Electronic Journal of Graph Theory and Applications

Connected domination value in graphs

Angsuman Das
Department of Mathematics, Presidency University, Kolkata, India. angsuman.maths@presiuniv.ac.in

Abstract

In a connected graph $G=(V, E)$, a set $D \subset V$ is a connected dominating set if for every vertex $v \in V \backslash D$, there exists $u \in D$ such that u and v are adjacent, and the subgraph $\langle D\rangle$ induced by D in G is connected. A connected dominating set of minimum cardinality is called a γ_{c}-set of G. For each vertex $v \in V$, we define the connected domination value of v to be the number of γ_{c}-sets of G to which v belongs. In this paper, we study the properties of connected domination value of a connected graph G and its relation to other parameters of a connected graph. Finally, we compute the connected domination value and number of γ_{c}-sets for a few well-known family of graphs.

Keywords: domination value, connected dominating set, maximum degree
Mathematics Subject Classification: 05C69
DOI: 10.5614/ejgta.2021.9.1.11

1. Introduction

${ }^{1}$ The study of dominating sets, domination number and other variants of domination parameters of a graph like [$1,3,4,5,6,11,13$] forms an integral part of both theoretical as well as practical aspects of graph theory. However, a systematic local study of domination has not been studied extensively. The first step towards this was by Mynhardt [12], who studied the vertices which belong to every minimum dominating set of a tree. Subsequently, Cockayne et.al. [2] and Meddah et.al. [10] studied the vertices which belong to either every or none of the (k-)total minimum dominating sets of a tree. Yi [15] and Kang [9] introduced a new concept of (total) domination value (T) $D V$

Received: 2 December 2018, Revised: 30 May 2019, Accepted: 16 December 2020.
${ }^{1}$ Dedicated to my dear friend Late Wyatt Jules Desormeaux
of a vertex in a graph. (Total) domination value of a vertex v is the number of minimum (total) dominating sets containing v.

In this paper, we introduce connected domination value of a graph. Let $G=(V, E)$ be a simple, undirected, connected graph of order $|V|$ and size $|E|$. The degree of a vertex v in G, denoted by $\operatorname{deg}(v)$, is the number of vertices adjacent to v in G; an end-vertex is a vertex of degree one and a support vertex is a vertex which is adjacent to an end-vertex. For $v \in V, N(v)$ is the set of all vertices in G adjacent to v and $N[v]=N(v) \cup\{v\}$. A set $D \subset V$ is a connected dominating set (CDS) of G if for every vertex $v \in V \backslash D$, there exists $u \in D$ such that $u v \in E$, and the subgraph $\langle D\rangle$ induced by D in G is connected. The minimum cardinality of a connected dominating set is called the connected domination number of G and is denoted by γ_{c}. A connected dominating set of minimum cardinality is called a γ_{c}-set of G. Analogous to the definitions and notations defined in $[15,9]$, for each vertex $v \in V$, we define the connected domination value of $v, C D V(v)$, to be the number of γ_{c}-sets of G to which v belongs. We also define τ_{c} to be the number of γ_{c}-sets of G. Thus for any graph G and any $v \in V, 0 \leq C D V(v) \leq \tau_{c}$. For other notations and graph terminology, refer to [14, 7].

There are similarities as well as differences between $D V$ (or $T D V$) and $C D V$ of a graph. In this paper, we recall results on $D V$ from [15] and $T D V$ from [9] that can be carried out to $C D V$ and prove results of $C D V$ that are different from $D V$ (or $T D V$).

2. Basic Properties of Connected Domination Value

In this section, we study some basic properties and bounds of connected domination value of a vertex of a graph.

Lemma 2.1. Let G be a connected graph with $n(>2)$ vertices. Then every support vertex is contained in each γ_{c}-set of G.

Proof. Let v be a support vertex adjacent to an end-vertex u and D be a γ_{c}-set of G. Since $\operatorname{deg}(u)=$ $1, D$ must contain u or v. If D does not contain v, then $\langle D\rangle$ fails to be connected as every path joining u to any other vertex of D must contain v as an intermediate vertex. Hence, the lemma follows.

We recall a few observations and results from [15] and [9].
Proposition 2.1. [15] For any graph $G=(V, E)$,

$$
\sum_{v \in V} D V(v)=\tau \cdot \gamma
$$

Proposition 2.2. [15] If $\varphi: G \rightarrow G^{\prime}$ be a graph isomorphism and $\varphi(v)=v^{\prime}$. Then $D V_{G}(v)=$ $D V_{G^{\prime}}\left(v^{\prime}\right)$.
Proposition 2.3. [15] For any $v_{0} \in V$,

$$
\tau \leq \sum_{v \in N\left[v_{0}\right]} D V(v) \leq \tau \cdot \gamma
$$

and the bounds are tight.

Proposition 2.4. [15] For any $v_{0} \in V$,

$$
\sum_{v \in N\left[v_{0}\right]} D V(v) \leq \tau\left(1+\operatorname{deg}\left(v_{0}\right)\right),
$$

and this bound is tight.
Proposition 2.5. [15] Let H be a subgraph of a graph G with $V(G)=V(H)$. If $\gamma(G)=\gamma(H)$, then $\tau(G) \geq \tau(H)$.
Proposition 2.6. [9] Let G be a connected graph with $\gamma_{t}=2$. Then $T D V(v) \leq \operatorname{deg}(v)$ for any vertex v in G.

