The rainbow k-connectivity of the non-commutative graph of a finite group

Luis A. Dupont, Raquiel R. López Martínez, Miriam Rodríguez

Facultad de Matemáticas, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N; Zona Universitaria; Xalapa, Ver., México, CP 91090.

ldupont@uv.mx, ralopez@uv.mx, miriamrodriguezuv@gmail.com

Abstract

The non-commuting graph $\Gamma(G)$ of a non–abelian group G is defined as follows. The vertex set $V(\Gamma(G))$ of $\Gamma(G)$ is $G \setminus Z(G)$ where $Z(G)$ denotes the center of G and two vertices x and y are adjacent if and only if $xy \neq yx$. We prove that the rainbow k-connectivity of $\Gamma(G)$ is equal to $\lceil k/2 \rceil + 2$, for $3 \leq k \leq |Z(G)|$.

Keywords: non-commuting graph, non-abelian group, rainbow connectivity, rainbow path

AMS Mathematics Subject Classification: 05C15, 05C25, 05C38

DOI: 10.5614/ejgta.2020.8.1.7

1. Introduction

Let G be a group and $Z(G)$ be the center of G. The non-commuting graph $\Gamma(G)$ associated to G is the graph with vertex set $G \setminus Z(G)$ and such that two vertices x and y are adjacent whenever $xy \neq yx$. The non-commuting graph of a group was first considered by Paul Erdős in 1975, [6]. Subsequently, it was strongly developed in [1].

Let Γ be a connected graph with the vertex set $V(\Gamma)$ and the edge set $E(\Gamma)$. Define a coloring $\varphi : E(\Gamma) \to \{1, 2, \ldots, t\}$, $t \in \mathbb{N}$, where adjacent edges may be colored the same. Given an edge coloring of Γ, a path P is rainbow if no two edges of P are colored the same. An edge-colored
The rainbow k-connectivity of the non-commutative graph of a finite group

Luis A. Dupont et al.

A graph Γ is rainbow connected if every pair of vertices of Γ are connected by a rainbow. The rainbow connection number $rc_1(\Gamma)$ of Γ is defined to be the minimum integer t such that there exists an edge-coloring of Γ with t colors that makes Γ rainbow connected.

From a generalization given by Chartrand, Johns, McKeon and Zhang in 2009 [2], an edge-colored graph Γ is called rainbow k–connected if any two distinct vertices of Γ are connected by at least k internally disjoint rainbow paths. The rainbow k–connectivity of Γ, denoted by $rc_k(\Gamma)$, is the minimum number of colors required to color the edges of Γ to make it rainbow k–connected, and φ is called a rainbow k–coloring of Γ. We usually denote $rc_1(\Gamma)$ by $rc(\Gamma)$.

The importance of rainbow connection number emerge from applications to the secure transfer of classified information between agencies [2]. Recently, Septyanto in [8], showed another form to see the application.

The commutator of an ordered pair g_1, g_2 of elements of G is the element

$$[g_1, g_2] = g_1^{-1}g_2^{-1}g_1g_2 \in G$$

G is abelian if and only if $[g_1, g_2] = 1$

Let $G(V, E)$, and let $a = (e_1, ..., e_j)$ be a path with $e_i \in E$. Then $l(a) := j$ is called the length of a.

We denote by $P(x, y)$ the set of all x, y paths in G. Then $d(x, y) := \min\{l(a) | a \in P(x, y)\}$ is called the distance from x to y.

We call $diam(G) := \max\{d(x, y) | x, y \in G\}$ the diameter of G. The length of a shortest cycle of G is called the girth of G.

When a pair of vertices g_i, g_j are joined, we denoted by $g_i \sim g_j$. In otherwise we denoted by $g_i \nsim g_j$.

A non–commutative graph $\Gamma(G)$ is connected and the diameter of $\Gamma(G)$ is 2, $diam(\Gamma(G)) = 2$.

Theorem 1.1. [1] For any non–abelian group G, $diam(\Gamma(G)) = 2$. In particular, $\Gamma(G)$ is connected.

In [9], it is shown that $rc(\Gamma(G)) = rc_2(\Gamma(G)) = 2$.

Theorem 1.2. [9] Let G be a finite non-abelian group. Then $rc(\Gamma(G)) = rc_2(\Gamma(G)) = 2$.

In the present article, we estimate $rc_k(\Gamma(G))$ for $3 \leq k \leq |Z(G)|$. Our main result is the following theorem.

Theorem 1.3. Let G be a finite non-abelian group. Then $rc_k(\Gamma(G)) \leq k$, for $3 \leq k \leq |Z(G)|$ with $|Z(G)| \geq 3$. Specifically $rc_k(\Gamma(G)) = \lceil \frac{k}{2} \rceil + 2$.

94
2. $rc_k(\Gamma(G))$ with $1 \leq k \leq |Z(G)|$

Let G be a finite non-abelian group, from now on we write the vertices of $\Gamma(G)$ as the partition

$$V(\Gamma(G)) = g_1Z \cup g_2Z \cup \cdots \cup g_mZ,$$

with $Z = Z(G)$, $g_iZ \neq Z$, $m = [G : Z(G)] - 1$ and where g_iZ is an independent subset of $\Gamma(G)$.

Proposition 2.1. Let G be a finite non-abelian group. Then the m–partite graph $\Gamma(G)$ with partition $V(\Gamma(G)) = g_1Z \cup g_2Z \cup \cdots \cup g_mZ$, provides an adjacency by blocks.

Proof. Observe that every pair of vertices $g_i \sim g_j$, if and only if for all $x, y \in Z$ $g_i x \sim g_j y$. In addition, for each i, the vertex $g \in V(\Gamma(G))$ is adjacent to g_i if and only if it is adjacent to every element of the set g_iZ. In other words, it is an adjacency by blocks. \hfill \Box

Definition 2.2. Let G be a non-commutative finite group, with m–partition

$$V(\Gamma(G)) = g_1Z \cup g_2Z \cup \cdots \cup g_mZ$$

adjacency by blocks. We define the skeleton of the m–partition as the subgraph induced by $M = \{g_1, g_2, \ldots, g_m\}$. The skeleton is denoted by $S^M_{\Gamma(G)}$.

