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Abstract

The main aim of this paper is to give the crossing number of the join product G⇤ + Dn for the
disconnected graph G

⇤ of order five consisting of the complete graph K4 and of one isolated
vertex, and where Dn consists of n isolated vertices. In the proofs, the idea of a minimum number
of crossings between two different subgraphs by which the graph G

⇤ is crossed exactly once will
be extended. All methods used in the paper are new, and they are based on combinatorial properties
of cyclic permutations. Finally, by adding new edges to the graph G

⇤, we are able to obtain the
crossing numbers of Gi +Dn for two other graphs Gi of order five.
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1. Introduction

Over the last years, some results concerning crossing numbers of join products of two graphs
have been obtained. It is well known that the problem of reducing the number of crossings on
the edges in the drawings of graphs was studied in many areas, and the most prominent area is
VLSI technology. The lower bound on the chip area is determined by the crossing number and by
the number of vertices of the graph. By Garey and Johnson [4] we already know that the computing
of the crossing number of a given graph in general is NP-complete problem.
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The crossing number cr(G) of a simple graph G with the vertex set V (G) and the edge set
E(G) is the minimum possible number of edge crossings in a drawing of G in the plane. (For the
definition of a drawing see [9].) It is easy to see that a drawing with minimum number of crossings
(an optimal drawing) is always a good drawing, meaning that no edge crosses itself, no two edges
cross more than once, and no two edges incident with the same vertex cross. Let D (D(G)) be
a good drawing of the graph G. We denote the number of crossings in D by crD(G). Let Gi and
Gj be edge-disjoint subgraphs of G. We denote the number of crossings between edges of Gi and
edges of Gj by crD(Gi, Gj), and the number of crossings among edges of Gi in D by crD(Gi). It is
easy to see that for any three mutually edge-disjoint subgraphs Gi, Gj , and Gk of G, the following
equations hold:

crD(Gi [Gj) = crD(Gi) + crD(Gj) + crD(Gi, Gj) ,

crD(Gi [Gj, Gk) = crD(Gi, Gk) + crD(Gj, Gk) .

In the paper, some proofs will be also based on the Kleitman’s result on crossing numbers of the
complete bipartite graphs [7]. More precisely, he proved that

cr(Km,n) =
j
m

2

kj
m� 1

2

kj
n

2

kj
n� 1

2

k
, if min{m,n}  6.

The exact values for the crossing numbers of G+Dn for all graphs G of order at most four are
given by Klešč and Schrötter [12]. Also, the crossing numbers of the graphs G + Dn are known
for few graphs G of order five and six, see [3], [8], [9], [10], [11], and [16]. In all these cases, the
graph G is connected and contains at least one cycle. The crossing numbers of the join product
G + Dn are known only for some disconnected graphs G, and so the purpose of this article is to
extend the known results concerning this topic to new disconnected graphs, see [2] and [15].

The methods used in the paper are new, and they are based on combinatorial properties of the
cyclic permutations. In [2] and [3] by Berežný and Staš, the properties of cyclic permutations are
also verified by the help of software. Also in this article, some parts of proofs can be simplified
by utilizing the work of the software COGA that generates all cyclic permutations by Berežný
and Buša [1]. The similar methods were partially used earlier in the papers [6] and [14]. We were
unable to determine the crossing number of the join product G⇤+Dn using the methods used in [9],
[11], and [12]. Let G⇤ be the disconnected graph of order five consisting of one isolated vertex
and of the complete graph K4, and let V (G⇤) = {v1, v2, . . . , v5}. We consider the join product
of G⇤ with the discrete graph on n vertices denoted by Dn Clearly, the graph G

⇤ + Dn consists
of one copy of the graph G

⇤ and of n vertices t1, t2, . . . , tn, where any vertex ti, i = 1, 2, . . . , n,
is adjacent to every vertex of G⇤. Let T i, i = 1, . . . , n, denote the subgraph induced by the five
edges incident with the vertex ti. This means that the graph T

