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Abstract

The sum of reciprocals of distance between any two vertices in a graph G is called the Harary
index. We determine the n-vertex extremal graphs with the maximum Harary index for all bipartite
graphs, a given matching number, a given vertex-connectivity, and with a given edge-connectivity,
respectively.
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1. Introduction

Throughout the paper let G be a connected graph with vertex set V (G) and the edge set E(G).
We denote the degree of a vertex x in G by dG(x). We denote the distance of the shortest path
between x, y 2 V (G) by dG(x, y).

A simple bipartite graph G = (V1, V2;E), is the union of disjoint vertex partitions V1 and V2,
such that none of the edges in G have both the end vertices in one partition. For every chosen two
vertices from different partition in a bipartite graph are adjacent, then G is complete, denoted by
Ka,b, where a = |V1| and b = |V2|.
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A graph G is called k-connected if removing any set of k vertices from G, the result is a
disconnected graph. In this context, the connectivity of G, denoted by (G). Similarly, a graph G
is called G k0-edge-connected if removing any k0 edges from G, the result is a disconnected graph.
Here, the edge-connectivity of G, denoted by 0(G).

Let Ak
n, Cs

n and Dt
n denote the set of all n�vertex bipartite graph with matching number k (see

below), connectivity s and edge-connectivity t, respectively.
Since 1947, the distance-based graph invariant Wiener index is received a lot of attention, it is

defined as

W (G) =
X

{u,v}✓V (G)

dG(u, v).

In an analogous way, Harary index [4, 8] defined as

H(G) =
X

{u,v}✓V (G)

1

dG(u, v)
. (1)

Xu [14] determined the extremal results of Harary indices on trees. Xu and Das [16] characterized
the extremal bicyclic and unicyclic graphs for H(G). Xu et al. [17] found the maximal H(G) for
a fixed matching number on unicyclic graphs (for other example, see [1, 2, 3, 6, 7, 9, 10, 11, 12,
13, 15, 18, 19, 20] and references cited therein).

Motivated by work of Li and Song [5], we determine the extremal graphs on n vertices with
the maximum Harary index for all bipartite graphs with a given matching number, a given vertex-
connectivity, and with a given edge-connectivity.

2. Harary index of bipartite graphs with a given matching number

We start by the following lemma, which holds immediately from the definitions.

Lemma 2.1. Let G be a simple graph with |V (G)| = n with G 6⇠= Kn. Then for every edge
e 2 E(G), where G is the complement of G, H(G) < H(G+ e).

In the next result, we present the extremal graph having the maximum H(G) for all bipartite
graphs, for a fixed matching number.

Theorem 2.1. Let G represents a bipartite graph with n vertices and matching number k. Then
Kk,n�k is the unique graph with the maximum Harary index.

Proof. By choosing G in Ak
n, such that its H(G) is very large. If k =

⌅
n
2

⇧
, then using Lemma 2.1

we get, Kbn
2 c,dn

2 e is maximum. So, we only consider k <
⌅
n
2

⇧
.

Let G = (A,B;E) with |B| � |A| � k and M is the maximal matching in G. If |A| = k then
we see that G = Kk,n�k is the extremal graph in G. By Lemma 2.1, H(G) increases by adding
edges in G. So, we can assume that |A| > k.

Let AM , BM be the vertex subsets of A,B which are incident to M . Then |AM | = k and
|BM | = k. It is noted that there is no edge in G between the set A � AM of vertices and the set
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B � BM of vertices. If so, then the edges may be together with M to increase the size of the
matching greater than M , which violates the maximality of M .

By attaching all the possible edges to the vertices of AM and BM , AM and B � BM , A� AM

and BM , we achieve a new graph G0. By Lemma 2.1, H(G)  H(G0). Also, G0 has the matching
number at least k+1. So, G0 /2 Ak

n and G � G0. Now, we construct an another new graph G00 based
on G0, by deleting all the edges between the set A�AM of vertices and the set BM of vertices, and
adding all the edges between A� AM and AM in G0. It is easy to verify that G00 ⇠= Kk,n�k.

