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Abstract

In this paper, we provide a natural bijection between a special family of block circulant graphs and
the graphs of critical pairs of the posets known as generalized crowns. In particular, every graph
in this family of block circulant graphs we investigate has a generating block row that follows a
symmetric growth pattern of the all ones matrix. The natural bijection provides an upper bound on
the chromatic number for this infinite family of graphs.
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1. Introduction

Computing the chromatic number of circulant graphs, graphs whose adjacency matrices are
circulant, is an NP-hard problem, as shown by Codenotti, Gerace, and Vigna [1]. This led to the
development of efficient algorithms to compute the chromatic number of circulant graphs which
improve current graph coloring algorithms [3]. However, even with this improvement, the chro-
matic number problem for circulant and block circulant matrices remains an active area of research.
Similarly, current algorithms for computing the order dimension of posets in general rely on the
computation of the chromatic number of an associated hypergraph, whose computational time
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grows exponentially with the poset size [8]. However, for a specific family of height 2 posets
known as generalized crowns, there is an explicit formula for the order dimension [6].

In this paper, we provide a natural bijection between the associated graphs of generalized
crowns and a particular family of block circulant graphs. The special family of block circulant
graphs, whose elements are denoted by BCts, are parameterized by two positive integer values s
and t. These graphs are generated by a block row with a symmetric growth pattern of the all ones
matrix. Our main result is as follows:

Theorem 1.1. [Graph Isomorphism] Let n ≥ 3 and k ≥ 0. If Gk
n is the graph of critical pairs of

Sk
n, then Gk

n is the graph isomorphic to BCk+1
n+k.

The significance of this work comes from the relation between the chromatic number of the
graph Gk

n and the order dimension of the crown Sk
n. Felsner and Trotter showed that for every

finite poset P, dim(P) ≥ χ(Gc
P) where dim(P) denotes the order dimension of the poset P, Gc

P

denotes the graph of critical pairs of P, and χ refers to the chromatic number of Gc
P [4, Lemma 3.3].

Thus, the chromatic number of these particular block circulant graphs equals the chromatic number
of the associated graph of a generalized crown, and so has an upper bound given by the dimension
of the poset.

This paper is organized as follows: Section 2 provides the necessary background material on
block circulant matrices and poset theory to make our approach precise. In Section 3, we prove the
graph isomorphism between Gk

n and BCk+1
n+k (see Theorem 1.1). Section 4 concludes with a few

open questions and directions for future work.

2. Background

An m-block circulant matrix C is a matrix of dimension nm × nm that is generated by the
matrices C1, C2, . . . , Cn of dimensionm×m, where the block rows of C are obtained by cyclically
shifting the Ci’s as follows:

C = circ(C1, C2, . . . , Cn) =


C1 C2 C3 · · · Cn−1 Cn

Cn C1 C2 · · · Cn−2 Cn−1
...

...
... . . . ...

...
C3 C4 C5 · · · C1 C2

C2 C3 C4 · · · Cn C1

 .

The matrix C has block sizem and a generating block row consisting of the matricesC1, C2, . . . , Cn.
If the matrices C1, C2, . . . , Cn are circulant, then C is said to be an m-block circulant matrix with
circulant blocks. We note that a circulant matrix is a 1-block circulant matrix. Whenever m is
understood, we refer to an m-block circulant matrix as a block circulant matrix.

LetBC denote the family of block circulant matrices with non-negative integer entries. Abusing
notation, let BC also denote the family of graphs whose adjacency matrices are block circulant. Our
object of study is an infinite subfamily of graphs in BC, whose elements are the graphs denoted by
BCts having a t-block circulant adjacency matrix and generating block row B1, B2, . . . , Bs, where
t ≥ 1 and s ≥ t+ 2. To define B1, B2, . . . , Bs, set the following notation:
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Notation 2.1. Let 1 ≤ i ≤ t. The t× t block 1i has an i× i block of ones in the upper right corner,
with the remaining entries of the t × t block being zero. Similarly, the t × t block i1 has an i × i
block of ones in the lower left corner, with the remaining entries of the t× t block being zero. For
example, a 6× 6 block 14 and a 6× 6 block 21 are shown below:

14 =


0 0 1 1 1 1
0 0 1 1 1 1
0 0 1 1 1 1
0 0 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0

 21 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0

 .