All the above propositions proved in [15] and [9] remains true if $D V$ (or $T D V$) is replaced by $C D V, \tau, \gamma, \gamma_{t}$ are replaced by $\tau_{c}, \gamma_{c}, \gamma_{c}$ respectively and if graphs and subgraphs are connected.

Corollary 2.1. Let G be a connected vertex-transitive graph of order n, where n is a prime. Then τ_{c} is a multiple of n.

Proof. Since G is a connected vertex transitive graph, by Proposition 2.2, $C D V(v)$ is a constant, say k, for all $v \in V$. Thus, by Proposition 2.1, $\tau_{c} \cdot \gamma_{c}=n k$. Now as G is a connected graph of order $n, \gamma_{c}<n$ and hence n does not divide γ_{c}. Thus n, being a prime, divides τ_{c}.

3. Connected Domination Value and Maximum Degree

In this section, we study the bounds on connected domination value of the highest degree of the vertices in a connected graph. First we recall some results from [15] and [9].
Proposition 3.1. [15] Let G be a graph with n vertices and $\Delta=n-1$. Then $\gamma=1$ and $D V(v) \leq 1, \forall v \in V$, and equality holds if and only if $\operatorname{deg}(v)=n-1$.

The above proposition remains true when $D V$ is replaced by $C D V$ (due to the fact that $\gamma=1$ implies $\gamma_{c}=1$.)
Proposition 3.2. [9] Let G be a graph with $n(\geq 3)$ vertices and $\Delta=n-2$. Then $\gamma_{t}=2$ and $T D V(v) \leq n-2$. Further, if $\operatorname{deg}(v)=n-2$, then $T D V(v)=|N(w)|$ where w is the unique vertex in G such that vw $\notin E$.

Proposition 3.3. [9] Let G be a graph of order n with $\gamma_{t}=2$ and $\Delta \leq n-2$, then $\tau \leq\binom{ n}{2}-\left\lceil\frac{n}{2}\right\rceil$ and the bound is tight.

Theorem 3.1. [9] Let G be a connected graph with $n(\geq 4)$ vertices and $\Delta=n-3$. Let v be a vertex of G with $\operatorname{deg}(v)=n-3$. Then either $\gamma_{t}=2$ and TDV $(v) \leq n-3$ or $\gamma_{t}=3$ and $T D V(v) \leq\left(\frac{n-3}{2}\right)^{2}+2(n-4)$.

The above two Propositions and Theorem remains true for connected graphs when τ, γ_{t}, and $T D V$, respectively, is replaced by τ_{c}, γ_{c}, and $C D V$ (due to the fact that, for any connected graph with $\gamma_{c} \neq 1, \gamma_{t}=2$ and $\gamma_{t}=3$, respectively, implies $\gamma_{c}=2$ and $\gamma_{c}=3$).

Connected domination value in graphs | Angsuman Das

4. Connected Domination Value for Some Graph Families

4.1. Complete n-partite graphs

Let $G=K_{a_{1}, a_{2}, \ldots, a_{n}}$ be a complete n-partite graph with the vertex set V partitioned into partite sets $V_{1}, V_{2}, \ldots, V_{n}$ and let $a_{i}=\left|V_{i}\right| \geq 1, \forall i \in\{1,2, \ldots, n\}$ and $n \geq 2$. Again, we recall a few results from [15].
Theorem 4.1. [15] Let $G=K_{a_{1}, a_{2}, \ldots, a_{n}}$ be a complete n-partite graph with $a_{i} \geq 2, \forall i \in\{1,2, \ldots, n\}$. Then

$$
\tau=\frac{1}{2}\left[\left(\sum_{i=1}^{n} a_{i}\right)^{2}-\sum_{i=1}^{n} a_{i}^{2}\right] \text { and } D V(v)=\left(\sum_{i=1}^{n} a_{i}\right)-a_{j}, \text { if } v \in V_{j}
$$

Theorem 4.2. [15] Let $G=K_{a_{1}, a_{2}, \ldots, a_{n}}$ be a complete n-partite graph with $a_{i}=1$ for some i, i.e., $a_{j}=1 \forall j \in\{1,2, \ldots, k\}$ and $a_{j}>1, \forall j \in\{k+1, k+2, \ldots, n\}$. Then $\tau=k$ and

$$
D V(v)= \begin{cases}1, & \text { if } v \in V_{j}(1 \leq j \leq k) \\ 0 . & \text { if } v \in V_{j}(k+1 \leq j \leq n)\end{cases}
$$

Corollary 4.1. [15] If G is a complete graph K_{n}, then $\tau=n$ and $D V(v)=n, \forall v \in G$.
Corollary 4.2. [15] If G is a complete bipartite graph $K_{a_{1}, a_{2}}$, then

$$
\tau= \begin{cases}a_{1} \cdot a_{2}, & \text { if } a_{1}, a_{2} \geq 2 \\ 2, & \text { if } a_{1}=a_{2}=1 \\ 1, & \text { if }\left\{a_{1}, a_{2}\right\}=\{1, x\} \text { where } x>1\end{cases}
$$