Let |A| = n1, |B| = n2, so n1 + n2 = n and n2 � n1 > k and using (1), we get

H(G0) = k2 + k(n2 � k) + k(n1 � k) +
C2

n1
+ C2

n2

2
+

(n1 � k)(n2 � k)

3

=
n2
1 + n2

2

4
+

n1n2

3
+

2kn

3
� n

4
� 2k2

3
,

H(G00) = k(n� k) +
C2

k + C2
n�k

2
=

n2

4
+

kn

2
� n

4
� k2

2
.

Therefore, by the fact that k < n1  n2 = n� n1 < n� k, we have

H(G0)�H(G00) =
kn� k2 � n1n2

6
=

k(n� k)� n1n2

6
< 0,

as required.

3. Harary index of bipartite graphs with a given vertex / edge-connectivity

In the current section, we determine the extremal graphs with the maximum Harary index
among Cs

n and Dt
n.

By Kp,0, p � 1, we mean pK1 (p isolated vertices). Let Os _1 (Kn1,n2 [Km1,m2) be the graph
obtained by adding all vertices of the empty graph Os of order s (s � 1) to all vertices belonging to
the part of cardinality n1 in the bipartition of Kn1,n2 and the part of cardinality m1 in the bipartition
of Km1,m2 , respectively.
Lemma 3.1. If s+ q > p then

H(Os _1 (K1,0 [Kp,q)) < H(Os _1 (K1,0 [Kp+1,q�1)).

Proof. Let G = Os _1 (K1,0 [Kp,q) and G0 = Os _1 (K1,0 [Kp+1,q�1). By (1), we have

H(G) = s+ sp+ pq +
p+ sq + C2

s + C2
p + C2

q

2
+

q

3

=
3s

4
+

p

4
+

q

12
+

s2 + p2 + q2

4
+ sp+ pq +

sq

2
and

H(G0) =s+ (p+ 1)s+ (q � 1)(p+ 1)

+
(p+ 1) + s(q � 1) + C2

s + C2
p+1 + C2

q�1

2
+

q � 1

3

=
5s

4
� p

4
+

7q

12
+ sp+ pq +

sq

2
+

s2 + p2 + q2

4
� 1

3
.
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So, by s+ q > p, we have

H(G)�H(G0) =
p� (q + s)

2
+

1

3
< 0,

as claimed.

Lemma 3.2. If s+ q + 1 < p then

H(Os _1 (K1,0 [Kp,q)) < H(Os _1 (K1,0 [Kp�1,q+1)).

Proof. Let G = Os _1 (K1 [Kp,q) and G00 = Os _1 (K1 [Kp�1,q+1). By (1), we have

H(G) = s+ sp+ pq +
p+ sq + C2

s + C2
p + C2

q

2
+

q

3

=
3s

4
+

p

4
+

q

12
+

s2 + p2 + q2

4
+ sp+ pq +

sq

2

and

H(G00) =s+ (p� 1)s+ (q + 1)(p� 1) +
p� 1 + s(q + 1) + C2

s + C2
p�1 + C2

q+1

2
+

q + 1

3

=
s

4
+

3p

4
� 5q

12
+ sp+ pq +

sq

2
+

s2 + p2 + q2

4
� 2

3
.

Therefore, by s+ q + 1 < p, we have

H(G)�H(G00) =
s+ q � p

2
+

2

3
< 0,

as claimed.

Note that Ks,n�s = Os _1 (K1,0 [Kn�s�1,0), by Lemma 3.2, we have

Corollary 3.1. If 1  s  n
2 � 1 then

H(Ks,n�s) < H(Os _1 (K1 [Kn�s�2,1)).

Lemma 3.3. Let G = (V1, V2;E) 2 Cs
n with a vertex-cut I = I1 [ I2 of order s such that G � I

has two components G1 = (A,B;E1) and G2 = (C,D;E2), where V1 = A [ I1 [ C and V2 =
B [ I2 [D. If A,C, I1 are non-empty sets, then G cannot be a graph with the maximum Harary
index in Cs

n.

