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Abstract

We prove that each of the 34 non-isomorphic connected unicyclic bipartite graphs with eight
edges decomposes the complete graph Kn whenever the necessary conditions are satisfied.
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1. Introduction

Let U be a graph on m vertices. A decomposition of the graph U is a family of pairwise edge
disjoint subgraphs D = {G0, G1, . . . , Gs} such that every edge of U belongs to exactly one member
of D. If each subgraph Gi is isomorphic to a given graph G we speak about G-decomposition of U
(or we say that G forms a decomposition of U ), or a G-design when U ⇠= Km. The decomposition
of Km is cyclic if there exists an ordering (x1, x2, . . . , xm) of the vertices of Km and isomorphisms
�i : G0 ! Gi, i = 0, 1, 2, . . . , n� 1, such that �i(xj) = xi+j for each j = 1, 2, . . . ,m. Subscripts
are taken modulo m.

A graph G is unicyclic if it contains exactly one cycle. In this paper, we provide the necessary
and sufficient conditions for decompositions of complete graphs into each of the 34 connected
unicyclic bipartite graphs with eight edges.
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We will use standard decomposition methods based on ↵- and �
+-labelings, introduced by

Rosa [9] and El-Zanati and Vanden Eynden [4], respectively.

2. Related Results

Based on available literature beginning with Rosa’s [9] paper on graph labelings, there has
been no attempt to classify graphs with 8 vertices and 8 edges decomposing complete graphs. This
section will summarize what is known about classifications of smaller graphs, that is, graphs where
|E(G)|  8 or |V (G)|  8 that form decompositions of complete graphs.

Kang and Wang [6] investigated complements of P5, that is, graphs K5�P5, denoted P5. They
found necessary and sufficient conditions for the existence of P5-designs.

Theorem 2.1 (Kang and Wang 2004). There exists a P5-decomposition of Kn if and only if n ⌘
0, 1, 4, 9 (mod 12) and n � 9.

Yin and Gong [11] found necessary and sufficient conditions for the existence of a G-design
for graphs with six vertices and 3  |E(G)|  6. There are 28 non-isomorphic graphs of this type.

Theorem 2.2 (Yin and Gong 1990). There exists a G-decomposition of Kn for G on six vertices

and 3  |E(G)|  6 if and only if the necessary conditions are satisfied except in five cases.

Cui [3], Blinco [1], Kang, Zuo, and Zhang [8], and Tian, Du, and Kang [10] studied graphs
with six vertices and seven edges.

Theorem 2.3 (Cui 2002, Blinco 2003, Kang et al. 2004, Tian et al. 2006). There exists a G-

decomposition of Kn into connected graphs G on six vertices and seven edges if and only if the

necessary conditions are met except for eight exceptions when n = 7 or n = 8.

Graphs with five vertices and eight edges were examined by Colbourn, Ge, and Ling in 2008,
due to their applicability with respect to the problem of grooming traffic in optical networks [2].
There are only two non-isomorphic graphs with five vertices and eight edges, shown if Figure 1.

Figure 1: Graphs G5,1 and G5,2 (from left to right).

Colbourn, Ge and Ling proved the following results for the graphs G5,1 and G5,2.

Theorem 2.4 (Colbourn, Ge, Ling 2008). There exists a G5,1-decomposition of Kn if and only if

n ⌘ 0 (mod 16) except possibly when n = 32 or n = 48.

Theorem 2.5 (Colbourn, Ge, Ling 2008). There exists a G5,2-decomposition of Kn if and only if

n ⌘ 0, 1 (mod 16) except when n = 16 and possibly when n = 48.
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Kang, Yuan, and Liu researched graphs with six vertices and eight edges in 2005 [7]. There
are 22 non-isomorphic graphs of this type, and they proved the following theorem with respect to
decompositions of complete graphs.

Theorem 2.6 (Kang, Yuan, Liu 2005). Let G be a connected graph with six vertices and eight

edges. There exists a G-decomposition of Kn if and only if n ⌘ 0, 1 (mod 16) and n � 16 with

two possible exceptions for n = 32.