The t × t block 1t×t is the all ones t × t matrix. Similarly, the t × t block 0t×t is the zero t × t
matrix.

Define the generating block row of BCts as follows:
Case 1. If s ≥ 2t, then set

Bi =


0t×t, if i = 1;
1i−1, if 2 ≤ i ≤ t;
1t×t, if t+ 1 ≤ i ≤ s− t+ 1;

s+1−i1, if s− t+ 2 ≤ i ≤ s.

As an example, the generating block row of BC37 is

[
B1 B2 B3 B4 B5 B6 B7

]
=

0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0

 .
Case 2. If s ≤ 2t− 1, then set

Bi =



0t×t, if i = 1;
1i−1, if 2 ≤ i ≤ s− t+ 1; 0 0 0(t−s−1+i)×(t−s−1+i)

0 1(s−t)×(s−t) 0

0(t−i+1)×(t−i+1) 0 0

 , if s− t+ 2 ≤ i ≤ t;

s−i+11, if t+ 1 ≤ i ≤ s.

As an example, the generating block row of BC46 is

[
B1 B2 B3 B4 B5 B6

]
=


0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0

 .
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To provide the connection to the graph of critical pairs of generalized crowns, we now focus our
attention on the necessary background in poset theory. We assume some familiarity with posets,
order dimension, and chromatic number and refer the interested reader to [2, 5, 6, 7] for further
background.

Throughout this paper, let n, k ∈ N with n ≥ 3 and k ≥ 0. The generalized crown, denoted
Sk
n, is a height 2 poset with min(Sk

n) = {a1, . . . , an+k} and max(Sk
n) = {b1, . . . , bn+k}, where

(1) bi||ai, ai+1, . . . , ai+k, and
(2) bi > ai+k+1, ai+k+2, . . . , ai−1.

a1 a2 a3 a4 a5 a6 a7

b1 b2 b3 b4 b5 b6 b7

Figure 1. The crown S3
4

Figure 1 provides the diagram for the generalized crown S3
4. Identifying ai with ai−(n+k) and

bi with bi−(n+k) for i > n + k is called cyclic indexing. The set of all incomparable pairs of Sk
n

is denoted by Inc(Sk
n) = {(x, y) ∈ Sk

n × Sk
n : x||y}. The pair (x, y) ∈ Sk

n × Sk
n is critical if the

following conditions hold:(i) x||y; (ii) D(x) ⊂ D(y); and (iii) U(y) ⊂ U(x), where D(u) = {z ∈
Sk
n : z < u} and U(w) = {z ∈ Sk

n : w < z} for any u,w ∈ Sk
n. Let Crit(Sk

n) denote the set of all
critical pairs of Sk

n. An alternating cycle is a sequence {(xi, yi) : 1 ≤ i ≤ k} of ordered pairs from
Inc(Sk

n), where yi ≤ xi+1 in Sk
n (cyclically) for i = 1, 2, . . . , k. An alternating cycle is said to be

strict if yi ≤ xj in Sk
n if and only if j = i+ 1 (cyclically) for i, j = 1, 2, . . . , k.

The strict hypergraph of critical pairs of Sk
n, denoted Hk

n, is the hypergraph with vertices
Crit(Sk

n) and edges consisting of subsets of Crit(Sk
n) whose duals form strict alternating cycles.

If (x, y) is a critical pair, then (y, x) is its dual. Let Gk
n denote the graph of Hk

n. That is, Gk
n is a

graph with vertices Crit(Sk
n) and edges consisting of size 2 subsets of Crit(Sk

n) whose duals form
strict alternating cycles.

In general, computation of the order dimension of a poset is an NP-hard problem, as stated
in [8]. However, for this particular family of posets, Trotter obtains an explicit formula for the
dimension of the crown Sk

n.