1 [ · · · [ T
n is isomorphic with the

complete bipartite graph K5,n and therefore, we can write

G
⇤ +Dn = G

⇤ [K5,n = G
⇤ [

✓ n[

i=1

T
i

◆
.
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2. Cyclic permutations, configurations, and possible drawings of G⇤

Let D be a good drawing of the graph G
⇤ + Dn. The rotation rotD(ti) of a vertex ti in the

drawing D is the cyclic permutation that records the (cyclic) counter-clockwise order in which
the edges leave ti, see [6]. We use the notation (12345) if the counter-clockwise order the edges
incident with the vertex ti is tiv1, tiv2, tiv3, tiv4, and tiv5. We emphasize that a rotation is a cyclic
permutation; that is, (12345), (23451), (34512), (45123), and (51234) denote the same rotation.
Thus, 5!/5 = 24 different rotD(ti) can appear in a drawing of the graph G

⇤ +Dn. By rotD(ti) we
understand the inverse permutation of rotD(ti). In the given drawing D, we separate all subgraphs
T

i, i = 1, . . . , n, of the graph G
⇤ + Dn into three mutually disjoint subsets depending on how

many times the considered T
i crosses the edges of G

⇤ in D. For i = 1, . . . , n, T i 2 RD if
(G⇤

, T
i) = 0 and T

i 2 SD if crD(G⇤
, T

i) = 1. Every other subgraph T
i crosses the edges of G⇤ at

least twice in D. Due to arguments in the proof of Theorem 3.1, at least one of the sets RD and SD

must be nonempty in a good drawing D of G⇤ + Dn with the smallest number of crossings. For
T

i 2 RD [ SD, let F i denote the subgraph G
⇤ [ T

i, i 2 {1, 2, . . . , n}, of G⇤ +Dn and let D(F i)
be its subdrawing induced by D.

Let us discuss all possible drawings of G⇤. Since the graph G
⇤ contains K4 as a subgraph (for

brevity, we write K4(G⇤)), we only need to consider possibilities of crossings among edges of
K4(G⇤). If we suppose a good subdrawing of G⇤ in which the edges of K4(G⇤) do not cross each
other, then the isolated vertex of G⇤ can be placed in arbitrary triangular region of D(K4(G⇤)) and
we always obtain the same drawing with respect to isomorphisms that is shown in Figure 1(a). If
the edges of K4(G⇤) cross each other, then there are next two possibilities depending on in which
region of D(K4(G⇤)) the isolated vertex of G⇤ is placed and they are shown in Figure 1(b), and
(c). The vertex notation of the graph G

⇤ in Figure 1 will be justified later.

(a) (b) (c)

v1v1

v3v3 v2

v4
v5

v2

v4
v5

v1

v2v3

v4
v5

Figure 1. One planar drawing of G⇤ and two drawings of G⇤ with crD(G⇤) = 1.

First, let us assume a good drawing D of the graph G
⇤ +Dn in which the edges of G⇤ do not

cross each other. In this case, without loss of generality, we can choose the vertex notation of the
graph G

⇤ in such a way as shown in Figure 1(a). It is obvious that the set RD is empty, and so
our aim is to list all possible rotations rotD(ti) which can appear in D if the edges of T i cross
the edges of G⇤ exactly once. Since there is only one subdrawing of F i \ {v3, v5} represented by
the rotation (142), there are three possibilities how to obtain the subdrawing of F i \ v5 depending
on which edge of the graph G