3. Definitions and tools

First we define the labelings that will be used in our work. We start with a ⇢-labeling, first
defined by Rosa [9]. Note that Rosa originally used the term valuation instead of labeling.

Definition 3.1. Let G be a graph with n edges. A ⇢-labeling of G is a one-to-one function f :
V (G) ! {0, 1, . . . , 2n} inducing a function ` : E(G) ! {1, 2, . . . , n} defined as

`(uv) = min{|f(u)� f(v)|, 2n+ 1� |f(u)� f(v)|}

with the property that
{`(uv) : uv 2 E(G)} = {1, 2, . . . , n} .

A more restrictive version is the �-labeling, also introduced by Rosa in [9].

Definition 3.2. Let G be a graph. A �-labeling of G is a ⇢-labeling such that `(uv) = |f(u)�f(v)|.

An even more restrictive labeling is the well-known graceful labeling (which was originally
called a �-valuation by Rosa [9]).

Definition 3.3. Let G be a graph with n edges. A graceful labeling is a �-labeling f with the
additional restriction that f : V (G) ! {0, 1, . . . , n}, that is, the labels are assigned integers from
the set {0, 1, . . . , n} instead of {0, 1, . . . , 2n}.

Rosa [9] proved that if a graph G with n edges has one of the above labelings, then a decom-
position of the complete graph K2n+1 exists.

Theorem 3.4 (Rosa 1967). A cyclic decomposition of the complete graph K2n+1 into subgraphs

isomorphic to a given graph G with n edges exists if and only if there exists a ⇢-labeling of the

graph G.

A useful restriction of a graceful labeling is the following.
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Definition 3.5. An ↵-labeling is a graceful labeling with the additional property that there exists
an integer � such that for each edge xy either f(x)  � < f(y) or f(y)  � < f(x).

While the ↵-labeling (defined also by Rosa in [9]) is a more restrictive form of graceful label-
ing, it facilitates decompositions of a much larger set of complete graphs, that is, decompositions
of K2nk+1 instead of just K2n+1, where k is an arbitrary positive integer. An ↵-labeled graph must
be bipartite, and when V1 and V2 the partite sets of the graph G, then without loss of generality if
v1 2 V1, then f(v1)  � and if v2 2 V2, then f(v2) > �.

In 1967 Rosa proved the following [9]:

Theorem 3.6 (Rosa 1967). If a graph G with n edges has an ↵-labeling, then there exists a cyclic

decomposition of the complete graph K2nk+1 into subgraphs isomorphic to G, where k is an arbi-

trary positive integer.

El-Zanati and Vanden Eynden extended the results of Rosa by defining several new labelings
(see, e.g., [4]), which are less restrictive than ↵-labeling but also give decompositions of larger
complete graphs.

Definition 3.7. A graceful labeling f of a graph G with vertex bipartition (V1, V2) is called a near

↵-labeling if it has the property that for each edge v1v2 with v1 2 V1 and v2 2 V2, f(v1) < f(v2).

The only difference between ↵- and near ↵-labelings is that while in ↵-labeling all vertices in
V1 have labels smaller than all vertices in V2, in near ↵-labeling for each v1 2 V1, all neighbors v2
of v1 must satisfy f(v1) < f(v2). Thus, a near ↵-labelings can be seen as a “locally ↵-labeling” as
some labels of vertices in V1 can exceed labels of some vertices in V2 when they are not neighbors.
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(a) ↵-labeling
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(b) Near-↵-labeling

Figure 2: Examples of ↵- and near-↵-labeling.

El-Zanati, Kenig, and Vanden Eynden [5] proved that near ↵-labelings also give decomposi-
tions of complete graphs.

Theorem 3.8 (El-Zanati, Kenig, Vanden Eynden 2000). If a bipartite graph G with n edges has a

near ↵-labeling, then there exists a G-decomposition of K2nk+1 for any positive integer k.

In fact, we will use an even less restrictive labeling mentioned by El-Zanati and Vanden Eynden
in [4] and called �

+
-labeling.