Theorem 2.2 ([5]). For each n ≥ 3 and k ≥ 0, the dimension of the crown Sk
n is given by:

dim(Sk
n) =

⌈
2(n+ k)

k + 2

⌉
.

With these definitions at hand, we now formulate the set bijection between the families of
graphs {Gk

n}n≥3,k≥0 and {BCts}t≥1,s≥t+2.
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3. The graph isomorphism of Gk
n and BCt

s

In this section, we prove: Propositions 3.1 and 3.2, which make clear that every Gk
n belongs to

the family {BCts}, and Theorem 3.4, which demonstrates that every graph BCts arises as the graph
Gs−t+1

t−1 , where t ≥ 1 and s ≥ t+ 2. Together these results establish Theorem 1.1.
Let Ak

n denote the adjacency matrix of Gk
n. To give the entries of the matrix Ak

n, first note that
Sk
n has (n + k)(k + 1) critical pairs, which we list in lexicographical order on their dual and use

this labeling on the rows (and by symmetry columns) of the matrixAk
n. Our notation is as follows:

Notation 3.1. Fix 1 ≤ i, j ≤ n+k and letAi,j denote the (k+1)×(k+1) submatrix whose rows are
labeled by the k+1 critical pairs: (ai, bi), (ai+1, bi), . . . , (ai+k−1, bi), (ai+k, bi), and whose columns
are labeled by the k+ 1 critical pairs: (aj, bj), (aj+1, bj), . . . , (aj+k−1, bj), (aj+k, bj), where all the
subscripts of the first component are taken cyclically modulo n + k. Then Ak

n = [Ai,j]1≤i,j≤n+k.
For fixed 1 ≤ i, j ≤ n + k, let mu,v denote the (u, v)-entry of the submatrix Ai,j . Notice that u
ranges from i to k + i, where the order is fixed and all terms are taken modulo n + k. Similarly,
v ranges from j to j + k, where the order is fixed and the terms are taken modulo n + k. Denote
these ranges by writing u ∈ [i, i+ 1, . . . , i+ k] mod (n+k) and v ∈ [j, j + 1, . . . , j + k] mod (n+k).

Example 3.2. The matrix A3
4 is determined by which duals of critical pairs of S3

4 form strict al-
ternating cycles of size 2; see Table 1. A computation shows that G3

4 is 3-colorable; see Figure
2.

(a
1 ,b

1 )
(a

2 ,b
1 )

(a
3 ,b

1 )
(a

4 ,b
1 )

(a
2 ,b

2 )
(a

3 ,b
2 )

(a
4 ,b

2 )
(a

5 ,b
2 )

(a
3 ,b

3 )
(a

4 ,b
3 )

(a
5 ,b

3 )
(a

6 ,b
3 )

(a
4 ,b

4 )
(a

5 ,b
4 )

(a
6 ,b

4 )
(a

7 ,b
4 )

(a
5 ,b

5 )
(a

6 ,b
5 )

(a
7 ,b

5 )
(a

1 ,b
5 )

(a
6 ,b

6 )
(a

7 ,b
6 )

(a
1 ,b

6 )
(a

2 ,b
6 )

(a
7 ,b

7 )
(a

1 ,b
7 )

(a
2 ,b

7 )
(a

3 ,b
7 )

(a1, b1) 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
(a2, b1) 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
(a3, b1) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0
(a4, b1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 1 0 0 0
(a2, b2) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0
(a3, b2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0
(a4, b2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0
(a5, b2) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0
(a3, b3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 0 0
(a4, b3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0
(a5, b3) 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0
(a6, b3) 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0
(a4, b4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1
(a5, b4) 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1
(a6, b4) 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
(a7, b4) 1 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(a5, b5) 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1
(a6, b5) 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
(a7, b5) 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(a1, b5) 0 0 0 0 1 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(a6, b6) 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
(a7, b6) 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(a1, b6) 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(a2, b6) 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
(a7, b7) 0 0 0 1 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(a1, b7) 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
(a2, b7) 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0
(a3, b7) 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0