⇤ is crossed by the edge tiv3. Every of these three subdrawings of
F

i \ v5 produces four drawings of F i depending on in which region the edge tiv5 is placed. We
denote these twelve possibilities under our consideration by Ak, and Bk, for k = 1, . . . , 6. The
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configuration is of type A or B, if the vertex v5 is placed in the triangular region with two vertices
or with one vertex of G⇤ on its boundary in the subdrawing D(F i \ v5), respectively. In the rest
of the paper, each cyclic permutation is represented by the permutation with 1 in the first position.
Thus, the configurations A1, A2, A3, A4, A5, A6, B1, B2, B3, B4, B5, and B6 are represented by
the cyclic permutations (14325), (14523), (15423), (13425), (13452), (15432), (15342), (13542),
(14532), (14352), (14253), and (14235), respectively. Of course, in a fixed drawing of the graph
G

⇤ + Dn, some configurations from M = {A1,A2,A3,A4,A5,A6,B1,B2,B3,B4,B5,B6} need
not appear. So we denote by MD the set of all configurations of M that appear in D.

Now, we deal with the minimum numbers of crossings between two different subgraphs T
i

and T
j depending on the configurations of subgraphs F

i and F
j . Let D be a good drawing of

the graph G
⇤ + Dn, and let X , Y be configurations from MD. We shortly denote by crD(X ,Y)

the number of crossings in D between T
i and T

j for different T i
, T

j 2 SD such that F i
, F

j have
configurations X , Y , respectively. Finally, let cr(X ,Y) = min{crD(X ,Y)} over all pairs X and
Y from M among all good drawings of the graph G

⇤ +Dn. Our aim is to establish cr(X ,Y) for
all pairs X ,Y 2 M. In particular, the configurations A1 and A2 are represented by the cyclic
permutations (14325) and (14523), respectively. Since the minimum number of interchanges of
adjacent elements of (14325) required to produce cyclic permutation (14523) = (13254) is one,
any subgraph T

j with the configuration A2 of F j crosses the edges of T i with the configuration A1

of F i at least once1, i.e., cr(A1,A2) � 1. The same reason gives cr(A3,A4) � 1, cr(A5,A6) � 1,
cr(A1,A3) � 2, cr(A1,A5) � 2, cr(A3,A5) � 2, cr(A2,A4) � 2, cr(A2,A6) � 2, cr(A4,A6) �
2, cr(A1,B3) � 2, cr(A1,B5) � 2, cr(A3,B1) � 2, cr(A3,B5) � 2, cr(A5,B1) � 2, cr(A5,B3) �
2, cr(A2,B4) � 2, cr(A2,B6) � 2, cr(A4,B2) � 2, cr(A4,B6) � 2, cr(A6,B2) � 2, and
cr(A6,B4) � 2. Moreover, the Woodall’s result for m = 5 also implies that cr(Ap,Bp) � 4
holds for any p = 1, . . . , 6, and cr(Bp,Bq) � 4 holds with respect to the restrictions p ⌘ q (mod 2),
where p, q = 1, . . . , 6. Clearly, also cr(Ap,Ap) � 4 for any p = 1, . . . , 6. For all remaining pairs of
configurations are established the minimum numbers of crossings at least three. For any T

i 2 SD

with the configuration B1 of F i, if there is a subgraph T
j 2 SD, j 6= i such that crD(T i

, T
j) 

2, then the vertex tj must be placed in the triangular region with two vertices v1, v2 or in the
quadrangular region with two vertices v1, v5 of G

⇤ on its boundary in the subdrawing D(F i).
Hence, the subgraph F

j is exactly represented by rotD(tj) = (15423) or rotD(tj) = (13452), and
therefore, cr(B1,Ap) � 3 and cr(B1,Bp) � 3 hold for each p = 2, 4, 6. Similar arguments can
be applied for the configurations Bq of some subgraph F

i for q = 2, . . . , 6. The resulting lower
bounds for the number of crossings of configurations from M are summarized in the symmetric
Table 1. (Here, Xp and Yq are configurations of the subgraphs F i and F

j , where p, q 2 {1, . . . , 6}
and X ,Y 2 {A,B}.)