If $a_{1}, a_{2} \geq 2$, then

$$
D V(v)= \begin{cases}a_{2}, & \text { if } v \in V_{1}, \\ a_{1}, & \text { if } v \in V_{2}\end{cases}
$$

If $a_{1}=a_{2}=1$, then $D V(v)=1$ for any v in $K_{1,1}$. If $\left\{a_{1}, a_{2}\right\}=\{1, x\}$ with $x>1$, say $a_{1}=1, a_{2}=x$, then

$$
D V(v)= \begin{cases}1, & \text { if } v \in V_{1}, \\ 0, & \text { if } v \in V_{2} .\end{cases}
$$

The above two theorems and two corollaries remain true when $D V$ and τ, respectively, is replaced by $C D V$ and τ_{c}.

4.2. Cycles and Paths

Let C_{n} be a cycle on n vertices, which are labelled 1 to n in anti-clockwise order. As C_{n} is vertex-transitive, $C D V(v)$ is constant for all vertices $v \in C_{n}$. Note that, for $n \geq 3, \gamma_{c}\left(C_{n}\right)=n-2$ and the induced subgraph by each minimum connected dominating set is isomorphic to P_{n-2}, a path on $n-2$ vertices.

Theorem 4.3. For $n \geq 3, \tau_{c}\left(C_{n}\right)=n$ and $C D V(v)=n-2, \forall v \in V\left(C_{n}\right)$.
Proof. Observe that any $n-2$ consecutively labelled vertices form a minimum connected dominating set of C_{n}. Thus, $\tau_{c}\left(C_{n}\right)$ is the number of distinct isomorphic copies of P_{n-2} in C_{n}, i.e., $\mathcal{C}=\{\{1,2, \ldots, n-3, n-2\},\{2,3, \ldots, n-2, n-1\}, \ldots,\{n, 1, \ldots, n-3\}\}$ is the collection of all minimum connected dominating sets of C_{n}. Hence, $\tau_{c}\left(C_{n}\right)=n$.

As C_{n} is vertex-transitive, $C D V(v)=C D V(1)$ for all vertices $v \in V\left(C_{n}\right)$. Now, by observing the number of occurrences of 1 in \mathcal{C}, we get $C D V(1)=n-2$ and hence the theorem.
Theorem 4.4. For $n \geq 2$,

$$
\tau_{c}\left(P_{n}\right)= \begin{cases}2, & \text { if } n=2 \\ 1, & \text { if } n \geq 3\end{cases}
$$

and $C D V(v)=1$ for each vertex $v \in V\left(P_{2}\right)$. For $n \geq 3$,

$$
C D V(v)= \begin{cases}1, & \text { if } v \text { is an interior vertex } . \\ 0, & \text { if } v \text { is an end vertex. }\end{cases}
$$

Proof. Let P_{n} be a path on n vertices, which are labelled 1 to n consecutively.
Case 1: $n=2$ In this case, each of the vertices is a minimum connected dominating set and hence $\tau_{c}=2$ and $C D V(v)=1$ for each vertex $v \in P_{2}$.
Case 2: $n \geq 3$ Since $\{2,3, \ldots, n-1\}$ is the unique minimum connected dominating set of P_{n} with $n-2$ vertices, we have $\gamma_{c}\left(P_{n}\right)=n-2, \tau_{c}=1$ and $C D V(v) \in\{0,1\}$.

4.3. The Petersen Graph

Let \mathcal{P} be the Petersen graph. It is to be noted that $\gamma_{c}(\mathcal{P})=4$ and for any v in $\mathcal{P}, N[v]$ is a minimum connected dominating set. In fact, these are the only minimum connected dominating sets of \mathcal{P}. Since for any two vertices u and $v, N[u] \neq N[v]$, the number of minimum connected dominating sets is equal to the order of \mathcal{P}, i.e., $\tau_{c}(\mathcal{P})=10$. Also as \mathcal{P} is vertex transitive, $C D V(v)$ is constant for all vertices $v \in \mathcal{P}$. Thus $C D V(v)=C D V(1)$ for any v in \mathcal{P}. Now, $C D V(1)$ is equal to the number of $N[v]$'s in which 1 belongs to, i.e., $C D V(1)=|N[1]|=4$.

4.4. The $2 \times n$ rectangular grid: $P_{2} \square P_{n}$

We consider $P_{2} \square P_{n}(n \geq 2)$ as two copies of P_{n} with vertices labelled $x_{1}, x_{2}, \ldots, x_{n}$ and $y_{1}, y_{2}, \ldots, y_{n}$ with the additional edges $x_{i} y_{i}$ for each $i \in\{1,2, \ldots, n\}$. (See Figure 1.) For later use, we partition the vertices into n sets (or columns as shown in Figure 1) $D_{i}=\left\{x_{i}, y_{i}\right\}$ for $i \in\{1,2, \ldots, n\}$
Lemma 4.1. For $n \geq 2, \gamma_{c}\left(P_{2} \square P_{n}\right)=n$ for $n \neq 3$ and $\gamma_{c}\left(P_{2} \square P_{3}\right)=2$.