Table 1. Adjacency matrix A3
4

(a1, b1)

(a2, b1)

(a3, b1)
(a4, b1)

(a2, b2)

(a3, b2)

(a4, b2)

(a5, b2)
(a3, b3)

(a4, b3)

(a5, b3)

(a6, b3)

(a4, b4)

(a5, b4)

(a6, b4)

(a7, b4)

(a5, b5)

(a6, b5)
(a7, b5)(a1, b5)(a6, b6)

(a7, b6)

(a1, b6)

(a2, b6)

(a7, b7)

(a1, b7)

(a2, b7)

(a3, b7)

Figure 2. Graph G3
4
∼= BC47

Theorem 3.3. Let Ak
n = [Ai,j]1≤i,j≤n+k, where n ≥ 3 and k ≥ 0. Then the (k + 1) × (k + 1)

submatrices Ai,j are as follows:

1. If i = j, then Ai,j = 0(k+1)×(k+1).
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2. If i 6= j, then Ai,j = [mu,v], where

mu,v =


1, for u ∈ {i, i+ 1, . . . , i+ k} ∩ {j + k + 1, j + k + 2, . . . , j − 1}

and v ∈ {j, j + 1, . . . , j + k} ∩ {i+ k + 1, i+ k + 2, . . . , i− 1};
0, otherwise.

Proof. Recall that mu,v = 1 if (bi, au) and (bj, av) form a strict alternating cycle, otherwise
mu,v = 0. By definition, the critical pairs (a, b) and (a′, b′) form a strict alternating cycle if and
only if (1) b||a; (2) a < b′; (3) b′||a′; and (4) a′ < b. By the definition of Sk

n, condition (1) implies
u ∈ {i, i+1, . . . , i+ k}; condition (2) implies u ∈ {j+ k+1, j+ k+2, . . . , j− 1}; condition (3)
implies v ∈ {j, j + 1, . . . , j + k}; and condition (4) implies v ∈ {i+ k + 1, i+ k + 2, . . . , i− 1}.
Thus mu,v = 1 whenever the preceding statements hold simultaneously and otherwise mu,v = 0 .

Case 1. Assume that i = j. We claim that Ai,i = 0(k+1)×(k+1). Suppose to the contrary that there
exists u ∈ [i, i+ 1, . . . , k + i] mod (n+k) and v ∈ [j, j + 1, . . . , k + j] mod (n+k) such that mu,v = 1.
Then {(bi, au), (bi, av)} forms a strict alternating cycle. Condition (2) implies that au < bi. This
contradicts condition (1). Therefore Ai,i = 0(k+1)×(k+1).

Case 2. If i 6= j, then the preceding implications yield the desired result.

We now state our first result in connection with block circulant matrices.

Theorem 3.4. If n ≥ 3 and k ≥ 0, then Ak
n is a (k + 1)-block circulant matrix.

Proof. We show that Ai,j = Ai+1,j+1 for all 1 ≤ i, j < n + k. Since Ak
n is symmetric, we restrict

our attention to the case where i ≤ j. We proceed by showing that the entries of Ai,j are pointwise
identical to the entries of Ai+1,j+1.

Theorem 3.3 states that the nonzero entries of Ai,j occur when

u ∈ {i, i+ 1, i+ 2, . . . , i+ k} ∩ {j + k + 1, j + k + 2, . . . , j − 1} and
v ∈ {j, j + 1, j + 2, . . . , j + k} ∩ {i+ k + 1, i+ k + 2, . . . , i− 1},

while the nonzero entries of Ai+1,j+1 occur when

u′ ∈ {i+ 1, i+ 2, i+ 3, . . . , i+ 1 + k} ∩ {j + k + 2, j + k + 3, . . . , j} and
v′ ∈ {j + 1, j + 2, j + 3, . . . , j + 1 + k} ∩ {i+ k + 2, i+ k + 3, . . . , i}.