Assume a good drawing D of the graph G
⇤ + Dn in which the edges of G⇤ cross each other

exactly once and the isolated vertex of the graph G
⇤ is placed in the quadrangular region in the

1Let T i and T j be two different subgraphs represented by their rot(ti) and rot(tj) of length m, m � 3. If we
define Q(rotD(ti), rotD(tj)) as the minimum number of interchanges of adjacent elements of rotD(ti) required to
produce the inverse cyclic permutation of rotD(tj) or, equivalently, from rotD(tj) to the inverse of rotD(ti), then
crD(T i, T j) � Q(rotD(ti), rotD(tj)). For m odd, crD(T i, T j) = Q(rotD(ti), rotD(tj)) + 2k is fulfilling for some
nonnegative integer k. Details have been worked out by Woodall [17].
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� A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6

A1 4 1 2 3 2 3 4 3 2 3 2 3
A2 1 4 3 2 3 2 3 4 3 2 3 2
A3 2 3 4 1 2 3 2 3 4 3 2 3
A4 3 2 1 4 3 2 3 2 3 4 3 2
A5 2 3 2 3 4 1 2 3 2 3 4 3
A6 3 2 3 2 1 4 3 2 3 2 3 4
B1 4 3 2 3 2 3 4 3 4 3 4 3
B2 3 4 3 2 3 2 3 4 3 4 3 4
B3 2 3 4 3 2 3 4 3 4 3 4 3
B4 3 2 3 4 3 2 3 4 3 4 3 4
B5 2 3 2 3 4 3 4 3 4 3 4 3
B6 3 2 3 2 3 4 3 4 3 4 3 4

Table 1. The necessary number of crossings between T i and T j for the configurations Xp, Yq .

subdrawing D(G⇤ \ v5). In this case, without loss of generality, we can choose the vertex notation
of the graph G

⇤ in such a way as shown in Figure 1(c). It is not difficult to verify that there is no
subgraph T

i by which the edges of G⇤ are crossed exactly once, i.e., the set SD is empty, and so our
aim is to list all possible rotations rotD(ti) which can appear in D if the edges of T i do not cross the
edges of G⇤. Since there is only one subdrawing of F i \ v5 represented by the rotation (1432), we
have four possibilities how to obtain the subdrawing of F i depending on in which region the vertex
v5 is placed. Thus, there are four different possible configurations of the subgraph F

i denoted as
E1, E2, E3, and E4, i.e., rotD(ti) = Ep for p = 1, 2, 3, 4, and they are represented by the cyclic
permutations (14325), (14532), (14352), and (15432), respectively. As for our considerations
does not play role which of the regions is unbounded, assume the drawings shown in Figure 2.

E1 E2

v1v1 v1v1

v2v2 v2 v2v3v3v3v3

v4 v4 v4 v4 v5

v5
v5v5

E3 E4

Figure 2. Four drawings of possible configurations from N of subgraph F i.

Also, in a fixed drawing of the graph G
⇤ +Dn, some configurations from N = {E1, E2, E3, E4}

need not appear. We denote by ND the set of all configurations that exist in the drawing D belong-
ing to the set N . The verification of the lower bounds for number of crossings of two configurations
from N proceeds in the same way like above. Thus, all lower bounds of number of crossings of
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configurations from N are summarized in Table 2. (Here, Ep and Eq are configurations of the
subgraphs F i and F

j , where p, q 2 {1, 2, 3, 4}.)

� E1 E2 E3 E4
E1 4 2 3 3
E2 2 4 3 3
E3 3 3 4 2
E4 3 3 2 4

Table 2. The necessary number of crossings between T i and T j for the configurations Ep, Eq .

3. The crossing number of G⇤ + Dn

Two vertices ti and tj of the graph G
⇤ + Dn are antipodal in a drawing of G⇤ + Dn if the

subgraphs T i and T
j do not cross. A drawing is antipode-free if it has no antipodal vertices. Now

we are able to prove the main result of this paper.

v1

v3

v4

v2

v5

Figure 3. The good drawing of G⇤ +Dn with 4
⌅
n
2

⇧⌅
n�1
2

⇧
+ n+

⌅
n
2

⇧
crossings.