Connected domination value in graphs | Angsuman Das

Figure 1. Labelling of vertices in $P_{2} \square P_{n}$

Proof. It is trivial to observe that $\gamma_{c}\left(P_{2} \square P_{2}\right)=\gamma_{c}\left(P_{2} \square P_{3}\right)=2$. For $n \geq 4$, clearly $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a connected dominating set of $\left(P_{2} \square P_{n}\right)$, i.e., $\gamma_{c}\left(P_{2} \square P_{n}\right) \leq n$. If possible, let S be a connected dominating set of $P_{2} \square P_{n}$ of cardinality $n-1$.
Case 1: S contains only $n-1 x_{i}$'s or S contains only $n-1 y_{i}$'s. Suppose the former holds. Let x_{j} be the unique vertex not in S. Then y_{j} is not dominated by any vertex in S. Hence, S cannot contain only x_{i} 's and similarly S can not contain only y_{i} 's.
Case 2: S contains at least one x_{i} and at least one y_{j}. Since $\langle S\rangle$ is connected, there exists an index k such that $x_{k}, y_{k} \in S$, i.e., both the vertices in D_{k} are in S. Thus, S contains other $n-3$ vertices apart from x_{k}, y_{k}. Thus there exist at least two columns D_{i} and D_{j} which has no vertices in S. Now only options left for $\left\{D_{i}, D_{j}\right\}$ is $\left\{D_{1}, D_{2}\right\}$ or $\left\{D_{n-1}, D_{n}\right\}$ or $\left\{D_{1}, D_{n}\right\}$, as in other cases $\langle S\rangle$ fails to be connected.
Case 2(a): If $\left\{D_{i}, D_{j}\right\}$ is $\left\{D_{1}, D_{2}\right\}$ or $\left\{D_{n-1}, D_{n}\right\}$, then the vertices in D_{1} or D_{n} are not dominated by S.
Case 2(b): If $\left\{D_{i}, D_{j}\right\}$ is $\left\{D_{1}, D_{n}\right\}$, then both D_{2} and D_{n-1} are contained in S, otherwise S will fail to dominate $P_{2} \square P_{n}$. Thus, in this case, there are at least two columns, namely D_{2} and D_{n-1}, with both vertices in S. As S contains $n-1$ vertices, the number of remaining vertices is $n-5$, which is distributed among the $n-4$ columns $D_{3}, D_{4}, \ldots, D_{n-2}$. So at least one column among $D_{3}, D_{4}, \ldots, D_{n-2}$ has no vertices in S, thereby making $\langle S\rangle$ disconnected.

Thus, $\gamma_{c}\left(P_{2} \square P_{n}\right)=n$ for $n \geq 4$.
Lemma 4.2. For $n \geq 5$, any γ_{c}-set S in $P_{2} \square P_{n}$ either contains $\left\{x_{3}, x_{4}, \ldots, x_{n-3}, x_{n-2}\right\} \subset S$ or $\left\{y_{3}, y_{4}, \ldots, y_{n-3}, y_{n-4}\right\} \subset S$ (and not both).
Proof. Let S be a γ_{c}-set of $P_{2} \square P_{n}$ of cardinality n, where $n \geq 5$. Note that $S \cap\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\} \neq \emptyset$ and $S \cap\left\{x_{n-1}, y_{n-1}, x_{n}, y_{n}\right\} \neq \emptyset$. If $D_{k} \cap S=\emptyset$ for some $k \in\{3, \ldots, n-2\}$, then $\langle S\rangle$ is disconnected, since there is no path connecting a vertex on the left of D_{k} and a vertex on the right of D_{k}. Let $x_{k} \in S$. If possible, $y_{k} \in S$, then arguing as in Case 2 of Lemma 4.1, other $n-2$ vertices of S appears in the $n-1$ columns $D_{1}, D_{2}, \ldots, D_{k-1}, D_{k+1}, \ldots, D_{n}$. Thus there exists $j \in\{1,2, \ldots, k-1, k+1, \ldots, n\}$ such that $D_{j} \cap S=\emptyset$. If $D_{j} \neq D_{1}$ and $D_{j} \neq D_{n}$, then $\langle S\rangle$ is not connected. Thus, $D_{j}=D_{1}$ or $D_{j}=D_{n}$.

If $D_{j}=D_{1}$, then as S dominates x_{1} and y_{1} we have $D_{2} \subset S$. Thus $x_{2}, y_{2}, x_{k}, y_{k}$ are four distinct vertices of S. Thus other $n-4$ vertices appear in $n-3$ columns $D_{3}, D_{4}, \ldots, D_{k-1}, D_{k+1}, \ldots, D_{n}$. Again arguing in the same way, there exists $i \in\{3,4, \ldots, k-1, k+1, \ldots, n\}$ such that $D_{i} \cap S=\emptyset$. If $D_{i} \neq D_{3}$ and $D_{i} \neq D_{n}$, then $\langle S\rangle$ is not connected. Thus, $D_{i}=D_{3}$ or $D_{i}=D_{n}$. Also,
if $D_{i}=D_{3}$, then $\langle S\rangle$ is not connected as there does not exist any path from x_{2} to x_{k} (or from y_{2} to y_{k}) in $\langle S\rangle$. Thus, $D_{i}=D_{n}$. This implies that $D_{n-1} \subset S$ (to dominate x_{n} and y_{n}). Hence, $x_{2}, y_{2}, x_{k}, y_{k}, x_{n-1}, y_{n-1}$ are six distinct vertices of S. Thus other $n-6$ vertices appear in $n-5$ columns $D_{3}, D_{4}, \ldots, D_{k-1}, D_{k+1}, \ldots, D_{n-2}$. Again arguing in the same way, there exists $l \in\{3,4, \ldots, k-1, k+1, \ldots, n-2\}$ such that $D_{l} \cap S=\emptyset$. This implies $\langle S\rangle$ is not connected as there is no path joining x_{2} and x_{n-1} in $\langle S\rangle$, which is a contradiction.