Remark 2.3. The graph $\Gamma(G)$ is not complete, however $S^M_{\Gamma(G)}$ can be complete, we can see this in the follow example: Let $G = D_{2 \times 4} := \langle a, x : a^4 = x^2 = 1, xax = a^{-1} \rangle$, the dihedral group of order 8. Then $Z := Z(G) = \{1, a^2\}$, and we have

$$V(\Gamma(G)) = aZ \cup xZ \cup axZ.$$

Since each pair of $\{a, x, ax\}$ do not commute, we have $S^M_{\Gamma(D_{2\times4})}$ is complete.

By Theorem 1.2, there is a coloration

$$\varphi : E(\Gamma(G)) \to \{1, 2\}$$

such that $rc(\Gamma) = rc_2(\Gamma) = 2$. Thus, the graph $\Gamma(G)$ is not complete, implies that $\varphi(E(S^M_{\Gamma(G)})) = \{1, 2\}$. Therefore, the coloration

$$\phi := \varphi |_{E(S^M_{\Gamma(G)})} : E(S^M_{\Gamma(G)}) \to \{1, 2\}$$

meets the 2–connectivity, that is to say, $rc(S^M_{\Gamma(G)}) \leq 2$. Consider $Z(G) = \{e = z_1, z_2, z_3, \ldots, z_s\}$ and define the following coloring of $\Gamma(G)$:

$$\psi : E(\Gamma(G)) \to \{1, 2\}$$

given by

$$\psi(\{g_i z_p, g_j z_p\}) = \phi(\{g_i, g_j\})$$

for $1 \leq i, j, p \leq m; i \neq j$;

$$\psi(\{g_i z_p, g_j z_q\}) \neq \phi(\{g_i, g_j\})$$

for $1 \leq i, j, p, q \leq m; i \neq j; p \neq q$.

In the next section we give a coloring for $3 \leq k \leq s$ with $p \neq q$. Moreover in section 6 we will proof that this coloring works.
3. About edge-connectivity

We need to find k-rainbow paths between any two vertices for $\Gamma(G)$, with $k \geq 3$. We may ask for the maximum number of paths from v_1 to v_2 vertices, no two of which have an edge in common (such paths are called edge-disjoint paths). As a consequence of Menger’s theorem about max-flow and min-cut, Witney [10] presented that a graph is k-connected if and only if any two vertices are connected by k internally disjoint paths. With Whitney’s result we can answer how many edge-disjoint paths are connecting a given pair of vertices on $\Gamma(G)$.

Definition 3.1. The edge-connectivity is the minimum size of a subset $C \subseteq E(G)$ for which $G - C$ is not connected for a graph G. The edge-connectivity of G is denoted by $\lambda(G)$. If $\lambda(G) \geq k$ then G is called k-edge connected.

The next theorem is a result implied by Menger’s theorem. This form can be found in [7, Chapter 15].

Theorem 3.2. An undirected graph $G = (V, E)$ is k-edge-connected if and only if there exist k edge-disjoint paths between any two vertices s and t.

As we can obtain the rainbow-connectivity number of $\Gamma(G)$ and this graph is connected by blocks with $s = |Z(G)|$ as size of each block, we have that the graph $\Gamma(G)$ is s-edge-connected and there exist s edge-disjoint paths in $\Gamma(G)$. Then, our problem now is coloring the s edge-disjoint paths of $\Gamma(G)$.

Remark 3.3. By 1.1 we note that there exist two cases that we need analyze, for $g_i, g_j, g_k, g_l \in S^M_{\Gamma(G)}$ and $z_r, z_t, z_w, z_p \in Z(G)$. The first case is when $g_i z_r \sim g_j z_t$ which give us a bipartite complete graph in $\Gamma(G)$. The second case is when we have $g_i z_r \sim g_j z_t \sim g_k z_w$, but $g_i z_r \not\sim g_k z_w$.

Remark 3.4. We note that $\lambda(G) \geq s$. Then, if we want a path between end vertices $g_i z_r$ and $g_j z_t$, without loss of generality we start with $g_i z_r$, necessarily, from 3.2, the edges $g_i z_r \sim g_j z_{t_b}$ with $t_b \in \{1, \ldots, s\}$, are in the set of edge-disjoint paths. The same happens for the edges $g_i z_{r_a} \sim g_j z_t$ with $r_a \in \{1, \ldots, s\}$ because we have s disjoint paths, therefore we need all out-edge from $g_i z_r$, and all in-edge to $g_j z_t$, thus all our edge-disjoint paths have the following form: $(g_i z_r, g_j z_{t_b}, \ldots, g_i z_{r_a}, g_j z_t)$, with $t_a, r_b \in \{1, \ldots, s\}$.

4. Rainbow k–connectivity

4.1. Case when $g_i \sim g_j \in V(S^M_{\Gamma(G)})$

Let $s = |Z(G)|$ and let $\bar{r} \equiv r \mod s$ with $1 \leq r \leq s$. If $g_i \sim g_j \in V(S^M_{\Gamma(G)})$, then the set of edges is given by
The rainbow \(k \)-connectivity of the non-commutative graph of a finite group

\[E_1 = \{ e \in E(\Gamma(G)) \mid g_i z_r \sim g_j z_r \text{ such that } \psi(\{g_i z_p, g_j z_p\}) = 1 \} \cup \{ e \in E(\Gamma(G)) \mid g_i z_r \sim g_j z_{r+1} \text{ such that } \psi(\{g_i z_p, g_j z_p\}) = 2 \text{ with } 1 \leq i, j, p \leq m; i \neq j \} \]

\[E_2 = \{ e \in E(\Gamma(G)) \mid g_i z_r \sim g_j z_s \text{ such that } \psi(\{g_i z_p, g_j z_p\}) = 2 \} \cup \{ e \in E(\Gamma(G)) \mid g_i z_r \sim g_j z_{r+n-1} \text{ such that } \psi(\{g_i z_p, g_j z_p\}) = 1 \text{ with } 1 \leq i, j, p \leq m; i \neq j \} \]

\[E_3 = \{ e \in E(\Gamma(G)) \mid g_i z_r \sim g_j z_{r+2} \} \]

\[E_n = \{ e \in E(\Gamma(G)) \mid g_i z_r \sim g_j z_{r+n-1} \} \]

\[E_{n+1} = \{ e \in E(\Gamma(G)) \mid g_i z_r \sim g_j z_{r+n} \} \]

\[E_{n+2} = E(\Gamma(G)) \setminus (E_1 \cup \cdots \cup E_{n+1}) \]

with \(n = \lfloor \frac{k}{2} \rfloor \). The coloring given by:

\[
\psi : E(\Gamma(G)) \rightarrow \{1, \ldots, n + 2\} \\
f \mapsto i \quad \text{if } f \in E_i
\]