Proof. Assume that G has the maximum H(G) in Cs
n. By Lemma 2.1, G contains all edges between

V1 and V2, except edges between A and D and between C and B. Let |A| = m1, |B| = m2,
|C| = n1, |D| = n2, |I1| = k and |I2| = t. Then m1 � 1, n1 � 1, k � 1 and k + t = s. So,

H(G) = m1(m2 + t) + k(m2 + t+ n2) + n1(t+ n2)

+
m1k +m1n1 + kn1 +m2n2 +m2t+ n2t+ C2

m1
+ C2

k + C2
n1

+ C2
m2

+ C2
n2

+ C2
t

2

+
m1n2 +m2n1

3
.
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Note that G� (I2[D) is not connected, we have t+n2 � s = t+k, and n2 � k. We partition
D into D1 and D2 such that D = D1 [D2 with |D1| = k and |D2| = n2 � k. Let u0 be any vertex
of C, and G0 = G � {u0v|v 2 D2} + {ad|a 2 A, d 2 D} + {bc|b 2 B, c 2 C � {u0}}. Then
G0 2 Cs

n with its bipartition (V1, V2) and a vertex-cut I2 [D1 with s vertices. In fact, G0 contains
all edges between V1 and V2, except edges between u0 and B [ I2, and

H(G0) = (m1 + k + n1 � 1)(m2 + t+ n2) + (t+ k)

+
C2

m1+k+n1
+ C2

m2+t+n2

2
+

m2 + n2 � k

3
.

Thus,

H(G)�H(G0) = �2

3
(k +m2(n1 � 1) + n2(m1 � 1)) < 0,

a contradiction.

Remark 3.1. By the symmetry, if B,D, I2 are non-empty sets (see Lemma 3.3), then G fails to be
a maximum H(G) in Cs

n.

Let U and V any two vertex sets of G. Denote by EG [U, V ], edges of G with one of its end
vertex in U and the other in V .

Lemma 3.4. Let n > 4 and G = (V1, V2;E) 2 Cs
n with an edge-cut Et = E1 [ E2 of size t such

that G � Et has two components G1 = (A,B;E 0) and G2 = (C,D;E 00), where V1 = A [ C,
V2 = B [ D, E1 = Et \ EG[A,D] and E2 = Et \ EG[B,C]. If A,B,C,D are non-empty sets,
then G cannot be a graph with the maximum H(G) in Dt

n.

Proof. Assume that G has the maximum H(G) in Dt
n. By Lemma 2.1, G contains all edges

between A and B, edges between C and D and edges in Et. Let |A| = m1, |B| = m2, |C| = n1,
|D| = n2, |E1| = a and |E2| = b. Then a+ b = t and m1 + n1 +m2 + n2 = n > 4.

Suppose, we assume m1 > 1 in the following. Let S4, S3, S2 and S1 denote the end-vertices of
the edges of Et in D,C,B and A, respectively. Let |A� S1| = a1, |B � S2| = a2, |C � S3| = a3
and |D � S4| = a4. Then G contains m1m2 + n1n2 + t = |E(G)| vertex pairs at distance 1,
m1n2 +m2n1 � t vertex pairs at distance 3, and a1a3 + a2a4 vertex pairs at distance 4. Remaining
C2

n � |EG|� (m1n1 +m2n2 � t)� (a1a4 + a2a3) vertex pairs are at distance 2. Therefore,

H(G) = |E(G)|+ 1

3
(m1n2 +m2n1 � t) +

1

4
(a1a3 + a2a4)

+
1

2
(C2

n � |E(G)|� (m1n2 +m2n1 � t)� (a1a3 + a2a4)).

