Electronic Journal of Graph Theory and Applications

A remark on star- C_{4} and wheel- C_{4} Ramsey numbers

Yanbo Zhang ${ }^{\text {a,b }}$, Hajo Broersma ${ }^{\text {b }}$, Yaojun Chen ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Nanjing University, Nanjing 210093, P.R. China
${ }^{b}$ Faculty of Electrical Engineering, Mathematics and Computer Science,
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

ybzhang@163.com, h.j.broersma@utwente.nl, yaojunc@ nju.edu.cn

Abstract

Given two graphs G_{1} and G_{2}, the Ramsey number $R\left(G_{1}, G_{2}\right)$ is the smallest integer N such that, for any graph G of order N, either G_{1} is a subgraph of G, or G_{2} is a subgraph of the complement of G. Let C_{n} denote a cycle of order n, W_{n} a wheel of order $n+1$ and S_{n} a star of order n. In this paper, it is shown that $R\left(W_{n}, C_{4}\right)=R\left(S_{n+1}, C_{4}\right)$ for $n \geq 6$. Based on this result and Parsons' results on $R\left(S_{n+1}, C_{4}\right)$, we establish the best possible general upper bound for $R\left(W_{n}, C_{4}\right)$ and determine some exact values for $R\left(W_{n}, C_{4}\right)$.

1. Introduction

In this note we deal with finite simple graphs only. For a nonempty proper subset $S \subseteq V(G)$, let $G[S]$ and $G-S$ denote the subgraph induced by S and $V(G)-S$, respectively. Let $N_{S}(v)$ be the set of all the neighbors of a vertex v that are contained in S, let $N_{S}[v]=N_{S}(v) \cup\{v\}$ and let $d_{S}(v)=\left|N_{S}(v)\right|$. If $S=V(G)$, we write $N(v)=N_{G}(v), N[v]=N(v) \cup\{v\}$ and $d(v)=d_{G}(v)$. For two vertex-disjoint graphs G_{1} and $G_{2}, G_{1}+G_{2}$ is the graph obtained from $G_{1} \cup G_{2}$ by joining every vertex of G_{1} to every vertex of G_{2}. A star, a cycle and a complete graph of order n are denoted by S_{n}, C_{n} and K_{n}, respectively. A wheel $W_{n}=K_{1}+C_{n}$ is a graph of order $n+1$. We use

Received: 01 May 2014, Revised: 01 September 2014, Accepted: 07 September 2014.
$\Delta(G), \delta(G)$ and $\alpha(G)$ to denote the maximum degree, the minimum degree and the independence number, respectively, of a graph G.

Given two graphs G_{1} and G_{2}, the Ramsey number $R\left(G_{1}, G_{2}\right)$ is the smallest integer N such that, for any graph G of order N, either G contains G_{1} or \bar{G} contains G_{2}, where \bar{G} is the complement of G. It is well-known that it is difficult to deal with some extremal problems involving C_{4}. In this note, we are interested in the relationship between two Ramsey numbers involving C_{4}, that is, $R\left(S_{n+1}, C_{4}\right)$ and $R\left(W_{n}, C_{4}\right)$. The former has been well-studied and the latter has received more attention recently.

Parsons [6] began to consider the Ramsey numbers $R\left(S_{n+1}, C_{4}\right)$ back in 1975. By using the existence of projective planes over Galois fields and the generalized friendship theorem, in [6] he established upper bounds for $R\left(S_{n+1}, C_{4}\right)$ and determined the exact values for several specific values of n, as expressed in the following two results.

Theorem 1.1. (Parsons [6]). $R\left(S_{n+1}, C_{4}\right) \leq n+\lfloor\sqrt{n-1}\rfloor+2$ for all $n \geq 2$, and if $n=q^{2}+1$ and $q \geq 1$, then $R\left(S_{n+1}, C_{4}\right) \leq n+\lfloor\sqrt{n-1}\rfloor+1$.

Theorem 1.2. (Parsons [6]). If q is a prime power, then $R\left(S_{q^{2}+1}, C_{4}\right)=q^{2}+q+1$ and $R\left(S_{q^{2}+2}, C_{4}\right)=$ $q^{2}+q+2$.

Noting that if $n=q^{2}$, then $n+\lfloor\sqrt{n-1}\rfloor+2=q^{2}+q+1$, we see that the general bound for $R\left(S_{n+1}, C_{4}\right)$ in Theorem 1.1 is best possible.