Fix i ≤ u ≤ i+ k and j ≤ v ≤ j + k. Then the mu,v entry in Ai,j corresponds to the mu+1,v+1

entry in Ai+1,j+1. Suppose that mu,v = 1 in Ai,j . Then u ∈ {i, i+ 1, i+ 2, . . . , i+ k} ∩ {j + k +
1, j + k + 2, . . . , j − 1} and v ∈ {j, j + 1, j + 2, . . . , j + k} ∩ {i+ k + 1, i+ k + 2, . . . , i− 1}.
Hence

u+ 1 ∈ {i+ 1, i+ 2, i+ 3, . . . , i+ 1 + k} ∩ {j + k + 2, j + k + 3, . . . , j} and
v + 1 ∈ {j + 1, j + 2, j + 3, . . . , j + 1 + k} ∩ {i+ k + 2, i+ k + 3, . . . , i}.
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This implies that mu+1,v+1 = 1 in Ai+1,j+1.
To complete the proof, note that if mu,v = 0 in Ai,j then

u /∈ {i, i+ 1, i+ 2, . . . , i+ k} ∩ {j + k + 1, j + k + 2, . . . , j − 1} and
v /∈ {j, j + 1, j + 2, . . . , j + k} ∩ {i+ k + 1, i+ k + 2, . . . , i− 1}.

Hence

u+ 1 /∈ {i+ 1, i+ 2, i+ 3, . . . , i+ 1 + k} ∩ {j + k + 2, j + k + 3, . . . , j} and
v + 1 /∈ {j + 1, j + 2, j + 3, . . . , j + 1 + k} ∩ {i+ k + 2, i+ k + 3, . . . , i}.

This implies thatmu+1,v+1 = 0 inAi+1,j+1. ThereforeAi,j = Ai+1,j+1 for any 1 ≤ i, j ≤ n+k.

Having shown that the matricesAk
n are (k+1)-block circulant, when describingAk

n we specify
the generating block row consisting of the (k + 1) × (k + 1) submatrices A1,1, A1,2, . . . , A1,n+k.
That is, rather than build the matrix Ak

n element by element as is done in Theorem 3.3, we build
each (k + 1) × (k + 1) submatrix A1,j in the first block row in Propositions 3.1 and 3.2. This
generating block row is used to obtain the remaining block rows and allows us to obtain Ak

n in
entirety.

We determine the value of the matrix elementmu,v by using the definition of a strict alternating
cycle. We describe mu,v by considering when u, v, respectively are in the required intersection
of the two index sets with consecutive, increasing elements. Throughout the proofs of Proposi-
tions 3.1 and 3.2, the following fact about the intersection of two indexing sets with consecutive,
increasing elements is used in order to fully describe the elements mu,v.

Fact 3.5. Let X , Y , and Z be ordered sets of integers (indices) written in increasing order (cycli-
cally). If Z ⊆ X and Z ⊆ Y , where α ≥ max(Z) + 1 implies α /∈ X ∩ Y and β ≤ min(Z) − 1
implies β /∈ X ∩ Y , then Z = X ∩ Y .

Proposition 3.1. Assume n− 1 ≥ k + 1 and let 1 ≤ j ≤ n+ k. Then

A1,j =


0(k+1)×(k+1), if j = 1;
1j−1, if 2 ≤ j ≤ k + 1;
1(k+1)×(k+1), if k + 2 ≤ j ≤ n;

n+k+1−j1, if n+ 1 ≤ j ≤ n+ k.

Proof. Theorem 3.3 states that A1,1 = 0(k+1)×(k+1). Next assume that 2 ≤ j ≤ k + 1. We show
that A1,j = 1j−1. Note that mu,v = 1 in A1,j if and only if u ∈ {1, 2, . . . , k + 1} ∩ {j + k + 1, j +
k+2, . . . , j−1} and v ∈ {j, j+1, . . . , j+k}∩{k+2, k+3, . . . , n+k}, where each set contains
k + 1 elements listed (cyclically) in increasing order.