Theorem 3.1. cr(G⇤ +Dn) = 4
⌅
n
2

⇧⌅
n�1
2

⇧
+ n+

⌅
n
2

⇧
for n � 1.

Proof. In Figure 3 there is the drawing of the graph G
⇤+Dn with 4

⌅
n
2

⇧ ⌅
n�1
2

⇧
+n+

⌅
n
2

⇧
crossings.

Thus, cr(G⇤ +Dn)  4
⌅
n
2

⇧ ⌅
n�1
2

⇧
+ n+

⌅
n
2

⇧
. We prove the reverse inequality by induction on n.

The graph G
⇤ + D1 contains K5 as a subgraph and the graph G

⇤ + D2 is a subdivision of K6. It
was proved in [5] that cr(K5) = 1 and cr(K6) = 3. So, the result is true for n = 1 and n = 2.
Suppose now that, for some n � 3, there is a drawing D with

crD(G
⇤ +Dn) < 4

j
n

2

kj
n� 1

2

k
+ n+

j
n

2

k
, (1)

and that

cr(G⇤ +Dm) = 4
j
m

2

kj
m� 1

2

k
+m+

j
m

2

k
for any positive integer m < n. (2)
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Our assumption on D together with cr(K5,n) = 4
⌅
n
2

⇧⌅
n�1
2

⇧
implies that

crD(G
⇤) + crD(G

⇤
, K5,n) < n+

j
n

2

k
.

Moreover, if r = |RD| and the set SD is empty, then

crD(G
⇤) + 0r + 2(n� r) < n+

j
n

2

k
, (3)

which forces r �
⌃

n
2

⌥
+1+crD(G⇤)

2 . In the case, if s = |SD| and the set RD is empty, then

crD(G
⇤) + 1s+ 2(n� s) < n+

j
n

2

k
, (4)

which implies s �
⌃
n
2

⌥
+ 1 + crD(G⇤). Now, for T i 2 RD [ SD, we discuss the existence of

possible configurations of subgraph F
i = G

⇤ [ T
i in the drawing D and we show that in all cases

a contradiction with the assumption (1) is obtained.
Case 1: crD(G⇤) = 0. Without loss of generality, we can choose the vertex notation of the

graph G
⇤ in such a way as shown in Figure 1(a). Since the set RD is empty, we deal with the

configurations belonging to the nonempty set MD according to inequality (4).
We claim that the considered drawing D must be antipode-free. Of course, if T k and T

l are two
different subgraphs from the nonempty set SD, then the vertices vk and vl are not antipodal due to
the positive values in Table 1. For a contradiction, suppose that crD(T k

, T
l) = 0, and at least one

of the subgraphs T k and T
l is not included in the set SD, which yields that crD(G⇤

, T
k [ T

l) � 3.
Moreover, the known fact that cr(K5,3) = 4 implies that each T

m, m 6= k, l, crosses the edges of
the subgraph T

k [ T
l at least four times. So, for the number of crossings in D we have

crD(G
⇤ +Dn) = crD (G⇤ +Dn�2) + crD(T

k [ T
l) + crD(K5,n�2, T

k [ T
l) + crD(G

⇤
, T

k [ T
l)

� 4
j
n� 2

2

kj
n� 3

2

k
+ n� 2 +

j
n� 2

2

k
+ 0 + 4(n� 2) + 3 = 4

j
n

2

kj
n� 1

2

k
+ n+

j
n

2

k
.