Definition 3.9. A �-labeling f of a bipartite graph G with vertex bipartition (V1, V2) is called a
�
+

-labeling if for each edge v1v2, where v1 2 V1 and v2 2 V2, it holds that f(v1) < f(v2).
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Notice that every near ↵-labeling is also a �
+-labeling with the additional restriction that the

highest label is n. Although the following theorem was never formally proved in [4], we state it
nevertheless. The proof is identical to the proof of Theorem 3.8, since the property that all vertex
labels are at most n is never used there.

Theorem 3.10. If a bipartite graph G with n edges has a �
+

-labeling, then there exists a G-

decomposition of K2nk+1 for any positive integer k.

The above labelings enable isomorphic decompositions of complete graphs Km of order m ⌘ 1
(mod 2nk), but similar methods exist for order m ⌘ 0 (mod 2nk) under certain conditions. It is
well known that ⇢-labelings can be also used for decompositions of K2nk.

Theorem 3.11 (see, e.g., [4]). Let G be a graph with n edges and let v be a vertex of degree 1 in

G. If G� v has a ⇢-labeling, then there exists a G-decomposition of K2n.

We will prove a similar result for ↵- and �
+-labelings to obtain our main result.

4. Necessary conditions and catalog of graphs

Let G be a graph with 8 edges. Since the number of edges in a G-decomposable complete
graph Km must be a multiple of the number of edges of G, we have

m(m� 1)/2 = 8n,

which yields
m = 16n or m = 16n+ 1.

Therefore, we only need to investigate graphs K16n and K16n+1 for n � 1. We also notice that
because C8 is regular of degree 2, it cannot decompose K16n, since the vertices in the complete
graph K16n are of an odd degree 16n� 1. Hence, we have the following.

Proposition 4.1. Let G be a connected unicyclic graph with 8 edges and Km be a G-decomposable

complete graph. Then m = 16n or n = 16n + 1 for some positive integer n except for G ⇠= C8,

when m = 16n+ 1 only.

Now we list all connected unicyclic graphs with 8 edges by providing their drawings. There
are 34 non-isomorphic unicyclic graphs with an even cycle on 8 vertices (including C8). We first
introduce some notation. The type of such graph G will be determined by an l-tuple i1, i2, . . . , il,
where l is the length of the only cycle Cl in G with vertices v1, v2, . . . , vl and ij is the number of
edges in the tree attached to vj . We will always attach the largest tree to v1 and of course list only
one of the two symmetric options.

So for instance, 1, 0, 0, 1, 0, 0 denotes a six-cycle graph with pendant vertices having two ver-
tices attached to v1 and v4, respectively, and 3, 1, 0, 0 denotes four-cycle graphs with an attached
tree with 3 edges containing v1 and a pendant vertex connected to v2. Notice that there are four
non-isomorphic graphs of this type. We present the graphs in an order that minimizes the space
used for the figures and skip the obvious figure of C8.
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Figure 3: Type 4,0,0,0

Figure 4: Type 3,1,0,0
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Figure 5: Type 3,0,1,0

Figure 6: Type 2,2,0,0
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Figure 7: Type 2,0,2,0

Figure 8: Type 2,1,1,0

Figure 9: Type 2,1,0,1

Figure 10: Type 1,1,1,1
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Figure 11: Type 2,0,0,0,0,0

Figure 12: Types 1,0,0,1,0,0; 1,0,1,0,0,0; 1,1,0,0,0,0

5. Labelings

In this section we present ↵- and �
+-labelings for all graphs in our class. For decompositions

of complete graphs K16n+1, no additional properties would be needed. However, to apply The-
orem 3.11, we need a pendant edge of length 8. Once we have it, we can apply the following
theorem to justify our main result.

Theorem 5.1. Let G be a bipartite graph on r edges with an ↵- or �
+

-labeling such that the

longest edge of length r is a pendant edge e. Then there exists a graph H on rk edges that has a

⇢-labeling and can be decomposed into k copies of G and a graph H
�

on rk � 1 edges that has a

⇢-labeling and can be decomposed into k � 1 copies of G and one copy of G� e.