For an easier study of this kind of graph we use a table called \textit{rainbow table}, whose entries \((r_a, t_b)\) are the color from edge \((g_i z_{r_a}, g_j z_{t_b})\). This table is the following form:

\[
\begin{array}{cccccccc}
\quad & g_i z_1 & g_i z_2 & g_i z_3 & \ldots & g_i z_n & g_i z_{n+1} & g_i z_{n+2} & \ldots & g_i z_s \\
\hline
\quad & 1 & 2 & 3 & \cdots & n & n+1 & & & \\
g_i z_2 & 1 & 2 & \cdots & n-1 & n & n+1 & & & \\
g_i z_3 & 1 & \cdots & n-2 & n-1 & n & \cdots & & & \\
\vdots & \vdots \\
g_i z_n & \vdots \\
g_i z_{n+1} & n+1 & 1 & 2 & 3 & \cdots & n+1 & & & \\
\vdots & \vdots \\
g_i z_s & 2 & 3 & 4 & \cdots & n+1 & & & & & 1 \\
\end{array}
\]

Case \(g_i \sim g_j \) in \(S^M_{\Gamma(G)} \), \(s = |Z(G)| \) and \(n = \lfloor \frac{k}{2} \rfloor \).

The \((n + 2)\)-color in the table is given by white space.

\[4.2. \text{ Case when } g_i \sim g_j \sim g_l \text{ but } g_i \sim g_l \text{ in } S^M_{\Gamma(G)} \]

Let \(s = |Z(G)| \) and let \(\bar{r} \equiv r \mod s \) with \(1 \leq r \leq s \). If \(g_i \sim g_j \in V(S^M_{\Gamma(G)}) \), then the set of edges is given by
E_1 = \{ e \in E(\Gamma(G)) | g_i z_r \sim g_j z_r \text{ such that } \psi(\{g_i z_p, g_j z_p\}) = 1 \} \cup \\
\{ e \in E(\Gamma(G)) | g_i z_r \sim g_j z_{r+1} \text{ such that } \psi(\{g_i z_p, g_j z_p\}) = 2 \text{ with } \\
1 \leq i, j, p \leq m; i \neq j \}

E_2 = \{ e \in E(\Gamma(G)) | g_i z_r \sim g_j z_r \text{ such that } \psi(\{g_i z_p, g_j z_p\}) = 2 \} \cup \\
\{ e \in E(\Gamma(G)) | g_i z_r \sim g_j z_{r+1} \text{ such that } \psi(\{g_i z_p, g_j z_p\}) = 1 \text{ with } \\
1 \leq i, j, p \leq m; i \neq j \}

E_3 = \{ e \in E(\Gamma(G)) | g_i z_r \sim g_j z_{r+2} \}

\vdots \vdots

E_{n+1} = \{ e \in E(\Gamma(G)) | g_i z_r \sim g_j z_{r+n-1} \}

E_{n+2} = E(\Gamma(G)) \setminus (E_1 \cup \cdots \cup E_{n+1})

with \(n = \left\lceil \frac{k}{2} \right\rceil \). The coloring given by:

\[
\psi : E(\Gamma(G)) \longrightarrow \{1, \ldots, n + 2\} \\
f \mapsto i \quad \text{if } f \in E_i
\]

This gives us a table as:

\[
\begin{array}{cccccccccccc}
& g_1 z_1 & g_1 z_2 & \cdots & g_1 z_n & g_1 z_{n+1} & \cdots & g_1 z_s \\
g_j z_1 & 1 & n + 1 & n & \cdots & 2 \\
g_j z_2 & 2 & 1 & n + 1 & \cdots & 3 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
g_j z_{n-1} & n - 1 & n - 2 & \cdots & \cdots & n \\
g_j z_n & n & n - 1 & \cdots & 1 & n + 1 \\
g_j z_{n+1} & n + 1 & n & \cdots & \vdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
g_j z_s & n & n - 1 & \cdots & 1 & 1 & 3 & \cdots & n & n + 1 & 2 \\
\end{array}
\]

Case when \(g_i \sim g_j \sim g_l \) but \(g_i \not\sim g_l \) in \(S^M_{\Gamma(G)} \) with \(n = \left\lceil \frac{k}{2} \right\rceil \) and \((n + 2) \)-color with white spaces.

5. How to build the rainbow table

Example 5.1. We give the case when \(s = 6 \) and \(g_1 \sim g_2 \) in \(S^M_{\Gamma(G)} \) with the coloring assigned before. Without loss of generality suppose that \(\psi(\{g_1 z_p, g_2 z_p\}) = 1 \), then the rainbow table is given by:
We can see that there is not exist a rainbow \(k \)-connectivity with 4 colors. To give \(s \) edge-disjoint paths with ends vertices \(g_1 z_2 \) and \(g_2 z_4 \), the first path cross above \(g_2 z_1 \), then we start the path with \(g_1 z_2 \) \(\sim \) \(g_2 z_1 \). Now, we need move from \(g_2 z_1 \) but our only options are \(g_2 z_1 \) \(\sim \) \(g_1 z_1 \), \(g_2 z_1 \) \(\sim \) \(g_1 z_5 \) and \(g_2 z_1 \) \(\sim \) \(g_1 z_6 \) and these edges can not arrive to \(g_2 z_4 \) because all the in-edge repeat color 4. For this reason we need to ensure that there exist enough in-edge that cover complete the out-edge in the set edges with majority color. For the existence of all edge-disjoint paths for any vertex we need to add one color more, and the table is given by

\[
\begin{array}{cccccc}
 g_2 z_1 & g_2 z_2 & g_2 z_3 & g_2 z_4 & g_2 z_5 & g_2 z_6 \\
 g_1 z_1 & 1 & 2 & 3 & 4 & \\
 g_1 z_2 & 1 & 2 & 3 & 4 & \\
 g_1 z_3 & 4 & 1 & 2 & 3 & \\
 g_1 z_4 & 3 & 4 & 1 & 2 & \\
 g_1 z_6 & 2 & 3 & 4 & 1 & \\
\end{array}
\]