Let c0 be a vertex and dG(c0) = h + |D| = h + n2, where h(min{b,m2} � h � 0) denotes
the number of edges joining c0 to B. It is easy to see that the set of edges incident to c0 is
an edge-cut of G, we have h + n2 � t = a + b and |D| = n2 � b � h. We partition D
into D1 and D2 such that D = D1 [ D2 with |D1| = t � h and |D2| = n2 � t + h. Let
G0 = G � {c0v|v 2 D2} + {ad|a 2 A, d 2 D} + {bc|b 2 B, c 2 C � {c0}}. Then G0 2 Dt

n
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with its bipartition (V1, V2) and an edge-cut of edges joining c0 to the vertices in B [ D1 of size
t. In fact, G0 contains all edges between A [ C � {c0} and B [D, edges between c0 and D1 and
h edges joining c0 to B. Then G0 contains (m1 + n1 � 1)(m2 + n2) + t = |E(G0)| vertex pairs
at distance 1, (m2 � h) + |D2| = m2 + n2 � t pairs of vertices at distance 3, and all the other
C2

n � |E(G0)|� (m2 + n2 � t) vertex pairs are at the distance 2. Therefore,

|E(G0)|+ C2
n � |E(G0)|� (m2 + n2 � t)

2
+

m2 + n2 � t

3
= H(G0).

Since A,B,C,D are non-empty sets and m1 > 1, then

H(G)�H(G0) = �1

4
(a1a3 + a2a4)�

2

3
m2(n1 � 1)� 2

3
n2(m1 � 1) < 0,

which is a contradiction.

Os+q

H⇤
1

Os Oq

Os+q+1

H⇤
2

Os Oq

Os+q�1

H⇤
3

Os Oq

Figure 1. Graphs H⇤
1 , H⇤

2 , H⇤
3 in Theorems 3.1 and 3.2.

Theorem 3.1. If Cs
n has the graph G with the maximum H(G), where 1  s  n

2 . Then G 2
{H⇤

1 , H
⇤
2 , H

⇤
3}, where H⇤

1 , H
⇤
2 and H⇤

3 are depicted in Figure 1.

Proof. Assume that, G has the maximum H(G) in Cs
n. Let I be a vertex-cut of G having s vertices,

and G1, G2, · · · , Gt are the components of G� I , where t � 2.
If one of its components has a minimum of two vertices, then using Lemma 2.1 the component

should be a complete bipartite .
If one of its components is a singleton i, then i must be adjacent to every vertex of I and the

subgraph G[I] induced by I has no edges; or else (G) < s. Therefore, I is contained in the same
part of bipartition of G by Lemma 2.1.

Now, we consider the following cases:

• Case 1. If every component of G � I is a singleton, then G = Ks,n�s. So t � n
2 � 1

by Corollary 3.1. It is conventional to see that, for odd n, Ks,n�s
⇠= H⇤

1 and for even n,
Ks,n�s 2 {H⇤

2 , H
⇤
3}.
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• Case 2. If one of its component G � I has a minimum of two vertices. Then G � I has
precisely two components; otherwise, we can get a graph G0 2 Cs

n by adding some edges in
G such that the subgraph induced by V (G1 [G2 [ · · ·[Gt�1) is a complete bipartite graph,
and H(G) < H(G0) by Lemma 2.1, which is a contradiction. If G� I has two components
G1, G2, then by Lemma 3.3 and Remark 3.1, either G1 = K1 or G2 = K1. Let us assume
that G2 = K1 = {i}. Then, G1

⇠= Kp,q and u is joined to all vertices of I . So, I is contained
in the same part of the bipartition of G, and each vertex of I is joined to all vertices in the
same part of the bipartition of G1 by Lemma 2.1. Hence, G = Os _1 (K1,0 [Kp,q), where
s = |I|. And p � s since p vertices in the same part of the bipartition of Kp,q is a vertex-cut
of G. Since G is a graph in Cs

n with the maximum Harary index, and by Lemmas 3.1 and
3.2, we have s+ q � 1  p  s+ q + 1 and G 2 {H⇤

1 , H
⇤
2 , H

⇤
3}.

Using Lemma 3.4 and utilizing proof of the previous theorem, we conclude the following result.

Theorem 3.2. Let Dt
n has the graph G with the maximum H(G) and 1  t  n

2 . Then G 2
{H⇤

1 , H
⇤
2 , H

⇤
3}, where H⇤

1 , H
⇤
2 and H⇤

3 are depicted in Figure 1.
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