Obviously, S_{n+1} is a (spanning) subgraph of W_{n} and so $R\left(W_{n}, C_{4}\right) \geq R\left(S_{n+1}, C_{4}\right)$. By using an exhaustive computer search, Tse [10] was able to calculate the value of $R\left(W_{n}, C_{4}\right)$ for $3 \leq$ $n \leq 12$. An interesting question in this respect is: what is the best possible upper bound for $R\left(W_{n}, C_{4}\right)$? Surahmat et al. [9] showed that $R\left(W_{n}, C_{4}\right) \leq n+\lceil n / 3\rceil+1$ for $n \geq 6$. Clearly, this upper bound is not tight in general. Because $R\left(W_{n}, C_{4}\right) \geq R\left(S_{n+1}, C_{4}\right)$ showing that the best bound for $R\left(W_{n}, C_{4}\right)$ is at least $n+\lfloor\sqrt{n-1}\rfloor+2$, one may ask whether $R\left(W_{n}, C_{4}\right)-$ $R\left(S_{n+1}, C_{4}\right)$ is a constant or a function depending on n. Recently, by using Reiman's theorem [8] on the Turán number $t\left(n, C_{4}\right)$, Ore's theorem [5] on Hamiltonicity, a result of Faudree and Schelp [3] on $R\left(C_{n}, C_{4}\right)$ and the Erdős-Rényi graph, Dybizbański and Dzido [2] established a general upper bound for $R\left(W_{n}, C_{4}\right)$ for $n \geq 10$ and determined some exact values of $R\left(W_{n}, C_{4}\right)$. We summarized some of their results in the following theorem.

Theorem 1.3. (Dybizbański and Dzido [2]). $R\left(W_{n}, C_{4}\right) \leq n+\lfloor\sqrt{n-1}\rfloor+2$ for all $n \geq 10$, and if $q \geq 4$ is a prime power, then $R\left(W_{q^{2}}, C_{4}\right)=q^{2}+q+1$.

In the same paper, with the help of computers, they determined the exact values of some Ramsey numbers for a small wheel versus a C_{4}.

Theorem 1.4. (Dybizbański and Dzido [2]). $R\left(W_{n}, C_{4}\right)=n+5$ for $13 \leq n \leq 16$.
Clearly, Theorem 1.3 implies that Parsons' bound for $R\left(S_{n+1}, C_{4}\right)$ is also a best possible upper bound for $R\left(W_{n}, C_{4}\right)$ if $n \geq 10$. In an unpublished paper, Wu et al. [11] obtained nine new values for $R\left(W_{n}, C_{4}\right)$; as in the other cases their calculations have been performed with the aid of computer search.

Theorem 1.5. (Wu et al. [11]) $R\left(W_{n}, C_{4}\right)=n+5$ for $17 \leq n \leq 20 ; R\left(W_{26}, C_{4}\right)=32$; $R\left(W_{n}, C_{4}\right)=n+7$ for $34 \leq n \leq 36 ; R\left(W_{43}, C_{4}\right)=51$.

The exact values of the Ramsey numbers $R\left(S_{n+1}, C_{4}\right)$ for $n \leq 6$ can be found in [7]. For the value of $R\left(S_{8}, C_{4}\right)$, we get $R\left(S_{8}, C_{4}\right) \leq 11$ by Theorem 1.1. Since the Petersen graph contains no C_{4} and its complement has no S_{8}, we get $R\left(S_{8}, C_{4}\right) \geq 11$ and so we obtain that $R\left(S_{8}, C_{4}\right)=$ 11. Using Theorem 1.2, we can get the exact values of $R\left(S_{n+1}, C_{4}\right)$ for $n=9,10,16,17$. By considering Theorems 1.1, 1.2 and 1.3, and these known values of $R\left(S_{n}, C_{4}\right)$ and $R\left(W_{n}, C_{4}\right)$ for small $n \geq 6$, we observe that there is an infinite number of values of n for which $R\left(W_{n}, C_{4}\right)=$ $R\left(S_{n+1}, C_{4}\right)$. Motivated by this observation, a natural question is whether this equality holds in general. In this note, we give an affirmative answer to this question. Our main result is as follows.
Theorem 1.6. $R\left(W_{n}, C_{4}\right)=R\left(S_{n+1}, C_{4}\right)$ for $n \geq 6$.
We postpone our proof of this result to the next section.
By Theorem 1.6, we see that the two functions $R\left(W_{n}, C_{4}\right)$ and $R\left(S_{n+1}, C_{4}\right)$ are in fact the same when $n \geq 6$. Because the Ramsey numbers $R\left(S_{n+1}, C_{4}\right)$ are well-studied, we can use Theorem 1.6 and known results on $R\left(S_{n+1}, C_{4}\right)$ to establish new results on $R\left(W_{n}, C_{4}\right)$. Of course, we can do that in reverse as well. Up to now, most known values of $R\left(W_{n}, C_{4}\right)$ for small n are obtained with the help of computers. Because finding an S_{n+1} is much easier than finding a W_{n} in a graph using computers, we can focus our calculation on $R\left(S_{n+1}, C_{4}\right)$ by computers instead of $R\left(W_{n}, C_{4}\right)$ if we want to determine some values of $R\left(W_{n}, C_{4}\right)$ with the help of computers.