Similarly, it can be shown that starting with $D_{j}=D_{n}$ will also lead to disconnectedness of $\langle S\rangle$, which is a contradiction. Thus, the assumption $y_{k} \in S$ is invalid.

Hence, if $x_{k} \in S$ for any $k \in\{2,3, \ldots, n-1\}$, then to maintain connectedness of $\langle S\rangle$, $\left\{x_{3}, x_{4}, \ldots, x_{n-2}\right\} \subset S$. In a similar way, if $y_{k} \in S$ for any $k \in\{2,3, \ldots, n-1\}$, then $\left\{y_{3}, y_{4}, \ldots, y_{n-2}\right\} \subset S$. Finally the lemma follows from the observation that to dominate $P_{2} \square P_{n}$, at least one of x_{k} or y_{k} with $k \in\{2,3, \ldots, n-1\}$ must belong to S.
Theorem 4.5. $\tau_{C}\left(P_{2} \square P_{n}\right)=\left\{\begin{array}{ll}4, & \text { if } n=2 . \\ 1, & \text { if } n=3, \\ 8, & \text { if } n \geq 4 .\end{array}\right.$.
Proof. Let S be a γ_{c}-set of $P_{2} \square P_{n}$ of cardinality n where $n \geq 2$. If $n=2$, then $P_{2} \square P_{2} \cong$ C_{4} and any two adjacent vertices form a γ_{c}-set, i.e., $\left\{x_{1}, y_{1}\right\},\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{2}\right\},\left\{x_{2}, y_{2}\right\}$ are all possible γ_{c}-sets of $P_{2} \square P_{2}$. If $n=3$, there is a unique γ_{c}-set $\left\{x_{2}, y_{2}\right\}$. So, let $n \geq 4$. By Lemma 4.2, either $\left\{x_{3}, x_{4}, \ldots, x_{n-3}, x_{n-2}\right\} \subset S$ or $\left\{y_{3}, y_{4}, \ldots, y_{n-3}, y_{n-2}\right\} \subset S$ (and not both). Let $\left\{x_{3}, x_{4}, \ldots, x_{n-3}, x_{n-2}\right\} \subset S$. As $y_{3} \notin S$, to maintain connectedness of $\langle S\rangle$ and to dominate x_{1}, we have $x_{2} \in S$. In the same way, $x_{n-1} \in S$. Thus, $\left\{x_{2}, x_{3}, \ldots, x_{n-2}, x_{n-1}\right\} \subset S$. Since, S contains n elements, let the other 2 vertices in S be a, b. To dominate x_{1} and y_{1}, one of a and b (say a) must be either x_{1} or y_{2}. Similarly b is either x_{n} or y_{n-1}. Since there are two choices each for a and b such that S forms a γ_{c}-set, the number of γ_{c}-sets containing $x_{3}, x_{4}, \ldots, x_{n-3}, x_{n-2}$ is 4 . Similarly, the number of γ_{c}-sets containing $y_{3}, y_{4}, \ldots, y_{n-3}, y_{n-2}$ is 4 . Hence, by Lemma 4.2, we get $\tau_{c}\left(P_{2} \square P_{n}\right)=8$ for $n \geq 4$.
Theorem 4.6. Let $P_{2} \square P_{n}$ be a rectangular grid with $n \geq 2$ and let $u_{i}=x_{i}$ or y_{i}. If $n=2$, then $C D V(v)=2$ for all $v \in V\left(P_{2} \square P_{2}\right)$. If $n=3$, then $C D V\left(u_{1}\right)=C D V\left(u_{3}\right)=0$ and $C D V\left(u_{2}\right)=1$. If $n \geq 4$, then

$$
C D V\left(u_{i}\right)= \begin{cases}2, & \text { if } i=1 \text { or } n \\ 6, & \text { if } i=2 \text { or } n-1, \\ 4, & \text { otherwise }\end{cases}
$$