This contradiction with the assumption (1) confirms that D is antipode-free. For T i 2 SD, we deal
with the configurations belonging to the set MD and we discuss over all possible subsets of MD

in the following subcases:

a) {Ao,Ao+1} ✓ MD for some o 2 {1, 3, 5}. Without lost of generality, let us consider
two different subgraphs T

n�1
, T

n 2 SD such that F n�1 and F
n have configurations A1

and A2, respectively. Then, crD(T n�1 [ T
n
, T

k) � 5 is fulfilling for any T
k 2 SD with

k 6= n�1, n by summing the values in all columns in the first two rows of Table 1. Moreover,
crD(T n�1 [ T

n
, T

k) � 3 holds for any T
k 62 SD provided by the minimum number of

interchanges of adjacent elements of rotD(tn�1) required to produce the cyclic permutation
rotD(tn) is three. As crD(G⇤ [ T

n�1 [ T
n) � 3, by fixing the graph T

n�1 [ T
n, we have

crD(G
⇤ +Dn) � 4

j
n� 2

2

kj
n� 3

2

k
+ n� 2 +

j
n� 2

2

k
+ 1 + 5(s� 2) + 3(n� s) + 2
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= 4
j
n� 2

2

kj
n� 3

2

k
+
j
n� 2

2

k
+ 4n+ 2s� 9 � 4

j
n� 2

2

kj
n� 3

2

k
+
j
n� 2

2

k

+4n+ 2
⇣l

n

2

m
+ 1

⌘
� 9 � 4

j
n

2

kj
n� 1

2

k
+ n+

j
n

2

k
.

This contradicts the assumption of D. Due to the symmetry, the same arguments are applied
for the cases {A3,A4} and {A5,A6}.

b) {Ao,Ao+1} 6✓ MD for o = 1, 3, 5. Let us first suppose that {Ap,Ap+2,Ap+4} ✓ MD for
some p 2 {1, 2} or there are three mutually different o, p, q 2 {1, . . . , 6} with o ⌘ p ⌘
q (mod 2) such that {Ao,Ap,Bq} ✓ MD. Without lost of generality, let us consider three
different subgraphs T

n�2
, T

n�1
, T

n 2 SD such that F n�2, F n�1 and F
n have configura-

tions A1, A3 and B5, respectively. Then, crD(T n�2 [ T
n�1 [ T

n
, T

k) � 8 holds for any
T

k 2 SD with k 6= n � 2, n � 1, n by summing of three corresponding values of Table 1.
Moreover, if there is a subgraph T

k, k 6= n�1, n such that crD(T n�1[T
n
, T

k) = 2, then the
minimum number of interchanges of adjacent elements of rotD(tn�2) required to produce the
inverse cyclic permutation of rotD(tk) is at least two, and so crD(T n�2[T

n�1[T
n
, T

k) � 4
holds for any T

k 62 SD. As crD(T n�2[T n�1[T n) � 6, by fixing the graph T
n�2[T n�1[T n,

we have

crD(G
⇤ +Dn) � 4

j
n� 3

2

kj
n� 4

2

k
+ n� 3 +

j
n� 3

2

k
+ 8(s� 3) + 4(n� s) + 6 + 3

= 4
j
n� 3

2

kj
n� 4

2

k
+
j
n� 3

2

k
+ 5n+ 4s� 18 � 4

j
n� 3

2

kj
n� 4

2

k
+
j
n� 3

2

k

+5n+ 4
⇣l

n

2

m
+ 1

⌘
� 18 � 4

j
n

2

kj
n� 1

2

k
+ n+

j
n

2

k
.

This also contradicts the assumption of D. The verification for all seven other possibilities
proceeds in the same way and therefore, in the next part, suppose that {Ap,Ap+2,Ap+4} 6✓
MD for any p = 1, 2, and also {Ao,Ap,Bq} 6✓ MD with o ⌘ p ⌘ q (mod 2) for any three
mutually different o, p, q = 1, . . . , 6. Now, for T i 2 SD, we will discuss the possibility of
obtaining a subdrawing of G⇤ [ T

i [ T
j in D with crD(T i

, T
j) = 2 for some T

j 2 SD.