Example 5.2. We will do an example step-by-step about how we found all the edge-disjoint paths with our table. Let \(g_1 \sim g_2 \) in \(S_M^{\Gamma(G)} \) and \(|Z(G)| = 4 \). Then, we will build our rainbow table with 3 colors the following form.

\[
\begin{array}{cccc}
 g_2 z_1 & g_2 z_2 & g_2 z_3 & g_2 z_4 \\
 g_1 z_1 & 1 & 2 & \\
 g_1 z_2 & 1 & 2 & \\
 g_1 z_3 & 1 & 2 & \\
 g_1 z_4 & 2 & 1 & \\
\end{array}
\]

From this table we can found \(rc_3(\Gamma(G)) = 3 \) for any vertices. For example, for end vertices \(g_1 z_3, g_2 z_4 \)

If we note, we can not find 4 edge-disjoint paths with 3 colors, because \(g_1 z_1 \) to \(g_2 z_1 \) passes through \(g_2 z_3 \), the paths are the followings: \(g_1 z_1 \) \(\sim \) \(g_2 z_1 \) \(\sim \) \(g_2 z_2 \) \(\sim \) \(g_2 z_3 \) \(\sim \) \(g_2 z_1 \) or \(g_1 z_1 \) \(\sim \) \(g_2 z_3 \) \(\sim \) \(g_1 z_3 \) \(\sim \) \(g_2 z_1 \). Then, we need add another color, then the table is 4 colors the following form:

\[
\begin{array}{cccc}
 g_2 z_1 & g_2 z_2 & g_2 z_3 & g_2 z_4 \\
 g_1 z_1 & 1 & 2 & 3 \\
 g_1 z_2 & 1 & 2 & 3 \\
 g_1 z_3 & 3 & 1 & 2 \\
 g_1 z_4 & 2 & 3 & 1 \\
\end{array}
\]
Then, with all this 4 colors we found all 4 edge-disjoint paths from g_1z_1 to g_2z_1, and they are the followings:

1-path: $g_1z_1 \sim g_2z_1$
2-path: $g_1z_1 \sim g_2z_2 \sim g_1z_2 \sim g_2z_1$
3-path: $g_1z_1 \sim g_2z_3 \sim g_1z_4 \sim g_2z_1$
4-path: $g_1z_1 \sim g_2z_4 \sim g_1z_3 \sim g_2z_1$

and the same is true for any pair of vertices.

6. Proofs

6.1. Case 3-partite with $|Z(G)| = 3$

The coloring given before can not help us to find all the disjoint-edge paths for the case when $g_i \sim g_j \sim g_l$ but $g_i \not\sim g_l$ in $S^M_{\Gamma(G)}$, for example, the rainbow table for this case is the next

$$
g_j z_1 \begin{bmatrix}
g_i z_1 & g_i z_2 & g_i z_3 & g_i z_1 & g_i z_2 & g_i z_3 \\
g_j z_2 & 1 & 2 & 2 & 1 \\
g_j z_3 & 2 & 1 & 1 & 2
\end{bmatrix}
$$

But, we can see that for go from $g_i z_1$ to $g_l z_2$ we have same colors then, we need to do paths with length at least 4 like the following picture:

The coloring given for this specifical case is the following: The rainbow tables for each case are the following:
The following are all the Proof.

Theorem 6.1. Let G be a non–abelian group with $|Z(G)| = 3$ and $\Gamma(G)$ be the non-commutative graph associated to G, then $\text{rc}_3(\Gamma(G)) = 4$.

Proof. Let the set of edges be the following form:

- $E_1 = \{e \in E(\Gamma(G))|g_{i}z_{k_\nu} \sim g_{j}z_1 \text{ such that } \psi\{\{g_i, g_j\}\} = 1 \text{ for } g_i, g_j \in S^{M}_{\Gamma(G)} \text{ and } k_\nu = 1, 2, 3\}$
- $\bigcup\{e \in E(\Gamma(G))|g_{i}z_{k_\nu} \sim g_{j}z_2, g_{j}z_3 \sim g_{i}z_1 \text{ such that } \psi\{\{g_i, g_j\}\} = 2 \text{ for } g_i, g_j \in S^{M}_{\Gamma(G)}\}$
- $E_2 = \{e \in E(\Gamma(G))|g_{i}z_{k_\nu} \sim g_{j}z_2 \text{ such that } \psi\{\{g_i, g_j\}\} = 1 \text{ for } g_i, g_j \in S^{M}_{\Gamma(G)} \text{ and } k_\nu = 1, 2, 3\}$
- $\bigcup\{e \in E(\Gamma(G))|g_{i}z_{j_\nu} \sim g_{j}z_{a} \text{ such that } \psi\{\{g_i, g_j\}\} = 2 \text{ for } g_i, g_j \in S^{M}_{\Gamma(G)} \text{ and } j_\nu = 1, 3\}$
- $E_3 = \{e \in E(\Gamma(G))|g_{i}z_3 \sim g_{j}z_3 \text{ such that } \psi\{\{g_i, g_j\}\} = 1 \text{ for } g_i, g_j \in S^{M}_{\Gamma(G)} \text{ and } k_\nu = 1, 2, 3\}$
- $\bigcup\{e \in E(\Gamma(G))|g_{i}z_2 \sim g_{j}z_2, g_{j}z_3 \sim g_{i}z_3 \text{ such that } \psi\{\{g_i, g_j\}\} = 2 \text{ for } g_i, g_j \in S^{M}_{\Gamma(G)}\}$