Assume next that 2 ≤ j ≤ k+ 1. Then the containments {1, 2, . . . , j − 1} ⊆ {1, 2, . . . , k+ 1}
and {1, 2, . . . , j− 1} ⊆ {j+k+1, j+k+2, . . . , j− 1} hold. The latter containment is due to the
fact that {1, 2, . . . , j − 1} is a set with j − 1 ≤ k + 1 elements. By applying Fact 3.5, this yields
{1, 2, . . . , k+1}∩{j+k+1, j+k+2, . . . , j−1} = {1, 2, . . . , j−1}. Similarly, {k+2, . . . , j+k} ⊆
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{j, . . . , j + k}and {k + 2, . . . , j + k} ⊆ {k + 2, . . . , n + k} since j ≤ k + 1 ≤ n − 1, and so
j + k < n + k. Hence by Fact 3.5 we have {j, j + 1, . . . , j + k} ∩ {k + 2, k + 3, . . . , n + k} =
{k + 2, . . . , j + k}. Thus, mu,v = 1 only when u ∈ {1, 2, . . . , j − 1} and v ∈ {k + 2, . . . , j + k}.
Therefore A1,j = 1j−1.

If k + 2 ≤ j ≤ n, then we show A1,j = 1(k+1)×(k+1) by proving that mu,v = 1 for all possible
values of u and v. This follows from Fact 3.5 and the containments

{j, j + 1, j + 2, . . . , j + k} ⊆ {k + 2, k + 3, . . . , n+ k} and (1)
{1, 2, 3, . . . , k + 1} ⊆ {j + k + 1, j + k + 2, . . . , j + n+ k − 1}. (2)

Containment (1) follows from k + 2 ≤ j and j + k ≤ n + k. Containment (2) follows from
j ≤ n, which gives j + k + 1 ≤ n + k + 1 ≡ 1 mod (n + k), and k + 2 ≤ j, which gives
k + 1 ≤ j − 1 ≡ j + n+ k − 1 mod (n+ k).

If n+ 1 ≤ j ≤ n+ k, we claim A1,j = n+k+1−j1. It suffices to show that mu,v = 1 whenever
u ∈ {j−n+1, j−n, . . . , k+1} and v ∈ {j, j+1, . . . , n+k}, and mu,v = 0 otherwise. Theorem
3.3 states

u ∈ {1, 2, . . . , k + 1} ∩ {j + k + 1, j + k + 2, . . . , j − 1}
v ∈ {j, j + 1, . . . , j + k} ∩ {k + 2, k + 3, . . . , n+ k}.

Hence it suffices to show that

{j − n+ 1, j − n, . . . , k + 1} = {1, 2, . . . , k + 1} ∩ {j + k + 1, j + k + 2, . . . , j − 1} (3)
{j, j + 1, . . . , n+ k} = {j, j + 1, . . . , j + k} ∩ {k + 2, k + 3, . . . , n+ k}. (4)

Equation (3) follows from Fact 3.5 and the inequalities: n + 1 ≤ j, which gives 1 < j − n + 1,
and both k+1 ≤ n− 1 and n+1 ≤ j, which gives k+1 < n ≤ j− 1. Equation (4) follows from
Fact 3.5 and the inequalities: n+ 1 ≤ j, which gives n+ k < j + k, and from both k+ 1 ≤ n− 1
and n+ 1 ≤ j, which gives k + 2 ≤ n < j.

Proposition 3.2. Assume n− 1 < k + 1 and let 1 ≤ j ≤ n+ k. Then

A1,j =



0(k+1)×(k+1), if j = 1;
1j−1, if 2 ≤ j ≤ n; 0 0 0(j−n)×(j−n)

0 1(n−1)×(n−1) 0

0(k+2−j)×(k+2−j) 0 0

 , if n+ 1 ≤ j ≤ k + 1;

n+k+1−j1, if k + 2 ≤ j ≤ n+ k.

