Electronic Journal of Graph Theory and Applications

Decomposition of complete graphs into connected unicyclic bipartite graphs with eight edges

John Fahnenstiel, Dalibor Froncek
Department of Mathematics and Statistics, University of Minnesota Duluth,
Duluth, MN 55812, U.S.A.

fahne006@d.umn.edu, dalibor@d.umn.edu

Abstract

We prove that each of the 34 non-isomorphic connected unicyclic bipartite graphs with eight edges decomposes the complete graph K_{n} whenever the necessary conditions are satisfied.

Keywords: graph decomposition, Rosa type labeling, α-labeling, σ^{+}-labeling Mathematics Subject Classification: 05C51, 05C78
DOI: 10.5614/ejgta.2019.7.2.4

1. Introduction

Let U be a graph on m vertices. A decomposition of the graph U is a family of pairwise edge disjoint subgraphs $\mathcal{D}=\left\{G_{0}, G_{1}, \ldots, G_{s}\right\}$ such that every edge of U belongs to exactly one member of \mathcal{D}. If each subgraph G_{i} is isomorphic to a given graph G we speak about G-decomposition of U (or we say that G forms a decomposition of U), or a G-design when $U \cong K_{m}$. The decomposition of K_{m} is cyclic if there exists an ordering $\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ of the vertices of K_{m} and isomorphisms $\phi_{i}: G_{0} \rightarrow G_{i}, i=0,1,2, \ldots, n-1$, such that $\phi_{i}\left(x_{j}\right)=x_{i+j}$ for each $j=1,2, \ldots, m$. Subscripts are taken modulo m.

A graph G is unicyclic if it contains exactly one cycle. In this paper, we provide the necessary and sufficient conditions for decompositions of complete graphs into each of the 34 connected unicyclic bipartite graphs with eight edges.

Received: 24 October 2018, Revised: 12 April 2019, Accepted: 28 April 2019.

Decomposition of K_{n} into connected unicyclic bipartite graphs... | J. Fahnenstiel and D. Froncek

We will use standard decomposition methods based on α - and σ^{+}-labelings, introduced by Rosa [9] and El-Zanati and Vanden Eynden [4], respectively.

2. Related Results

Based on available literature beginning with Rosa's [9] paper on graph labelings, there has been no attempt to classify graphs with 8 vertices and 8 edges decomposing complete graphs. This section will summarize what is known about classifications of smaller graphs, that is, graphs where $|E(G)| \leq 8$ or $|V(G)| \leq 8$ that form decompositions of complete graphs.

Kang and Wang [6] investigated complements of P_{5}, that is, graphs $K_{5}-P_{5}$, denoted $\overline{P_{5}}$. They found necessary and sufficient conditions for the existence of $\overline{P_{5}}$-designs.

Theorem 2.1 (Kang and Wang 2004). There exists a $\overline{P_{5}}$-decomposition of K_{n} if and only if $n \equiv$ $0,1,4,9(\bmod 12)$ and $n \geq 9$.

Yin and Gong [11] found necessary and sufficient conditions for the existence of a G-design for graphs with six vertices and $3 \leq|E(G)| \leq 6$. There are 28 non-isomorphic graphs of this type.

Theorem 2.2 (Yin and Gong 1990). There exists a G-decomposition of K_{n} for G on six vertices and $3 \leq|E(G)| \leq 6$ if and only if the necessary conditions are satisfied except in five cases.

Cui [3], Blinco [1], Kang, Zuo, and Zhang [8], and Tian, Du, and Kang [10] studied graphs with six vertices and seven edges.

Theorem 2.3 (Cui 2002, Blinco 2003, Kang et al. 2004, Tian et al. 2006). There exists a G decomposition of K_{n} into connected graphs G on six vertices and seven edges if and only if the necessary conditions are met except for eight exceptions when $n=7$ or $n=8$.

Graphs with five vertices and eight edges were examined by Colbourn, Ge, and Ling in 2008, due to their applicability with respect to the problem of grooming traffic in optical networks [2]. There are only two non-isomorphic graphs with five vertices and eight edges, shown if Figure 1.

Figure 1: Graphs $G_{5,1}$ and $G_{5,2}$ (from left to right).
Colbourn, Ge and Ling proved the following results for the graphs $G_{5,1}$ and $G_{5,2}$.
Theorem 2.4 (Colbourn, Ge, Ling 2008). There exists a $G_{5,1}$-decomposition of K_{n} if and only if $n \equiv 0(\bmod 16)$ except possibly when $n=32$ or $n=48$.