Let us consider that there are two subgraphs T
i
, T

j 2 SD with crD(T i
, T

j) = 2 such
that F i and F

j have configurations Xp and Yq, respectively, where X ,Y 2 {A,B} and
p, q 2 {1, . . . , 6}. Then, crD(T i [ T

j
, T

k) � 6 holds for any T
k 2 SD, k 6= i, j by summing

of two corresponding values of Table 1. Thus, by fixing the graph T
n�1 [ T

n, we have

crD(G
⇤ +Dn) � 4

j
n� 2

2

kj
n� 3

2

k
+ n� 2 +

j
n� 2

2

k
+ 6(s� 2) + 2(n� s) + 2 + 2

= 4
j
n� 2

2

kj
n� 3

2

k
+
j
n� 2

2

k
+ 3n+ 4s� 10 � 4

j
n� 2

2

kj
n� 3

2

k
+
j
n� 2

2

k

+3n+ 4
⇣l

n

2

m
+ 1

⌘
� 10 � 4

j
n

2

kj
n� 1

2

k
+ n+

j
n

2

k
.
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Finally, assume that there are no two different T i
, T

j 2 SD with crD(T i
, T

j)  2. Hence,
for each T

i 2 SD, crD(G⇤ [ T
i
, T

k) � 1 + 3 = 4 is fulfilling for any T
k 2 SD with k 6= i

and crD(G⇤ [ T
i
, T

k) � 2 + 1 = 3 is also true for any T
k 62 SD. Consequently, by fixing

the graph G
⇤ [ T

i, we have

crD(G
⇤ +Dn) = crD(K5,n�1) + crD(K5,n�1, G

⇤ [ T
i) + crD(G

⇤ [ T
i)

� 4
j
n� 1

2

kj
n� 2

2

k
+ 4(s� 1) + 3(n� s) + 1 = 4

j
n� 1

2

kj
n� 2

2

k
+ 3n+ s� 3

� 4
j
n� 1

2

kj
n� 2

2

k
+ 3n+

⇣l
n

2

m
+ 1

⌘
� 3 � 4

j
n

2

kj
n� 1

2

k
+ n+

j
n

2

k
.

Case 2: crD(G⇤) = 1 and we consider the drawing of G⇤ with the vertex notation like that in
Figure 1(b). It is obvious that the set RD is empty, and so there are at least

⌃
n
2

⌥
+ 2 subgraphs T i

by which the edges of G⇤ are crossed exactly once. For T i 2 SD, the subgraph F
i is represented

by rotD(ti) = (14325), which yields that crD(T i
, T

j) � 4 is fulfilling for any T
j 2 SD with j 6= i

provided that rotD(ti) = rotD(tj). By fixing the graph T
i, we have

crD(G
⇤ +Dn) � 4

j
n� 1

2

kj
n� 2

2

k
+ n� 1 +

j
n� 1

2

k
+ 4(s� 1) + 1

� 4
j
n� 1

2

kj
n� 2

2

k
+
j
n� 1

2

k
+ n+ 4

⇣l
n

2

m
+ 2

⌘
� 4 � 4

j
n

2

kj
n� 1

2

k
+ n+

j
n

2

k
.

Case 3: crD(G⇤) = 1 and we consider the drawing of G⇤ with the vertex notation like that in
Figure 1(c). Since the set SD is empty, we deal with the configurations belonging to the nonempty
set ND. Again, we claim that the drawing D must be antipode-free. For a contradiction, suppose
that crD(T k