And the coloring is given by

$$\psi : E(\Gamma(G)) \rightarrow \{1, 2, 3, 4\}$$

$$f \mapsto i \text{ if } i \in E_i.$$

The following are all the 3 edge-disjoint paths for each pair of vertices when $\phi\{\{g_j, g_l\}\} = 2$

<table>
<thead>
<tr>
<th>$g_j z_1$</th>
<th>$g_l z_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g_j z_1$</td>
<td>$g_l z_3$</td>
</tr>
<tr>
<td>$g_j z_2$</td>
<td>$g_l z_2$</td>
</tr>
<tr>
<td>$g_j z_3$</td>
<td>$g_l z_3$</td>
</tr>
</tbody>
</table>

All the edge-disjoint paths when $\phi\{\{g_i, g_j\}\} = 2, \phi\{\{g_j, g_l\}\} = 2$ and $g_i \sim g_j \sim g_l$ but $g_i \sim g_l$

<table>
<thead>
<tr>
<th>$g_i z_1$</th>
<th>$g_j z_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g_i z_1$</td>
<td>$g_j z_2$</td>
</tr>
<tr>
<td>$g_i z_1$</td>
<td>$g_j z_3$</td>
</tr>
</tbody>
</table>

www.ejgta.org
Theorem 6.2. Let G be a finite non-abelian group. Then $\text{rc}_k(\Gamma(G)) \leq \left\lceil \frac{k}{2} \right\rceil + 2$, for $3 \leq k \leq s = |Z(G)|$ with $|Z(G)| \geq 4$.

Proof. We will prove that 4 is a coloring works for our graph.

1. **Case $g_i \sim g_j$** Let $g_i z_{i_a}, g_j z_{j_b}$ be the end vertices. We want to find the edge-disjoint paths between them. Let 4.1 the rainbow table assigned for this case. From 4.1 it is evident that the first path is given by $g_i z_{i_a} \sim g_j z_{j_b}$ with color (i_a, j_b).

Let j_1 be the column assigned to the row i_a such that $(i_a, j_1) = f_1$ then, we remove the entries with color f_1 to the column $g_j z_{j_1}$ and, the same happen to column $g_j z_{j_b}$.

Remark 6.3. When we say *remove the entry* we say that entry is not consider to form the rainbow path.

Thus, the path for this case is

$$g_i z_{i_a} \overset{f}{\sim} g_j z_{j_1} \overset{(i_{a_1}, j_{1_1})}{\sim} g_i z_{i_{a_1}} \overset{(i_{a_1}, j_{b_1})}{\sim} g_j z_{j_{b_1}}$$

(1)
with \((i_{a_1}, j_1) \neq f_1 \neq (i_{a_1}, j_0)\) the colors assigned to remaining entries and \(g_j z_{j_1}, g_i z_{i_{a_1}}\) the respective vertices from remaining entries.

Let \((i_a, j_2)\) be the entry with \(j_2 \neq j_1\), such that \((i_a, j_2) = f_2\) then, we remove the entries with same color as \(f_2\) in column \(g_j z_{j_2}\). We can not use the entry \((g_i z_{a_1}, g_j z_{j_b})\) because is an edge for 1, moreover we remove all the entries with same color as \(f_2\) in column \(g_j z_{j_b}\). Thus, the path is the following:

\[
g_i z_{i_a} (i_{a_2}, j_2) \sim g_j z_{j_2} (i_{a_2}, j_2) \sim g_i z_{i_{a_2}} (i_{a_2}, j_b) \sim g_j z_{j_b}
\]

with \((i_{a_2}, j_2), (i_{a_2}, j_b)\) the colors assigned to remaining entries and \(g_j z_{j_2}, g_i z_{i_{a_2}}\) the respective vertices from remaining entries.

\[
\begin{bmatrix}
 g_j z_{j_b} & g_j z_{j_1} \\
 \vdots & \vdots \\
 \cdots & f & \cdots \\
 \vdots & \vdots \\
 g_i z_{i_{a_2}} & g_j z_{j_2}
\end{bmatrix}
\]

Under the conditions stated above we apply the same to all the colors assigned to \(i_a\)-raw. We take edges from remaining entries to form the rest paths with the same method. Let \(j'_1\) such that \(f' = (i_a, j'_1)\) from \(j_b\)-column we remove the row with entry same color like \(f'\). The new path is the following:

\[
g_i z_{i_a} (i_{a_2}, j'_1) \sim g_j z_{j'_1} (i_{a_1'}, j'_1) \sim g_i z_{i_{a_1'}} (i_{a_1'}, j_b) \sim g_j z_{j_b}
\]

Take \((i_a, j'_1), (i_{a_1'}, j'_1)\) as remaining entries from all the entries do not removed before with a different color as \(f'\).

Remark 6.4. Suppose that we can coloring with only \(\left\lfloor \frac{k}{2} \right\rfloor + 1\) colors. Let \(g_i z_{i_m}\) any start vertex, then there exists a pair of vertices \(g_j z_{j_m}, g_j z_{j_m'}\), such that \(\{(a_{i_r}, b_{j_m})|(a_{i_r}, b_{j_m}) - \text{color} \neq (\left\lfloor \frac{k}{2} \right\rfloor + 1) - \text{color}\}\) identify with \(\{(a_{i_r}, b_{j_m'})|(a_{i_r}, b_{j_m'}) - \text{color} = \text{the last color}\}\), therefore is impossible to built \(k\) paths between any end vertices \(g_i z_{i_m}, g_j z_{j_m}\) passes through \(g_j z_{j_m'}\), just like 5.1.