Theorem 2.5 (Colbourn, Ge, Ling 2008). There exists a $G_{5,2}$-decomposition of K_{n} if and only if $n \equiv 0,1(\bmod 16)$ except when $n=16$ and possibly when $n=48$.

Decomposition of K_{n} into connected unicyclic bipartite graphs ... | J. Fahnenstiel and D. Froncek

Kang, Yuan, and Liu researched graphs with six vertices and eight edges in 2005 [7]. There are 22 non-isomorphic graphs of this type, and they proved the following theorem with respect to decompositions of complete graphs.

Theorem 2.6 (Kang, Yuan, Liu 2005). Let G be a connected graph with six vertices and eight edges. There exists a G-decomposition of K_{n} if and only if $n \equiv 0,1(\bmod 16)$ and $n \geq 16$ with two possible exceptions for $n=32$.

3. Definitions and tools

First we define the labelings that will be used in our work. We start with a ρ-labeling, first defined by Rosa [9]. Note that Rosa originally used the term valuation instead of labeling.

Definition 3.1. Let G be a graph with n edges. A ρ-labeling of G is a one-to-one function f : $V(G) \rightarrow\{0,1, \ldots, 2 n\}$ inducing a function $\ell: E(G) \rightarrow\{1,2, \ldots, n\}$ defined as

$$
\ell(u v)=\min \{|f(u)-f(v)|, 2 n+1-|f(u)-f(v)|\}
$$

with the property that

$$
\{\ell(u v): u v \in E(G)\}=\{1,2, \ldots, n\} .
$$

A more restrictive version is the σ-labeling, also introduced by Rosa in [9].
Definition 3.2. Let G be a graph. A σ-labeling of G is a ρ-labeling such that $\ell(u v)=|f(u)-f(v)|$.
An even more restrictive labeling is the well-known graceful labeling (which was originally called a β-valuation by Rosa [9]).

Definition 3.3. Let G be a graph with n edges. A graceful labeling is a σ-labeling f with the additional restriction that $f: V(G) \rightarrow\{0,1, \ldots, n\}$, that is, the labels are assigned integers from the set $\{0,1, \ldots, n\}$ instead of $\{0,1, \ldots, 2 n\}$.

Rosa [9] proved that if a graph G with n edges has one of the above labelings, then a decomposition of the complete graph $K_{2 n+1}$ exists.

Theorem 3.4 (Rosa 1967). A cyclic decomposition of the complete graph $K_{2 n+1}$ into subgraphs isomorphic to a given graph G with n edges exists if and only if there exists a ρ-labeling of the graph G.

A useful restriction of a graceful labeling is the following.

Definition 3.5. An α-labeling is a graceful labeling with the additional property that there exists an integer λ such that for each edge $x y$ either $f(x) \leq \lambda<f(y)$ or $f(y) \leq \lambda<f(x)$.

While the α-labeling (defined also by Rosa in [9]) is a more restrictive form of graceful labeling, it facilitates decompositions of a much larger set of complete graphs, that is, decompositions of $K_{2 n k+1}$ instead of just $K_{2 n+1}$, where k is an arbitrary positive integer. An α-labeled graph must be bipartite, and when V_{1} and V_{2} the partite sets of the graph G, then without loss of generality if $v_{1} \in V_{1}$, then $f\left(v_{1}\right) \leq \lambda$ and if $v_{2} \in V_{2}$, then $f\left(v_{2}\right)>\lambda$.

In 1967 Rosa proved the following [9]:
Theorem 3.6 (Rosa 1967). If a graph G with n edges has an α-labeling, then there exists a cyclic decomposition of the complete graph $K_{2 n k+1}$ into subgraphs isomorphic to G, where k is an arbitrary positive integer.

El-Zanati and Vanden Eynden extended the results of Rosa by defining several new labelings (see, e.g., [4]), which are less restrictive than α-labeling but also give decompositions of larger complete graphs.

Definition 3.7. A graceful labeling f of a graph G with vertex bipartition $\left(V_{1}, V_{2}\right)$ is called a near α-labeling if it has the property that for each edge $v_{1} v_{2}$ with $v_{1} \in V_{1}$ and $v_{2} \in V_{2}, f\left(v_{1}\right)<f\left(v_{2}\right)$.

