t � 1.
Next we note that C3⇥Kn

⇠= (C3⇥K4) + (C3⇥K4) + (C3⇥K4) + · · ·+ (C3⇥K4) + H
⇤, H⇤

is the graph containing the edges of C3 ⇥Kn which are not covered by these t copies of C3 ⇥K4.
By Lemma 2.1 the product C3 ⇥K4 admits a C4-decomposition.
Furthermore, we define the set U = {u1

, u
2
, ..., u

p},V = {v1, v2, ..., vp} and W = {w1
, w

2
, ..., w

p}
where p = n/4 and for j = 1, 2, ..., p, uj = {ui|4j � 3  i  4j}, vj = {vi|4j � 3  i  4j} and
w

j = {wi|4j � 3  i  4j}.
Now, H⇤ is decomposable into graphs isomorphic to K4,4n�4. Indeed, the K4,4n�4 graphs in the
decomposition of H⇤ are induced by (ui [ v

1 [ v
2 [ · · · [ v

p) \ vi, (ui [w
1 [w

2 [ · · · [w
p) \wi

and (vi [w
1 [w

2 [ · · ·[w
p) \wi, i = 1, 2, ..., p. By Theorem 1.5 C4|K4,4n�4. Therefore we have

decomposed C3 ⇥Kn into 4-cycles when n ⌘ 0(mod 4).

Case 2. Whenever n ⌘ 1(mod 4). Let n = 4t+ 1 where t � 1.
By removing U

1, we obtain a copy of C3 ⇥ Kn�1, so we may apply Case 1. The remaining
structure can be decomposed into 3K2,4t and by Theorem 1.5 C4|K2,4t. Therefore C4|C3 ⇥ Kn

when n ⌘ 1(mod 4).
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Next, we establish the following lemma.

Lemma 2.3. For all n � 3, C4|C4 ⇥Kn.

Proof. From the definition of tensor product of graphs, let U1 = {u1, v1, w1, x1}, U2 = {u2, v2, w2,

x2}, · · · , Un = {un, vn, wn, xn} form the partite sets of vertices in the product C4 ⇥Kn. Also, for
1  i, j  n and i 6= j, U i [ U

j induces K4,4 � 2I , where I is a 1-factor of K4,4. Now, each set
U

i [ U
j is isomorphic to K4,4 � 2I . But K4,4 � 2I admits a 4-cycle decomposition. Hence the

proof.

Furthermore, we quote the following result on decomposition of the tensor product of graphs
into cycles of odd length.

Lemma 2.4. [12] For k � 1 and m � 3, C2k+1|C2k+1 ⇥Km

The next lemma is an extension of Lemma 2.3 and Lemma 2.4.

Lemma 2.5. For m � 3 and n � 2, Cm|Cm ⇥Kn

Proof. We shall split the proof of this lemma into two cases.

Case 1.When m = 2k + 1, k � 1
The proof of this case is immediate from Lemma 2.4.

Case 2.When m = 2k, k � 2
Following from the definition of tensor product of graphs, let U1 = {u1

1, u
2
1, u

3
1, ..., u

m
1 }, U2 =

{u1
2, u

2
2, u

3
2, ..., u

m
2 },..., Un = {u1

n, u
2
n, u

3
n, ..., u

m
n } form the partite sets of vertices in the product

Cm ⇥ Kn. Now, for 1  i, j  n and i 6= j, the subgraph induced by Ui [ Uj is isomorphic
to Km,m � (m � 2)I , where I is a 1-factor of Km,m. But Km,m � (m � 2)I admits an m-cycle
decomposition. Hence the proof.

3. Proof of the Main Theorem

Proof of Theorem 1.1. Assume that C4|Km ⇥Kn, for some m and n with 2  m,n. Then every
vertex of Km ⇥Kn has even degree and 4 divides the number of edges of Km ⇥Kn. These two
conditions translates to (m� 1)(n� 1) being even and 8|mn(m� 1)(n� 1) respectively. Hence
by the first fact, m or n has to be odd, i.e. has to be congruent to 1 or 3 or 5 (mod 6). The second
condition is satisfied precisely when one of the following holds.

1. n ⌘ 0 (mod 4) and m is odd,
2. m ⌘ 0 (mod 4) and n is odd, or
3. m or n ⌘ 1 (mod 4).
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Next we proceed to prove the sufficiency in two cases.
Case 1. Since the tensor product is commutative, we may assume that m is odd and so m ⌘
1 or 3 or 5 (mod 6). Suppose that n ⌘ 0 (mod 4).
Subcase 1. Let m ⌘ 1 or 3 (mod 6)
Now since m ⌘ 1 or 3 (mod 6) it implies that by Theorem 1.2 C3|Km. Therefore, the graph
Km ⇥Kn = ((C3 ⇥Kn) � · · · � (C3 ⇥Kn)). But n ⌘ 0 (mod 4) therefore by Theorem 2.1 we
have that C4|C3 ⇥Kn. Hence C4|Km ⇥Kn.
Subcase 2. Let m ⌘ 5(mod 6)
By Lemma 1.1, there exist positive integers p and q such that Km is decomposable into p 3-cycles
and q 4-cycles. Hence Km ⇥ Kn has a decomposition into p copies of C3 ⇥ Kn and q copies of
C4 ⇥ Kn. By Theorem 2.1 C4|C3 ⇥ Kn and also Lemma 2.3 shows that C4|C4 ⇥ Kn. Hence
C4|Km ⇥Kn.
Case 2. By commutativity of the tensor product we assume that m ⌘ 1 (mod 4). The graph
Km ⇥ Kn = ((Km ⇥ K2) � · · · � (Km ⇥ K2)). Since m ⌘ 1 (mod 4), by Corollary 1.1,
C4|Km,m � I , and Km ⇥ K2

⇠= Km,m � I . Hence C4|Km ⇥ Kn. This completes the proof.
2

Lastly, we draw our conclusion by the following remark.

Remark 3.1. The product Km ⇥ Kn can also be viewed as an even regular complete multipartite
graph. So by the conditions given in Theorem 1.1 we have that every even regular complete
multipartite graph G is C4-decomposable if the number of edges of G is divisible by 4.
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