Combining Theorems 1.1, 1.2 and 1.6, we obtain the following.
Theorem 1.7. $R\left(W_{n}, C_{4}\right) \leq n+\lfloor\sqrt{n-1}\rfloor+2$ for $n \geq 6$, and if $n=q^{2}+1$ and $q \geq 3$, then $R\left(W_{n}, C_{4}\right) \leq n+\lfloor\sqrt{n-1}\rfloor+1$. Furthermore, if $q \geq 3$ is a prime power, then we have $R\left(W_{q^{2}}, C_{4}\right)=q^{2}+q+1$ and $R\left(W_{q^{2}+1}, C_{4}\right)=q^{2}+q+2$.

Clearly, Theorem 1.7 is stronger than Theorem 1.3. Furthermore, by Theorems 1.1-1.7 and some other known results on $R\left(S_{n+1}, C_{4}\right)$, we can summarize several exact values (see Table 1) for $R\left(W_{n}, C_{4}\right)$ and $R\left(S_{n+1}, C_{4}\right)$ when $n \geq 6$ is small. Here the numbers marked with $*$ are obtained from the results in this paper, and the numbers marked with \star can be obtained by Theorem 1.7 avoiding computer search.

n	6	$7-8$	$9-10$	$11-15$	$16-17$	$18-20$	25	26	$34-36$	43
$R\left(W_{n}, C_{4}\right)$	9	$n+4$	$n+4^{\star}$	$n+5$	$n+5^{\star}$	$n+5$	31	32^{\star}	$n+7$	51
$R\left(S_{n+1}, C_{4}\right)$	9	$n+4$	$n+4$	$n+5^{*}$	$n+5$	$n+5^{*}$	31	32	$n+7^{*}$	51^{*}

Table 1: Exact values of $R\left(W_{n}, C_{4}\right)$ and $R\left(S_{n+1}, C_{4}\right)$ for $6 \leq n \leq 43$.
As for the lower bounds of $R\left(S_{n+1}, C_{4}\right)$, Burr et al. [1] showed that $R\left(S_{n+1}, C_{4}\right)>n+\sqrt{n}-$ $6 n^{11 / 40}$. In the same paper, they proposed the following conjecture, for which Erdős, one of the authors, offered $\$ 100$ for a proof or disproof.
Conjecture 1. (Burr et al. [1]). $R\left(S_{n+1}, C_{4}\right)<n+\sqrt{n}-c$ holds infinitely often, where c is an arbitrary constant.

After an easy calculation, we find that all exact values of $R\left(S_{n+1}, C_{4}\right)$ listed in Table 1 satisfy $R\left(S_{n+1}, C_{4}\right) \geq n+\lceil\sqrt{n}\rceil$. Thus we finish this section by posing the following intriguing problem.
Question. Is it true that $R\left(W_{n}, C_{4}\right)=R\left(S_{n+1}, C_{4}\right) \geq n+\lceil\sqrt{n} \mid$ for all $n \geq 6$?

2. Proof of Theorem 1.6

In order to prove Theorem 1.6, we need the following four lemmas.
Lemma 2.1. (Faudree and Schelp [3]). $R\left(C_{n}, C_{4}\right)=n+1$ for $n \geq 6$.
Lemma 2.2. (Tse [10]). $R\left(W_{6}, C_{4}\right)=9, R\left(W_{n}, C_{4}\right)=n+4$ for $7 \leq n \leq 10$.
Lemma 2.3. (Faudree et al. [4]). $R\left(S_{7}, C_{4}\right)=9$.
Lemma 2.4. (Zhang et al. [12]) Let C be a longest cycle in a graph G and $u \in V(G)-V(C)$. Then $\alpha(G) \geq d_{C}(u)+1$.