The only difference between α - and near α-labelings is that while in α-labeling all vertices in V_{1} have labels smaller than all vertices in V_{2}, in near α-labeling for each $v_{1} \in V_{1}$, all neighbors v_{2} of v_{1} must satisfy $f\left(v_{1}\right)<f\left(v_{2}\right)$. Thus, a near α-labelings can be seen as a "locally α-labeling" as some labels of vertices in V_{1} can exceed labels of some vertices in V_{2} when they are not neighbors.

(a) α-labeling

(b) Near- α-labeling

Figure 2: Examples of α - and near- α-labeling.

El-Zanati, Kenig, and Vanden Eynden [5] proved that near α-labelings also give decompositions of complete graphs.

Theorem 3.8 (El-Zanati, Kenig, Vanden Eynden 2000). If a bipartite graph G with n edges has a near α-labeling, then there exists a G-decomposition of $K_{2 n k+1}$ for any positive integer k.

In fact, we will use an even less restrictive labeling mentioned by El-Zanati and Vanden Eynden in [4] and called σ^{+}-labeling.

Definition 3.9. A σ-labeling f of a bipartite graph G with vertex bipartition $\left(V_{1}, V_{2}\right)$ is called a σ^{+}-labeling if for each edge $v_{1} v_{2}$, where $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$, it holds that $f\left(v_{1}\right)<f\left(v_{2}\right)$.

Notice that every near α-labeling is also a σ^{+}-labeling with the additional restriction that the highest label is n. Although the following theorem was never formally proved in [4], we state it nevertheless. The proof is identical to the proof of Theorem 3.8, since the property that all vertex labels are at most n is never used there.

Theorem 3.10. If a bipartite graph G with n edges has a σ^{+}-labeling, then there exists a G decomposition of $K_{2 n k+1}$ for any positive integer k.

The above labelings enable isomorphic decompositions of complete graphs K_{m} of order $m \equiv 1$ $(\bmod 2 n k)$, but similar methods exist for order $m \equiv 0(\bmod 2 n k)$ under certain conditions. It is well known that ρ-labelings can be also used for decompositions of $K_{2 n k}$.

Theorem 3.11 (see, e.g., [4]). Let G be a graph with n edges and let v be a vertex of degree 1 in G. If $G-v$ has a ρ-labeling, then there exists a G-decomposition of $K_{2 n}$.

We will prove a similar result for α - and σ^{+}-labelings to obtain our main result.

4. Necessary conditions and catalog of graphs

Let G be a graph with 8 edges. Since the number of edges in a G-decomposable complete graph K_{m} must be a multiple of the number of edges of G, we have

$$
m(m-1) / 2=8 n
$$

which yields

$$
m=16 n \text { or } m=16 n+1
$$

Therefore, we only need to investigate graphs $K_{16 n}$ and $K_{16 n+1}$ for $n \geq 1$. We also notice that because C_{8} is regular of degree 2 , it cannot decompose $K_{16 n}$, since the vertices in the complete graph $K_{16 n}$ are of an odd degree $16 n-1$. Hence, we have the following.

Proposition 4.1. Let G be a connected unicyclic graph with 8 edges and K_{m} be a G-decomposable complete graph. Then $m=16 n$ or $n=16 n+1$ for some positive integer n except for $G \cong C_{8}$, when $m=16 n+1$ only.

Now we list all connected unicyclic graphs with 8 edges by providing their drawings. There are 34 non-isomorphic unicyclic graphs with an even cycle on 8 vertices (including C_{8}). We first introduce some notation. The type of such graph G will be determined by an l-tuple $i_{1}, i_{2}, \ldots, i_{l}$, where l is the length of the only cycle C_{l} in G with vertices $v_{1}, v_{2}, \ldots, v_{l}$ and i_{j} is the number of edges in the tree attached to v_{j}. We will always attach the largest tree to v_{1} and of course list only one of the two symmetric options.

So for instance, $1,0,0,1,0,0$ denotes a six-cycle graph with pendant vertices having two vertices attached to v_{1} and v_{4}, respectively, and $3,1,0,0$ denotes four-cycle graphs with an attached tree with 3 edges containing v_{1} and a pendant vertex connected to v_{2}. Notice that there are four non-isomorphic graphs of this type. We present the graphs in an order that minimizes the space used for the figures and skip the obvious figure of C_{8}.