Proof. The equality A1,1 = 0(k+1)×(k+1) follows from Theorem 3.3. If 2 ≤ j ≤ n, then mu,v = 1
in A1,j when u ∈ {1, 2, . . . , k + 1} ∩ {j + k + 1, j + k + 2, . . . , j − 1} and v ∈ {j, j + 1, . . . , j +
k}∩ {k+2, k+3, . . . , n+ k}. Using the inequalities n− 1 < k+1 and 2 ≤ j ≤ n, we show that

{1, 2, . . . , j − 1} = {1, 2, . . . , k + 1} ∩ {j + k + 1, j + k + 2, . . . , j − 1} (5)
{k + 2, k + 3, . . . , j + k} = {j, j + 1, . . . , j + k} ∩ {k + 2, k + 3, . . . , n+ k}. (6)
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Equation (5) follows from Fact 3.5 and the observation that 2 ≤ j ≤ n and n − 1 < k + 1
imply j − 1 < k + 1. Equation (6) follows from Fact 3.5 and the observation that 2 ≤ j ≤ n and
n− 1 < k + 1 imply j ≤ k + 2.

Next assume n+1 ≤ j ≤ k+1. Using the inequalities n− 1 < k+1 and n+1 ≤ j ≤ k+1,
we show

{j − n+ 1, j − n+ 2 . . . , j − 1} = {1, 2, . . . , k + 1} ∩ {j + k + 1, j + k + 2, . . . , j − 1} (7)
{k + 2, k + 3, . . . , n+ k} = {j, j + 1, . . . , j + k} ∩ {k + 2, k + 3, . . . , n+ k}. (8)

Note that j − n + 1 ≡ j + k + 1 mod (n + k). Since j ≤ k + 1 it follows that j − 1 < k + 1. It
is clear that 1 < j + k + 1. Therefore {j + k + 1, j + k + 2, . . . , j − 1} ⊆ {1, 2, . . . , k + 1}. By
containment and the fact that these sets have the same cardinality, they are equal. Since n+1 ≤ j,
then n+ k < j+ k. By assumption, j < k+2, therefore {k+2, . . . , n+ k} ⊆ {j, . . . , j+ k}. By
containment and the fact that these sets have the same cardinality, they are equal. Thus mu,v = 1
if and only if u ∈ {j − n+ 1, . . . , j − 1} and v ∈ {k + 2, . . . , n+ k}.

Lastly assume k+2 ≤ j ≤ n+k. Using the inequalities n−1 < k+1 and k+2 ≤ j ≤ n+k,
we show

{j − n+ 1, j − n, . . . , k + 1} = {1, 2, . . . , k + 1} ∩ {j + k + 1, j + k + 2, . . . , j − 1} (9)
{j, j + 1, . . . , n+ k} = {j, j + 1, . . . , j + k} ∩ {k + 2, k + 3, . . . , n+ k}. (10)

Equation (9) follows from Fact 3.5 and the inequalities: j − n+ 1 ≡ j + k + 1 mod (n+ k) > 1,
and k + 2 ≤ j, the latter implying k + 1 ≤ j − 1. Equation (10) follows from Fact 3.5 and the
inequalities k + 2 ≤ j and n− 1 < k + 1, which imply n+ k ≤ j + k.

Theorem 3.6. Let t ≥ 1 and s ≥ t + 2. Then any t-block circulant matrix BCts with generating
block row as described in Section 2 is At−1

s−t+1.

The proof of Theorem 3.6 follows from the definition of the generating block row of BCts and
from Theorems 3.4, Proposition 3.1 and Proposition 3.2.

4. Closing remarks

In this paper, we demonstrated a canonical association between a family of m-block circulant
graphs and the associated graphs of the classical family of posets known as generalized crowns. It
is well-known that the chromatic number of the incomparability graphs is bounded above by the
dimension of their associated posets, and so this association also provides an upper bound on the
chromatic number of the m-block circulant graphs. We conjecture that this bound is tight based
on computational evidence using Mathematica. Naturally, it is of interest to find more families of
posets with this property, and if they exist, determine what other attributes their graphs possess.
Conversely, the richness in theory and applications surrounding circulant graphs beg their general-
ization to m-block circulant graphs and, specifically, to further investigate the graphs BCts, which
are the objects of this study.
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