Proof. Let G be a graph as above with bipartition V0 and V1. Without loss of generality, let V0

comprise {x0
1, x

0
2, . . . , x

0
a} and V1 comprise {x1

1, x
1
2, . . . , x

1
b}. From the Definitions 3.7 and 3.9 it

follows that f(x0
i ) < f(x1

j) whenever x0
ix

1
j is an edge of G and the lengths of all edges x

0
ix

1
j 2

E(G) form a bijection with {1, 2, . . . , r}. Denote this copy of G by G1 and assume that the longest
edge e of length `(e) = r is x0

1x
1
1 where x

1
1 is of degree 1.

Now for t = 2, 3, . . . , k take a graph Gt, isomorphic to G, with bipartition V0 and Vt =
{xt

1, x
t
2, . . . , x

t
b}. Add (t� 1)r to each vertex label in V1 of G1 to label vertices in Vt and keep the

labels in V0 the same as before. More precisely, let f(xt
j) = f(x1

j) + (t� 1)r.
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Now the length of an edge x
0
ix

t
j 2 E(Gt) will be

`(x0
ix

t
j) = `(x0

ix
1
j) + (t� 1)r

and the edge lengths of Gt form the set {(t� 1)r + 1, (t� 1)r + 2, . . . , tr}. The resulting graph
H now can be decomposed into k copies of G and contains edges of lengths 1, 2, . . . , rk. To obtain
the graph H

�, we simply remove the pendant, longest edge x
0
1x

k
1 of length rk. It should be clear

from the construction that H� can also be decomposed as required. Because all edge lengths were
calculated as f(xt

j) � f(x0
i ), it is irrelevant whether the total number of vertices of the complete

graph that we are decomposing is 2rk � 1 or 2rk + 1.

The following theorem is a direct consequence of Theorems 3.11 and 5.1.

Theorem 5.2. Let G be a graph with an ↵- or �
+

-labeling on r edges such that the edge of length

r is a pendant edge. Then there exists a G-decomposition of K2rk for any positive integer k.

Proof. By Theorem 5.1, we can construct a ⇢-labeled graph H
� consisting of k � 1 edge-disjoint

copies of G and one copy of G � e, where e = uv and v is of degree one. Let H be the graph
arising from H

� by adding back the edge e = uv. Then the graph H with rk edges satisfies the
assumptions of Theorem 3.11 and therefore decomposes K2rk.

Rosa [9] proved that C4m has an ↵-labeling for any m � 1. Hence, the following special case
holds by Theorem 3.6.

Theorem 5.3 (Rosa 1967). The cycle C8 has an ↵-labeling and thus decomposes K16n+1 for every

positive integer n.

Next we present ↵- or �+-labelings of all connected bipartite unicyclic graphs with 8 edges
except C8, which we do not need because of the result above.

Notice that the graphs in Figure 18 have a �
+-labeling, while the remaining ones have an ↵-

labeling. The number in brackets is just a counter for different non-isomorphic graphs of the same
type. For simplicity, in sub-captions we state just the type of the graph and the counter (where
needed), omitting the word “type.”
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Figure 13: Graphs of type 4, 0, 0, 0 with ↵-labeling
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Figure 14: Graphs of type 3, 1, 0, 0 and 3, 0, 1, 0 with ↵-labeling
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Figure 15: Graphs of type 2, 2, 0, 0; 2, 0, 2, 0; and 2, 1, 1, 0 with ↵-labeling
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Figure 16: Graphs of type 2, 1, 0, 1 with ↵-labeling
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Figure 17: Graph of type 1, 1, 1, 1 with ↵-labeling
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Figure 18: Graphs of type 2, 0, 0, 0, 0, 0 with �+-labeling
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Figure 19: Graphs of type 1, . . . , 0, 0 with ↵-labeling

We are now ready to prove our main result.

Theorem 5.4. Every connected bipartite unicyclic graph G on 8 edges other than C8 decomposes

the complete graph Km if and only if m ⌘ 0, 1 (mod 16).

Proof. The necessity follows from Proposition 4.1. Figures 13 to 19 show that all graphs in ques-
tion have ↵- or �+-labeling with a pendant edge of length 8. Therefore, they satisfy assumptions
of Theorems 3.6 and 5.2 and by these theorems, they decompose every K16n and K16n+1.
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