Figure 3: Type 4,0,0,0

Figure 4: Type 3,1,0,0

Figure 5: Type 3,0,1,0

Figure 6: Type 2,2,0,0

Figure 7: Type 2,0,2,0

Figure 8: Type 2,1,1,0

Figure 9: Type 2,1,0,1

Figure 10: Type 1,1,1,1

Figure 11: Type 2,0,0,0,0,0

Figure 12: Types $1,0,0,1,0,0 ; 1,0,1,0,0,0 ; 1,1,0,0,0,0$

5. Labelings

In this section we present α - and σ^{+}-labelings for all graphs in our class. For decompositions of complete graphs $K_{16 n+1}$, no additional properties would be needed. However, to apply Theorem 3.11, we need a pendant edge of length 8 . Once we have it, we can apply the following theorem to justify our main result.

Theorem 5.1. Let G be a bipartite graph on r edges with an α - or σ^{+}-labeling such that the longest edge of length r is a pendant edge e. Then there exists a graph H on rk edges that has a ρ-labeling and can be decomposed into k copies of G and a graph H^{-}on rk-1 edges that has a ρ-labeling and can be decomposed into $k-1$ copies of G and one copy of $G-e$.

Proof. Let G be a graph as above with bipartition V_{0} and V_{1}. Without loss of generality, let V_{0} comprise $\left\{x_{1}^{0}, x_{2}^{0}, \ldots, x_{a}^{0}\right\}$ and V_{1} comprise $\left\{x_{1}^{1}, x_{2}^{1}, \ldots, x_{b}^{1}\right\}$. From the Definitions 3.7 and 3.9 it follows that $f\left(x_{i}^{0}\right)<f\left(x_{j}^{1}\right)$ whenever $x_{i}^{0} x_{j}^{1}$ is an edge of G and the lengths of all edges $x_{i}^{0} x_{j}^{1} \in$ $E(G)$ form a bijection with $\{1,2, \ldots, r\}$. Denote this copy of G by G_{1} and assume that the longest edge e of length $\ell(e)=r$ is $x_{1}^{0} x_{1}^{1}$ where x_{1}^{1} is of degree 1 .

Now for $t=2,3, \ldots, k$ take a graph G_{t}, isomorphic to G, with bipartition V_{0} and $V_{t}=$ $\left\{x_{1}^{t}, x_{2}^{t}, \ldots, x_{b}^{t}\right\}$. Add $(t-1) r$ to each vertex label in V_{1} of G_{1} to label vertices in V_{t} and keep the labels in V_{0} the same as before. More precisely, let $f\left(x_{j}^{t}\right)=f\left(x_{j}^{1}\right)+(t-1) r$.

Now the length of an edge $x_{i}^{0} x_{j}^{t} \in E\left(G_{t}\right)$ will be

$$
\ell\left(x_{i}^{0} x_{j}^{t}\right)=\ell\left(x_{i}^{0} x_{j}^{1}\right)+(t-1) r
$$

and the edge lengths of G_{t} form the set $\{(t-1) r+1,(t-1) r+2, \ldots, t r\}$. The resulting graph H now can be decomposed into k copies of G and contains edges of lengths $1,2, \ldots, r k$. To obtain the graph H^{-}, we simply remove the pendant, longest edge $x_{1}^{0} x_{1}^{k}$ of length $r k$. It should be clear from the construction that H^{-}can also be decomposed as required. Because all edge lengths were calculated as $f\left(x_{j}^{t}\right)-f\left(x_{i}^{0}\right)$, it is irrelevant whether the total number of vertices of the complete graph that we are decomposing is $2 r k-1$ or $2 r k+1$.

The following theorem is a direct consequence of Theorems 3.11 and 5.1.
Theorem 5.2. Let G be a graph with an α - or σ^{+}-labeling on r edges such that the edge of length r is a pendant edge. Then there exists a G-decomposition of $K_{2 r k}$ for any positive integer k.

Proof. By Theorem 5.1, we can construct a ρ-labeled graph H^{-}consisting of $k-1$ edge-disjoint copies of G and one copy of $G-e$, where $e=u v$ and v is of degree one. Let H be the graph arising from H^{-}by adding back the edge $e=u v$. Then the graph H with $r k$ edges satisfies the assumptions of Theorem 3.11 and therefore decomposes $K_{2 r k}$.

Rosa [9] proved that $C_{4 m}$ has an α-labeling for any $m \geq 1$. Hence, the following special case holds by Theorem 3.6.

Theorem 5.3 (Rosa 1967). The cycle C_{8} has an α-labeling and thus decomposes $K_{16 n+1}$ for every positive integer n.

Next we present α - or σ^{+}-labelings of all connected bipartite unicyclic graphs with 8 edges except C_{8}, which we do not need because of the result above.