Proof. The proof is obvious for $n=2$ and 3, by Theorem 4.5. So, we assume that $n \geq 4$. Let v be a vertex in $P_{2} \square P_{n}$.
Case 1: $\left[v \in\left\{x_{1}, y_{1}, x_{n}, y_{n}\right\}\right]$ Let $v=x_{1}$, then using the line of proof of Theorem 4.5, the γ_{c}-sets containing x_{1} are precisely those where $a=x_{1}$ and b is either x_{n} or y_{n-1}, i.e., $C D V(v)=2$. Same is the case when $v=y_{1}$ or $v=x_{n}$ or $v=y_{n}$.
Case 2: $\left[v \in\left\{x_{2}, y_{2}, x_{n-1}, y_{n-1}\right\}\right]$ Let $v=x_{2}$. Note that any connected dominating set contains either x_{2}, y_{2}. Also total number of minimum connected dominating sets is 8 , out of which only
two does not contain x_{2}, namely $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ and $\left\{y_{1}, y_{2}, \ldots, y_{n-1}, x_{n-1}\right\}$. Thus $C D V\left(x_{2}\right)=$ $8-2=6$. Now, as there exist isomorphisms which maps x_{2} to y_{2}, x_{n-1}, y_{n-1} respectively, by Proposition 2.2, we have $C D V\left(x_{2}\right)=C D V\left(y_{2}\right)=C D V\left(x_{n-1}\right)=C D V\left(y_{n-1}\right)=6$.
Case 3: $\left[v \notin\left\{x_{1}, y_{1}, x_{2}, y_{2}, x_{n-1}, y_{n-1}, x_{n}, y_{n}\right\}\right]$ In this case, from the proof of Theorem 4.5, we have $C D V(v)=4$.
4.5. The $2 \times n$ cylindrical grid: $P_{2} \square C_{n}$

We consider $P_{2} \square C_{n}(n \geq 3)$ as two copies of C_{n} with vertices labelled $x_{1}, x_{2}, \ldots, x_{n}$ and $y_{1}, y_{2}, \ldots, y_{n}$ with the additional edges $x_{i} y_{i}$ for each $i \in\{1,2, \ldots, n\}$. (See Figure 2.) For later use, we partition the vertices into n sets (or columns as shown in Figure 2) $D_{i}=\left\{x_{i}, y_{i}\right\}$ for $i \in\{1,2, \ldots, n\}$.

Figure 2. Labelling of vertices in $P_{2} \square C_{n}$

Lemma 4.3. For $n \geq 3$,

$$
\gamma_{c}\left(P_{2} \square C_{n}\right)= \begin{cases}2, & \text { if } n=3 \\ n, & \text { if } n>3\end{cases}
$$

Proof. The lemma is trivially true for $n=3$. For $n>3$, clearly $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a connected dominating set of $P_{2} \square C_{n}$ and hence $\gamma_{c}\left(P_{2} \square C_{n}\right) \leq n$. Suppose there exists a connected dominating set S with $n-1$ vertices. Since there are n columns $D_{1}, D_{2}, \ldots, D_{n}$, then $D_{i} \cap S=\emptyset$ for some $i \in\{1,2, \ldots, n\}$.
Case 1: [Either D_{i-1} or D_{i+1} contains no vertices from S.] Let $D_{i-1} \cap S=\emptyset$. Then both $D_{i+1} \subset S$ and $D_{i-2} \subset S$. Thus other $n-5$ vertices of S appear in $n-4$ columns $D_{1}, D_{2}, \ldots, D_{i-3}, D_{i+2}, \ldots, D_{n}$. Thus there exists $j \in\{1,2, \ldots, i-3, i+2, \ldots, n\}$ such that $D_{j} \cap S=\emptyset$. This implies that there does not exist any path from x_{i+1} to x_{i-2} in $\langle S\rangle$ which is a contradiction to the connectedness of $\langle S\rangle$. The case for $D_{i+1} \cap S=\emptyset$ is similar.
Case 2: [Both D_{i-1} and D_{i+1} contains at least one vertex from S.] As there are two vertices in both D_{i-1} and $D_{i+1}, 4$ possibilities are there:

Case 2A: $\left[x_{i-1}, y_{i+1} \in S\right]$ Since $D_{i} \cap S=\emptyset$, the shortest path joining x_{i-1} and y_{i+1} should pass through at least one vertex of each D_{k} for $k \in\{1,2, \ldots, i-2, i+2, \ldots, n\}$ and since $\langle S\rangle$ in connected, at least one D_{k} contains two vertices x_{k} and y_{k}. This makes the total count of vertices to be n which is more than $n-1$ and hence a contradiction.
Case 2B: $\left[x_{i+1}, y_{i-1} \in S\right]$ Same as Case 2A.
Case 2C: $\left[x_{i-1}, x_{i+1} \in S\right]$ In this case, to dominate y_{i}, at least one of y_{i-1} and y_{i+1} belong to S. Without loss of generality, let $y_{i-1} \in S$. Thus $D_{i-1} \subset S$ and $x_{i+1} \in S$. Therefore, other $n-4$ vertices of S appears in the $n-3$ columns $D_{1}, D_{2}, \ldots, D_{i-2}, D_{i+1}, D_{i+2}, \ldots, D_{n} .{ }^{2}$ Thus $\exists j \in\{1,2, \ldots, i-2, i+2, \ldots, n\}$ such that $D_{j} \cap S=\emptyset$. As D_{i} and D_{j} are not consecutive columns, there does not exist any path joining x_{i-1} and x_{i+1} in $\langle S\rangle$. This implies $\langle S\rangle$ is disconnected which is a contradiction.
Case 2D: $\left[y_{i-1}, y_{i+1} \in S\right]$ Same as Case 2C.
Combining all the cases, we see that $P_{2} \square C_{n}$ can not have a connected dominating set of cardinality $n-1$ and hence $\gamma_{c}\left(P_{2} \square C_{n}\right)=n$ for $n \geq 4$.