2. Case: \(g_i \sim g_j \sim g_1\) with \(g_1 \sim g_i\) in \(S^M_{\Gamma(G)}\).

(a) **Repetition of different color to the last color**

Case: repetition of one color between columns. Suppose that \(f\) is the repeated color between the columns assigned to the end vertices \(g_i z_{i_a}\) and \(g_l z_{l_b}\), i.e. \(f = (j_c, i_a) = (j_c, l_b)\) in the rainbow table, for some \(c = \{1, \ldots, |Z(G)|\}\), with \(l_b \in g_l Z\) and \(i_a \in g_i Z\). Suppose that \(f\) is in the path passes through \(g_j z_{j_c}\), thus for do the rainbow path we need
to find another row \(j' \) such that \((j', l_b) = f' \neq f\) then for do the rainbow path, to the row \(j' \) we remove the columns with color \(f \) (i.e. 2 columns) and one of color \(f' \). To row \(j_c \) remove 2 columns for color \(f' \) and 2 columns assigned for \(i_a \) and \(l_b \). Then we remove a total of 7 columns. There are in total \(2|Z(G)| \) columns in our rainbow table, then it remains \(2|Z(G)| - 7 \) columns with \(|Z(G)| \geq 4 \), leaving at least one column for do the path without similar colors. The path is \(g_{i_{z_{i_a}}} \overset{f}{\sim} g_{j_{z_{j_c}}} \overset{f_1}{\sim} g(j_c) \overset{f_2}{\sim} g(j_{j'}') \overset{f}{\sim} g_{l_{z_{l_b}}} \) with \(f_1, f_2 \) colors assigned to left column and \(g(j_c), g(j_{j'}) \) vertices in column assigned to above column.

\[
\begin{array}{c|c|c}
& i_a & l_b \\
\hline
j_c & \ldots & f & f' \ldots f' \ldots f \ldots \\
\hline
j_{j'} & \ldots & f' & f \ldots f' \ldots f \ldots \\
\hline
\end{array}
\]

Now we make the path who starts in \(g_{i_{z_{i_a}}} \overset{g}{\sim} g_{l_{z_{l_b}}} \). When \(g \neq f \) and \(g \neq f' \). As written above we remove the columns in row \(j_{j'} \) with color \(f \) and one of color \(g \), i.e. 3 columns, and in the row \(j_c \) remove the columns assigned with color \(g \) and two of columns \(i_a \) and \(l_b \), in total we remove 7 columns and leaving \(2|Z(G)| - 7 \) columns where we can find the desired path.

Case: repetition of two colors between columns with \(g = f' \). We remove 2 columns with color \(f' \) to \(j_{j'} \)-row and 2 columns assigned to \(i_a \) and \(l_b \). In row \(j_{j'} \) remove 2 columns assigned with color \(f \). There are in total \(2|Z(G)| - 6 \) free columns to find rainbow paths.

Case: repetition of 3 colors Suppose that there are 3 repeated colours between the columns for do the paths with end vertices \(g_{i_{z_{i_a}}} \) and \(g_{l_{z_{l_b}}} \) passes through \(g_{j_{z_{j_c}}} \), \(g_{j_{z_{j'}}} \) and \(g_{j_{z_{j''}}} \). For do the paths passes through \(g_{j_{z_{j_c}}} \), just like the first case, we remove columns with color \(f' \) to \(j_{j'} \)-row and, to row \(j_{j''} \) remove the 2 columns with color \(f \) minus the rows assigned \(i_a \) and \(l_b \), then for \(|Z(G)| \geq 4 \) there are \(2|Z(G)| - 6 \) free columns for do the rainbow path with end vertices \(g_{i_{z_{i_a}}} \) and \(g_{l_{z_{l_b}}} \) cross above \(g_{j_{z_{j_c}}} \), \(g_{j_{z_{j'}}} \), and \(g_{j_{z_{j''}}} \). The same happens for rainbow path passes through \(g_{j_{z_{j_c}}} \), \(g_{j_{z_{j'}'}} \) and \(g_{j_{z_{j''}}}, g_{j_{z_{j_c}}} \). The paths have the following form:

\[
\begin{align*}
g_{i_{z_{i_a}}} & \sim g_{j_{z_{j_c}}} \sim g_{j_{z_{j'}}} \sim g_1(j_c) \sim g_2'(j_{j'}) \sim g_{l_{z_{l_b}}}, \\
g_{i_{z_{i_a}}} & \sim g_{j_{z_{j_c}}} \sim g_3(j_c) \sim g_4'(j_{j'}) \sim g_{l_{z_{l_b}}}, \\
g_{i_{z_{i_a}}} & \sim g_{j_{z_{j'}'}} \sim g_5(j_c) \sim g_6'(j_{j''}) \sim g_{l_{z_{l_b}}}, \\
g_{i_{z_{i_a}}} & \sim g_{j_{z_{j''}}} \sim g_7(j_c) \sim g_8(j_{j''}) \sim g_{l_{z_{l_b}}},
\end{align*}
\]
The rainbow k-connectivity of the non-commutative graph of a finite group

Note that g_1, g'_1, g''_1, g_2 are the colors between free columns with colors assigned f, f', f'', f''' respectively, and $g_1(j_c), g_2(j_c); g'_1(j_c), g''_1(j_c); g'''_1(j_{c''})$ are vertices associated to the colors in the free columns with its rows $j_c, j_{c'}, j_{c''}$ respectively.

(b) Repetition of last color between columns

Case: repeat the last color $\left[\frac{k}{2} \right] + 2$ one time. Let $g_iz_{i_a}$ and $g_lz_{l_b}$ be the end vertices and suppose that only is repeated the last color $\left[\frac{k}{2} \right] + 2$ only one time. Let $f = \left[\frac{k}{2} \right] + 2$ be the last color and let $B = 2 \left[k - \left(\left[\frac{k}{2} \right] + 1 \right) \right]$ be the number of entries with the last color in each row of the rainbow table. Let j_c be a row associated with different color to f in the entries (j_c, i_a) and (j_c, l_b).

For make the rainbow path passes through j_c, to row $j_{c'}$ remove B columns associated to the last color f and one column designated to color f', i.e., we remove $B+1$ columns. Further in row j_c we remove $B - 2$ columns associated to f, 2 columns associated to color f' and 2 columns for columns associated to i_a and l_b, thus we remove from row $j_c B + 2$ columns. If the columns removed are all different from each other then we keep $C = 2k - (2B + 3)$ free columns, in the extreme case that we eliminate the same columns for each case, evaluate in f and f', thus we would have $2k - (B + 2)$ free columns, then the value of free columns is $2k - (2B + 3) \leq C \leq 2k - (B + 2)$ for $k \leq 4$. The same happens to do a path passes through $g_jz_{j_{c'}}$. Thus, we have enough free columns to do the rainbow path.