Notice that the graphs in Figure 18 have a σ^{+}-labeling, while the remaining ones have an α labeling. The number in brackets is just a counter for different non-isomorphic graphs of the same type. For simplicity, in sub-captions we state just the type of the graph and the counter (where needed), omitting the word "type."

(a) $4,0,0,0$ [1]
(b) $4,0,0,0$ [2]
(c) $4,0,0,0[3]$

(d) $4,0,0,0$ [4]

(g) 4,0,0,0 [7]
(e) $4,0,0,0[5]$

(h) $4,0,0,0$ [8$]$
(f) 4,0,0,0 [6]

(i) $4,0,0,0$ [9]

Figure 13: Graphs of type $4,0,0,0$ with α-labeling

(g) $3,0,1,0[3]$

(h) $3,0,1,0$ [4]

Figure 14: Graphs of type $3,1,0,0$ and $3,0,1,0$ with α-labeling

(a) 2,2,0,0 [1]

(d) 2,0,2,0 [1]
(b) 2,2,0,0 [2]
(c) $2,2,0,0[3]$

(f) 2,0,2,0 [3]

(g) 2,1,1,0 [1]

(h) 2,1,1,0 [2]

Figure 15: Graphs of type $2,2,0,0 ; 2,0,2,0$; and $2,1,1,0$ with α-labeling

Figure 16: Graphs of type $2,1,0,1$ with α-labeling

Figure 17: Graph of type $1,1,1,1$ with α-labeling

(a) $2,0,0,0,0,0[1]$
(b) 2,0,0,0,0,0 [2]

Figure 18: Graphs of type $2,0,0,0,0,0$ with σ^{+}-labeling

Decomposition of K_{n} into connected unicyclic bipartite graphs ... | J. Fahnenstiel and D. Froncek

Figure 19: Graphs of type $1, \ldots, 0,0$ with α-labeling

We are now ready to prove our main result.
Theorem 5.4. Every connected bipartite unicyclic graph G on 8 edges other than C_{8} decomposes the complete graph K_{m} if and only if $m \equiv 0,1(\bmod 16)$.

Proof. The necessity follows from Proposition 4.1. Figures 13 to 19 show that all graphs in question have α - or σ^{+}-labeling with a pendant edge of length 8 . Therefore, they satisfy assumptions of Theorems 3.6 and 5.2 and by these theorems, they decompose every $K_{16 n}$ and $K_{16 n+1}$.

Acknowledgement. We would like to thank the anonymous referee for the thoughtful and detailed comments and suggestion, which significantly helped to improve the paper.

References

[1] A. Blinco, Decompositions of complete graphs into theta graphs with fewer than ten edges, Util. Math. 64 (2003), 197-212.
[2] C. Colbourn, G. Ge, A. Ling, Graph designs for the eight-edge five-vertex graphs, Discrete Math. 309 (2009), 6440-6445.
[3] Y.G. Cui, Decompositions and packings of λK_{v} into $K_{2 s 2}$ with a pendent edge, Hebei Normal University, Master Thesis, 2002.
[4] S. El-Zanati, C. Vanden Eynden, On Rosa-type labelings and cyclic graph decompositions, Math. Slovaca 59 (1) (2009), 1-18.
[5] S. El-Zanati, M.J. Kenig, C.V. Eynden, Near α-labelings of bipartite graphs, Australas. J. Combin. 21 (2000), 275-285.
[6] Q. Kang, Z. Wang, Optimal packings and coverings of λK_{v} with graphs $K_{5}-P_{5}$, Bull. Inst. Combin. Appl. 41 (2004), 22-41.
[7] Q. Kang, L. Yuan, S. Liu, Graph Designs for all Graphs with Six Vertices and Eight Edges, Acta Math. Appl. Sin. (Engl. Ser.) 21 (3) (2005), 469-484.
[8] Q. Kang, H. Zuo, Y. Zhang, Decompositions of λK_{v} into k-circuits with one chord, Australas. J. Combin. 30 (2004), 229-246.
[9] A. Rosa, On certain valuations of the vertices of a graph, In: Theory of Graphs (Intl. Symp. Rome 1966), Gordon and Breach, Dunod, Paris, 1967, 349-355.
[10] Z. Tian, Y. Du, Q. Kang, Decomposing complete graphs into graphs with six vertices and seven edges, Ars Combin. 81 (2006), 257-279.
[11] J. Yin, B. Gong, Existence of G-designs with $|V(G)|=6$, In: W.D. Wallis et al (eds). Combinatorial designs and applications, Marcel Dekker, New York, 1990, 201-218.