Proof of Theorem 1.6. We first prove that $R\left(S_{n+1}, C_{4}\right) \geq n+4$ for $n \geq 7$. Let $k=\lfloor(n+1) / 4\rfloor$ and $C=x_{1} x_{2} \ldots x_{4 k} x_{1}$ be a cycle of length $4 k$. Set $X_{1}=\left\{x_{1}, x_{2}\right\}, X_{2}=\left\{x_{3}, x_{4}\right\}, X_{3}=\left\{x_{i} \mid i \equiv 1,2\right.$ $(\bmod 4)$ and $i \geq 5\}$ and $X_{4}=\left\{x_{i} \mid i \equiv 0,3(\bmod 4)\right.$ and $\left.i \geq 5\right\}$. We now construct a graph F of order $n+3$ from C as follows: $V(F)=V(C) \cup\left\{z_{i} \mid 1 \leq i \leq l\right\}$, where $4 k+l=n+3$. If $n \equiv 3(\bmod 4)$, then let $N\left(z_{1}\right)=X_{1} \cup X_{3}$ and $N\left(z_{2}\right)=X_{2} \cup X_{4}$; if $n \equiv 0(\bmod 4)$, then let $N\left(z_{1}\right)=X_{1} \cup\left\{z_{2}\right\}, N\left(z_{2}\right)=X_{3} \cup\left\{z_{1}\right\}$ and $N\left(z_{3}\right)=X_{2} \cup X_{4}$; if $n \equiv 1(\bmod 4)$, then let $N\left(z_{1}\right)=X_{1} \cup\left\{z_{2}\right\}, N\left(z_{2}\right)=X_{3} \cup\left\{z_{1}\right\}, N\left(z_{3}\right)=X_{2} \cup\left\{z_{4}\right\}$ and $N\left(z_{4}\right)=X_{4} \cup\left\{z_{2}\right\}$; if $n \equiv 2(\bmod 4)$, then let $N\left(z_{1}\right)=X_{1} \cup\left\{z_{2}\right\}, N\left(z_{2}\right)=X_{3} \cup\left\{z_{1}\right\}, N\left(z_{3}\right)=X_{2} \cup\left\{z_{4}\right\}$, $N\left(z_{4}\right)=X_{4} \cup\left\{z_{2}\right\}$ and $N\left(z_{5}\right)=\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}$. It is easy to check that F has no C_{4} and $\delta(F) \geq 3$. Therefore, $R\left(S_{n+1}, C_{4}\right) \geq n+4$ for $n \geq 7$.

Since $S_{n+1} \subseteq W_{n}$, we have $R\left(W_{n}, C_{4}\right) \geq R\left(S_{n+1}, C_{4}\right)$. By Lemmas 2.2 and 2.3, we see that $R\left(W_{6}, C_{4}\right)=R\left(S_{7}, C_{4}\right)$ and $R\left(W_{n}, C_{4}\right)=n+4$ for $7 \leq n \leq 10$. Since $R\left(S_{n+1}, C_{4}\right) \geq n+4$ for $n \geq 7$, we get that $R\left(W_{n}, C_{4}\right)=R\left(S_{n+1}, C_{4}\right)$ for $7 \leq n \leq 10$. Now it remains to show that $R\left(W_{n}, C_{4}\right) \leq R\left(S_{n+1}, C_{4}\right)$ for $n \geq 11$. Let G be a graph of order $N=R\left(S_{n+1}, C_{4}\right) \geq n+4$. Set $v \in V(G)$ with $d(v)=\Delta(G), Z=V(G)-N[v]$. Suppose to the contrary that neither G contains a W_{n} nor \bar{G} contains a C_{4}. Thus, noting that $N=R\left(S_{n+1}, C_{4}\right)$, we have $d(v) \geq n$. If $d(v) \geq n+1$, then by Lemma 2.1, $G[N(v)]$ contains a C_{n}, which together with v forms a W_{n} in G, a contradiction. Hence we have $d(v)=n$. By Theorem 1.1, $|Z|=N-(n+1) \leq\lfloor\sqrt{n-1}\rfloor+1$. Let C be a longest cycle in $G[N(v)]$. By Lemma 2.1, we have $|C| \geq n-1$, and so $|C|=n-1$. Set $u=N(v)-V(C)$. If $d_{C}(u) \geq 3$, then by Lemma 2.4, $\alpha(G[N(v)]) \geq 4$, which implies that \bar{G} contains a C_{4}, and hence $d_{C}(u) \leq 2$. If there exists some vertex $y \in V(G)-\{u\}$ such that y has two nonadjacent vertices $y_{1}, y_{2} \in V(C)-N_{C}(u)$, then $u y_{1} y y_{2} u$ is a C_{4} in \bar{G}, and hence y has at most one nonadjacent vertex in $V(C)-N_{C}(u)$ for each $y \in V(G)-\{u\}$. Since $n \geq 11$, $|Z| \leq\lfloor\sqrt{n-1}\rfloor+1$ and $d_{C}(u) \leq 2$, we have