Later, for make the rainbow path from $g_iz_{i_a}$ to $g_jz_{j_{c'}}$, we remove 2 columns assigned to color g to j_c-row, $B - 2$ columns assigned to color f and 2 for the columns i_a, l_b.

www.ejgta.org
i.e., remove \(B + 2 \) columns. Moreover from \(j_{i'} \)-row remove \(B \) columns for last color \(f \) plus 1 column for color \(g \), i.e. \(B + 1 \) columns. In total the amount of free columns is between:

\[
2k - (2B + 3) \leq C \leq 2k - (B + 2) \quad k \geq 4
\]

Then, there are enough free columns for do the rainbow path.

Case: repeat two colors, one of them the last color, i.e., \(g = f' \neq f \). To the row \(j_{i'} \) we remove \(B \) columns associated to last color \(f \) and the row \(j_c \) we remove \(B - 2 \) columns associated to last color \(f \), 2 columns associated to color \(f' \) and 2 columns associated to columns \(i_a \) and \(l_b \), i.e. we remove \(B + 2 \) columns. In total there are

\[
2k - (2B + 2) \leq C \leq 2k - (B + 2) \quad \text{for } k \geq 4
\]

Since \(k - B - 1 > 0 \) for all \(k \) we always have a minimum, two columns to form two paths.

Case: repeat at most \(\frac{B}{2} \) entries between columns. Suppose that between columns \(i_a \) and \(l_b \) assigned to end vertices \(g_i \tilde{z}_{i_a}, g_i \tilde{z}_{i_b} \) there are, at most \(D = k - (\lceil \frac{k}{2} \rceil + 1) \) entries with the last color \(f \) in each column, since \(D < \lceil \frac{k}{2} \rceil + 1 \) we can proceed like the previous cases.

3. **Case: any vertices of same class** We can do the paths directly, if we want to go from \(g_i \tilde{z}_{i_a} \) to \(g_i \tilde{z}_{i_b} \) the paths are of the following form \(g_i \tilde{z}_{i_a}^{(i_a,p)} \tilde{z}_{i_b}^{(i_b,p)} \tilde{z}_{i_c}^{(i_c,p)} \ldots \tilde{z}_{i_s}^{(i_s,p)} \) for \(p = \{1, \ldots, s = |Z(G)|\} \). We note that we can only find up to \(\lceil \frac{k}{2} \rceil + 2 \) edge disjoint paths for any pair of vertices.

Corollary 6.5. Let \(G \) be a finite non-abelian group. If \(g_i \sim g_j \) then \(\lceil \frac{k}{2} \rceil + 1 < \text{rc}_k(\Gamma(G)) \).

Proof. From 6.4.

Corollary 6.6. Let \(G \) be a finite non-abelian group. If \(g_i \sim g_j \sim g_l \) with \(g_i \sim g_l \) then \(\lceil \frac{k}{2} \rceil + 1 < \text{rc}_k(\Gamma(G)) \).

Proof. Suppose that \(B = 2(k - \lceil \frac{k}{2} \rceil) \) then, for any value of \(k \), \(B = 2m \ (k = \{2m, 2m + 1\}) \). For the case where only repeat one time the last color \(f \), from 4

\[
-3 \leq C \leq 2m - 2 \quad \text{for } k = 2m
\]

\[
-1 \leq C \leq 2m \quad \text{for } k = 2m + 1
\]
Thus, there are cases when we have not free columns for do the rainbow paths. The same happens for case 5:

\[-2 \leq C \leq 2m - 2 \quad \text{for } k = 2m\]
\[0 \leq C \leq 2m - 1 \quad \text{for } k = 2m + 1\]

Therefore, we can not form \(k \) rainbow paths with \(\left\lceil \frac{k}{2} \right\rceil + 1 \) different colors.

\[\Box\]

Theorem 1.3 Let \(G \) be a finite non-abelian group. Then \(rc_k(\Gamma(G)) = \left\lceil \frac{k}{2} \right\rceil + 2 \), for \(3 \leq k \leq s = |Z(G)| \) with \(|Z(G)| \geq 4 \).

Proof. From 6.2, 6.5 and 6.6.

Given the structure of \(\Gamma(G) \), it could be considered a generalization of study in [5] to find the Harary index of \(\Gamma(G) \).

Example 6.7. Let \(G \) be the Heisenberg group for \(p = 3 \) with presentation

\[\langle x, a, b | x^3 = a^3 = b^3 = 1, ab = ba, xax^{-1} = ab, xbx^{-1} = b \rangle.\]

We know that \(|G| = 27 \), \(|G \setminus Z(G)| = 24 \) and \(|G/Z(G)| = 9 \), i.e. the partition for \(V(\Gamma(G)) = \{Z, aZ, a^2Z, xZ, axZ, a^2xZ, x^2Z, ax^2Z, a^2x^2Z\} \) by \([x, a] = b\) we have \(xa = bax\), then \(xaZ = axZ \). The following is the graph for \(S^M_{\Gamma(G)} \)

![Graph](image-url)

Figure 1. Heisenberg skeleton graph for \(p = 3 \).

In \(S^M_{\Gamma(G)} \) the only vertices with distance 2 are \(a \) with \(a^2 \) and \(x \) with \(x^2 \). Suppose without loss of generality that \(\psi(\{g, a\}) = 1 \). The edge-disjoint paths for end vertices \(a \) and \(a^2 \) are the following

\[g \quad \begin{bmatrix}
 a & ab & a^2 & a^2b & a^2b^2 \\
 g & \begin{bmatrix}
 1 & 3 & 2 & 3 & 4 \\
 2 & 4 & 1 & 4 & 3 \\
 4 & 2 & 3 & 1 & 4 & 2
 \end{bmatrix}
\end{bmatrix}\]

And all the paths are given in 6.1.
Example 6.8. Let G be the Heisenberg group for $p = 5$ with presentation

$$\langle x, a, b | x^5 = a^5 = b^5 = 1, ab = ba, xax^{-1} = ab, xbx^{-1} = b \rangle.$$

We know that $|G| = 125$, $|G \setminus Z(G)| = 120$ and $|G/Z(G)| = 25$. Since $[x, a] = b$ we have $xa = bax$, then $xaZ = axZ$. The graph 2 is the skeleton $S_M^{\Gamma(G)}$ of G.