Theorem 4.7. For $n \geq 3$,

$$
\tau_{c}\left(P_{2} \square C_{n}\right)= \begin{cases}3, & \text { if } n=3, \\ 30, & \text { if } n=4, \text { and } \\ 2\left(n^{2}+1\right), & \text { if } n>4 .\end{cases}
$$

and for $v \in V\left(P_{2} \square C_{n}\right)$ and $n \geq 3$,

$$
C D V(v)= \begin{cases}1, & \text { if } n=3 \\ 15, & \text { if } n=4, \text { and } \\ n^{2}+1, & \text { if } n>4\end{cases}
$$

Proof. First, we deal with the case when $n=3$. In this case, the only $3 \gamma_{c}$-sets are $\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\}$ and $\left\{x_{3}, y_{3}\right\}$. Thus $\tau_{c}=3$ and $C D V(v)=1$ for each vertex v in $V\left(P_{2} \square C_{3}\right)$.

Now, we deal with the case when $n>3$. Let S be a γ_{c}-set of $P_{2} \square C_{n}$ of cardinality n.
Case 1: [Each D_{i} contains one element of S.] Let $x_{1} \in D_{1} \cap S$. We claim that $y_{i} \notin S$, for all i. If possible, let $y_{i} \in S$ for some $i \in\{1,2, \ldots, n\}$. As $\langle S\rangle$ is connected, there exists a path joining x_{1} and y_{i} in $\langle S\rangle$. However, that path will contain x_{j} and y_{j} as consecutive vertices for some j. Thus D_{j} contains two vertices in S, a contradiction. Thus $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Similarly, $y_{1} \in D_{1} \cap S$ implies $S=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$.
Case 2:[There exists at least one D_{i} with no element of S.]
Case 2A:[There exists more than one D_{i} 's with no element of S.] We first note that if the number of columns not intersecting S is more than 2 , then $\langle S\rangle$ is disconnected. Thus, let D_{i} and D_{j} be two columns which do not intersect S. As $\langle S\rangle$ is connected, D_{i} and D_{j} are consecutive columns, i.e., let the two columns be D_{i} and D_{i+1}. Then $D_{i-1} \subset S$ and $D_{i+2} \subset S$. Thus other

[^0]$n-4$ (provided $n>4$) vertices of S appears in $n-4$ columns $D_{1}, D_{2}, \ldots, D_{i-2}, D_{i+3}, \ldots, D_{n}$. Since $\langle S\rangle$ is connected, each of these $n-4$ columns contains exactly on element of S. Moreover to maintain connectedness of $\langle S\rangle$, either all the x_{i} 's or all the y_{i} 's of these $n-4$ columns belong to S. Thus, S is of the form $\left\{y_{i+2}, x_{i+2}, x_{i+3}, \ldots, x_{n}, x_{1}, x_{2}, \ldots, x_{i-1}, y_{i-1}\right\}$ or of the form $\left\{x_{i+2}, y_{i+2}, y_{i+3}, \ldots, y_{n}, y_{1}, y_{2}, \ldots, y_{i-1}, x_{i-1}\right\}$.

However, if $n=4$, the two forms of S given above are identical, i.e., $S=\left\{x_{i+2}, y_{i+2}, y_{i-1}, x_{i-1}\right\}$. Case 2B:[There exists exactly one D_{i} with no element of S.] Let $D_{i} \cap S=\emptyset$. Thus, to dominate x_{i}, y_{i}, exactly one of the following cases should occur.
Case 2B(i): $\left[x_{i-1}, y_{i-1} \in S\right.$.] In this case, the other $n-2$ vertices of S appears in the $n-2$ columns $\left\{D_{1}, D_{2}, \ldots, D_{i-2}, D_{i+1}, \ldots, D_{n}\right\}$. Moreover, as D_{i} is the only column that does not intersect S, each of the $n-2$ columns contains exactly one element from S. Let $x_{1} \in S$. Then to preserve connectedness of $\langle S\rangle, S=\left\{y_{i-1}, x_{i-1}, x_{i-2}, \ldots, x_{1}, x_{n}, \ldots, x_{i+1}\right\}$. Similarly, if $y_{1} \in S$, then $S=\left\{x_{i-1}, y_{i-1}, y_{i-2}, \ldots, y_{1}, y_{n}, \ldots, y_{i+1}\right\}$.
Case 2B(ii): $\left[x_{i+1}, y_{i+1} \in S\right.$.] Similar to that of Case-2B(i). In this case, either $S=\left\{y_{i+1}, x_{i+1}\right.$, $\left.x_{i+2}, \ldots, x_{n}, x_{1}, \ldots, x_{i-1}\right\}$ or $S=\left\{x_{i+1}, y_{i+1}, y_{i+2}, \ldots, y_{n}, y_{1}, \ldots, y_{i-1}\right\}$.
Case 2B(iii): $\left[x_{i-1}, y_{i+1} \in S\right.$.] Similarly, in this case, $\exists j \in\{1,2, \ldots, i-2, i+2, \ldots, n\}$ such that $S=\left\{y_{i+1}, y_{i+2}, \ldots, y_{j}, x_{j}, \ldots, x_{i-2}, x_{i-1}\right\}$.
Case 2B(iv): $\left[x_{i+1}, y_{i-1} \in S\right.$.] Similarly, in this case, $\exists j \in\{1,2, \ldots, i-2, i+2, \ldots, n\}$ such that $S=\left\{x_{i+1}, x_{i+2}, \ldots, x_{j}, y_{j}, \ldots y_{i-2}, y_{i-1}\right\}$.