$$
\begin{aligned}
\left|V(C)-N_{C}(u)\right|-\left|N_{C}(u) \cup Z\right| & =|C|-d_{C}(u)-|Z|-d_{C}(u) \\
& \geq(n-1)-2-(\lfloor\sqrt{n-1}\rfloor+1)-2 \geq 2 .
\end{aligned}
$$

Because every vertex of $N_{C}(u) \cup Z$ has at least $\left|V(C)-N_{C}(u)\right|-1$ adjacent vertices in $V(C)-$ $N_{C}(u)$, by the Pigeonhole Principle, there exists some vertex $w \in V(C)-N_{C}(u)$ such that $N_{C}(u) \cup Z \subseteq N(w)$. Noting that w has at most one nonadjacent vertex in $V(C)-N_{C}(u)$ and $w v \in E(G)$, we have

$$
d(w) \geq\left|V(C)-N_{C}(u)\right|-2+\left|N_{C}(u) \cup Z\right|+1=|C|+|Z|-1=N-3 \geq n+1,
$$

which contradicts the fact that $d(v)=\Delta(G)=n$.
This completes the proof of Theorem 1.6.

Acknowledgement

This research was supported by NSFC under grant numbers 11071115, 11371193 and 11101207.

References

[1] S.A. Burr, P. Erdős, R.J. Faudree, C.C. Rousseau and R.H. Schelp, Some complete bipartite graph-tree Ramsey numbers, Annals of Discrete Mathematics 41 (1989), 79-89.
[2] J. Dybizbański and T. Dzido, On some Ramsey numbers for quadrilaterals versus wheels, Graphs and Combinatorics 30 (2014), 573-579.
[3] R.J. Faudree and R.H. Schelp, All Ramsey numbers for cycles in graphs, Discrete Mathematics 8 (1974), 313-329.
[4] R.J. Faudree, C.C. Rousseau and R.H. Schelp, Small order graph-tree Ramsey numbers, Discrete Mathematics 72 (1988), 119-127.
[5] O. Ore, Note on Hamilton circuits, American Mathematical Monthly 67 (1960), 55.
[6] T.D. Parsons, Ramsey graphs and block designs I, Transactions of the American Mathematical Society 209 (1975), 33-44.
[7] S.P. Radziszowski, Small Ramsey numbers, The Electronic Journal of Combinatorics (2011), DS1.13.
[8] I. Reiman, Uber ein Problem von K. Zarankiewicz, Acta Mathematica Academiae Scientiarum Hungarica 9 (1958), 269-279.
[9] Surahmat, E.T. Baskoro, S. Uttunggadewa and H.J. Broersma, An upper bound for the Ramsey number of a cycle of length four versus wheels, LNCS 3330, Springer, Berlin (2005), 181-184.
[10] K.K. Tse, On the Ramsey number of the quadrilateral versus the book and the wheel, Australasian Journal of Combinatorics 27 (2003), 163-167.
[11] Y.L. Wu, Y.Q. Sun and S. Radziszowski, Wheel and star-critical Ramsey numbers for quadrilateral, http://www.cs.rit.edu/~spr/PUBL/wsrl3.pdf
[12] L.M. Zhang, Y.J. Chen and T.C. Edwin Cheng, The Ramsey numbers for cycles versus wheels of even order, European Journal of Combinatorics 31 (2010), 254-259.