By 3.2 we know that we can found 5 edge-disjoint paths for any pair of vertices then, without loss of generality we give the 5 edge-disjoint paths for end vertices $x, ax^2 \in S_M^{\Gamma(G)}$. By 1.3 we know that we need $(\lfloor \frac{5}{2} \rfloor + 2)$-color. The rainbow table is given below

![Rainbow Table](image)

Then, the 5 edge-disjoin paths are given by:
The rainbow k-connectivity of the non-commutative graph of a finite group | Luis A. Dupont et al.

We can give 4 paths with 4 colors. The rainbow and the 4 edge-disjoint paths with ends vertices x^4, x^3b^3 are the following.

$$
\begin{array}{cccccccc}
 a^3 & x^4 & x^4b & x^4b^2 & x^4b^3 & x^4b^4 & x^3 & x^3b & x^3b^2 & x^3b^3 & x^3b^4 \\
 a^3b & 1 & 3 & 2 & 2 & 1 & 3 & x^4 & x^4b & x^4b^2 & x^4b^3 & x^3b^3 \\
 a^3b^2 & 2 & 1 & 3 & 2 & 1 & 3 & 2 & 1 & 3 & x^3b^3 \\
 a^3b^3 & 3 & 2 & 1 & 3 & 2 & 1 & 3 & 2 & 1 & x^3b^3 \\
 a^3b^4 & 3 & 2 & 1 & 1 & 3 & 2 & 1 & 2 & 1 & x^3b^3 \\
\end{array}
$$

If we note, we can not find 5 edge-disjoint paths with only 4 colors, for example, for the end vertices x^4b^4 and x^3b^2 we have the following paths:

<table>
<thead>
<tr>
<th>Start with color 1</th>
<th>Start with color 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x^4b^4 \sim a^3b^4 \sim x^3b^2$</td>
<td>$x^4b^4 \sim a^3b^4 \sim x^3b^2$</td>
</tr>
<tr>
<td>$x^4b^4 \sim a^3b^4 \sim x^3b^2$</td>
<td>$x^4b^4 \sim a^3b^4 \sim x^3b^2$</td>
</tr>
<tr>
<td>$x^4b^4 \sim a^3b^4 \sim x^3b^2$</td>
<td>$x^4b^4 \sim a^3b^4 \sim x^3b^2$</td>
</tr>
<tr>
<td>$x^4b^4 \sim a^3b^4 \sim x^3b^2$</td>
<td>$x^4b^4 \sim a^3b^4 \sim x^3b^2$</td>
</tr>
<tr>
<td>$x^4b^4 \sim a^3b^4 \sim x^3b^2$</td>
<td>$x^4b^4 \sim a^3b^4 \sim x^3b^2$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Start with color 3</th>
<th>Start with color 4 from $x^4b^4 \sim a^3b^3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x^4b^4 \sim a^3b^4 \sim x^3b^2$</td>
<td>$x^4b^4 \sim a^3b^4 \sim x^3b^2$</td>
</tr>
<tr>
<td>$x^4b^4 \sim a^3b^4 \sim x^3b^2$</td>
<td>$x^4b^4 \sim a^3b^4 \sim x^3b^2$</td>
</tr>
<tr>
<td>$x^4b^4 \sim a^3b^4 \sim x^3b^2$</td>
<td>$x^4b^4 \sim a^3b^4 \sim x^3b^2$</td>
</tr>
<tr>
<td>$x^4b^4 \sim a^3b^4 \sim x^3b^2$</td>
<td>$x^4b^4 \sim a^3b^4 \sim x^3b^2$</td>
</tr>
</tbody>
</table>

Color 3 can not came to color 4
Color 4 can not came to color $a^3 \sim x^3b^2$
Thus, we have not columns for do the rainbow path from $x^4 b^4 \sim 3 a^3 b$ to $a^3 b^3 \sim 4 x^3 b^2$.

<table>
<thead>
<tr>
<th></th>
<th>x^4</th>
<th>$x^4 b$</th>
<th>$x^4 b^2$</th>
<th>$x^4 b^3$</th>
<th>$x^4 b^4$</th>
<th>x^3</th>
<th>$x^3 b$</th>
<th>$x^3 b^2$</th>
<th>$x^3 b^3$</th>
<th>$x^3 b^4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a^3 b$</td>
<td>2</td>
<td>1</td>
<td>/</td>
<td>/</td>
<td>3</td>
<td>/</td>
<td>2</td>
<td>1</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>$a^3 b^2$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>$a^3 b^3$</td>
<td>/</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>/</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$a^3 b^4$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Then, we can not find a path from $x^4 b^4$ to $x^3 b^2$ passes through $a^3 b$, because the last color from $x^4 b^4$ only came to $x^3 b^2$ passes through $a^3 b$ and $a^3 b^2$. Then we need one more color.

Rainbow table for found the 5 edge-disjoin paths between x^4 and x^3.

<table>
<thead>
<tr>
<th></th>
<th>x^4</th>
<th>$x^4 b$</th>
<th>$x^4 b^2$</th>
<th>$x^4 b^3$</th>
<th>$x^4 b^4$</th>
<th>x^3</th>
<th>$x^3 b$</th>
<th>$x^3 b^2$</th>
<th>$x^3 b^3$</th>
<th>$x^3 b^4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^3</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a^3 b$</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>$a^3 b^2$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td></td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>$a^3 b^3$</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a^3 b^4$</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

With the given structure, we could ask about the meaning of d-coloring redundant as a generalization of [4]. For example, in Figure 3 we could considered a particular case of Turán graph with $T(m|Z|, m)$.

Acknowledgements

This work was partially supported by CONACYT. We highly appreciate the valuable comments on our manuscript and the great editing.
The rainbow k-connectivity of the non-commutative graph of a finite group

Luis A. Dupont et al.

References