While classifying the γ_{c}-sets, we see that there are mainly three types of γ_{c}-sets of $P_{2} \square C_{n}$:

- The types given by Case-1: $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $S=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$. Thus total number of γ_{c}-sets of this type is 2 .
- The types given by Case-2A: S 's which do not contain vertices from two consecutive columns D_{i} and D_{i+1}. As the number of ways in which we can drop two consecutive columns is n, the total number of γ_{c}-sets of this type is equal to $2 n$, if $n>4$ and is equal to 4 , if $n=4$.
- The types given by Case-2B: In Case-2B(i), we have two choices for S for each i. Thus Case-2B(i) contribute $2 n$ many γ_{c}-sets. Similarly, Case-2B(ii) contribute $2 n$ many γ_{c}-sets. In Case-2B(iii), we have n choices for i and $n-3$ choices for j. Thus Case-2B(iii) contribute $n(n-3)$ many γ_{c}-sets. Similarly, Case-2B(ii) contribute $n(n-3)$ many γ_{c}-sets.

Thus the total number of distinct γ_{c}-sets of $P_{2} \square C_{n}$ is $2\left(n^{2}+1\right)$, i.e., $\tau_{c}=2\left(n^{2}+1\right)$, if $n>4$. If $n=4$, then $\tau_{c}=30$. Now, as $P_{2} \square C_{n}$ is vertex transitive, $C D V(u)=C D V(v)$ for all $u, v \in$ $P_{2} \square C_{n}$. Hence, by continuous analogue of Proposition 2.1, we have $2 n \cdot C D V(v)=2 n\left(n^{2}+1\right)$, i.e., $C D V(v)=n^{2}+1$ for $n>4$. For $n=4$, by Proposition 2.1, we have $8 \cdot C D V(v)=4 \cdot 30$, i.e., $C D V(v)=15$.

Hence, the theorem follows.

Acknowledgement

The author is grateful to the anonymous referee for providing fruitful suggestions and pointing out a few mistakes in the original manuscript. The funding of DST-SERB-SRG Sanction no. $S R G / 2019 / 000475$, Govt. of India is acknowledged.

Connected domination value in graphs $\mid \quad$ Angsuman Das

References

[1] E.J. Cockayne, R.M. Dawes, and S.T. Hedetniemi, Total domination in graphs, Networks 10 (3) (1980), 211-219.
[2] E.J. Cockayne, M.A. Henning, and C.M. Mynhardt, Vertices contained in all or in no minimum total dominating set of a tree, Discrete Math. 260 (2003), 37-44.
[3] A. Das, R.C. Laskar, and N.J. Rad, On α-domination in graphs, Graphs Combin. 34 (2018), 193-205.
[4] A. Das, Partial domination in graphs, Iran. J. Sci. Technol. Trans. A Sci. 43 (2019),17131718.
[5] A. Das, Coefficient of domination in graph, Discrete Math. Algorithms Appl. 9(2) (2017), 1750018.
[6] I.S. Hamid, S. Balamurugan, and A. Navaneethakrishnan, A note on isolate domination, Electron. J. Graph Theory Appl. 4 (1) (2016), 94-100.
[7] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of domination in graphs, Marcel Dekker Inc., 1998.
[8] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater (eds), Domination in Graphs: Advanced Topics, Marcel Dekker Inc., 1998.
[9] C.X. Kang, Total domination value in graphs, Util. Math. 95 (2014), 263-279.
[10] N. Meddah and M. Blidia, Vertices contained in all or in no minimum k-dominating set of a tree, AKCE Int. J. Graphs Comb. 11 (1) (2014), 105-113.
[11] D.A. Mojdeh, S.R. Musawi, and E. Nazari, On the distance domination number of bipartite graphs, Electron. J. Graph Theory Appl. 8 (2) (2020), 353-364.
[12] C.M. Mynhardt, Vertices contained in every minimum dominating set of a tree, J. Graph Theory 31 (1999), 163-177.
[13] E. Sampathkumar, and H.B. Walikar, The connected domination number of a graph, J. Math. Phy. Sci. 13 (6) (1979), 607-613.
[14] D.B. West, Introduction to Graph Theory, Prentice Hall, 2001.
[15] E. Yi, Domination value in graphs, Contrib. Discrete Math. 7 (2) (2012), 30-43.
[16] E. Yi: Domination value in $P_{2} \square P_{n}$ and $P_{2} \square C_{n}$, J. Combin. Math. Combin. Comput. 82 (2012), 59-75.

[^0]: ${ }^{2}$ Note that D_{i+1} has one vertex x_{i+1} in S, but it is also included in the list of $n-3$ columns as y_{i+1} may belong to S.