, T
l) = 0. If at least one of T k and T

l, say T
k, does not cross G⇤, it is not difficult to

verify that T l must cross G⇤ [ T
k at least thrice, that is, crD(G⇤

, T
k [ T

l) � 3. Consequently, the
same arguments like in Case 1 confirm that D is antipode-free. Now, we consider the following
subcases:

a) {Ep, Ep+1} ✓ ND for some p 2 {1, 3}. Without lost of generality, let us consider two dif-
ferent subgraphs T

n�1
, T

n 2 RD such that F n�1 and F
n have configurations E1 and E2,

respectively. As the considered drawing D is antipode-free, each T
k, k 6= n � 1, n crosses

the edges of the subgraph T
n�1 [ T

n at least twice, and crD(T n�1 [ T
n
, T

k) � 2 holds with
equality only when crD(T n�1

, T
k) = 1 and crD(T n

, T
k) = 1. This enforces that a such sub-

graph T
k crosses the edges of G⇤ at least thrice, otherwise, rotD(tk) 2 {(15324), (14523)}

and rotD(tk) 2 {(13254), (14235)} if crD(T n�1
, T

k) = 1 and crD(T n
, T

k) = 1, respec-
tively. This impossibility of the same rotation of the vertex tk implies crD(G⇤

, T
k) � 3.

Thus, let us denote LD(T n�1
, T

n) = {T k : crD(T n�1 [ T
n
, T

k) = 2 and crD(G⇤
, T

k) = 3},
and l = |LD(T n�1

, T
n)|. If suppose the case crD(G⇤

, T
k) = 2, these four rotations can be

also useful to verify that crD(T n�1
, T

k) � 3 and crD(T n
, T

k) � 3 if crD(T n
, T

k) = 1 and
crD(T n�1

, T
k) = 1, respectively, that is, crD(G⇤ [ T

n�1 [ T
n
, T

k) = 5 is fulfilling only for
the subgraphs T k 2 LD(T n�1

, T
n). Hence, we discuss two possibilities:
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1) Suppose that l <
⌅
n+1
2

⇧
, that is, �l � 1 �

⌅
n+1
2

⇧
. Also, by summing the values in

all columns in the first two rows of Table 2, crD(T n�1 [ T
n
, T

k) � 6 holds for any
T

k 2 RD with k 6= n� 1, n. Thus, by fixing the graph G
⇤ [ T

n�1 [ T
n, we have

crD(G
⇤ +Dn) � 4

j
n� 2

2

kj
n� 3

2

k
+ 6(r � 2) + 5l + 6(n� r � l) + 2 + 1

� 4
j
n� 2

2

kj
n� 3

2

k
+ 6n+

✓
1�

j
n+ 1

2

k◆
� 9 � 4

j
n

2

kj
n� 1

2

k
+ n+

j
n

2

k
.

2) Suppose that l �
⌅
n+1
2

⇧
, that is, �2l  �2

⌅
n+1
2

⇧
. Let us denote by H the subgraph of

G
⇤ with the vertex set V (G⇤) and the edge set E(G⇤) \ {v1v3, v2v4}. Since the edges

of any subgraph T
k 2 LD(T n�1

, T
n) cross both edges v1v3 and v2v4 once, then

crD(H +Dn) < 4
j
n

2

kj
n� 1

2

k
+ n+

j
n

2

k
� 2l

 4
j
n

2

kj
n� 1

2

k
+ n+

j
n

2

k
� 2

j
n+ 1

2

k
 4

j
n

2

kj
n� 1

2

k
+
j
n

2

k
.

This forces a contradiction with cr(H +Dn) = 4
⌅
n
2

⇧⌅
n�1
2

⇧
+
⌅
n
2

⇧
, see [14].

Both subcases confirm a contradiction with the assumption in D, and therefore, suppose that
{E1, E2} 6✓ ND and {E3, E4} 6✓ ND in all following cases.

b) ND = {Ep, Eq} for two different p, q = 1, 2, 3, 4 with respect to the restriction 3 < p + q <

7. Without lost of generality, let us consider two different subgraphs T
n�1

, T
n 2 RD

such that F n�1 and F
n have configurations E1 and E3, respectively. Since the minimum

number of interchanges of adjacent elements of (14325) required to produce (14352) is one,
each T

k, k 6= n � 1, n crosses the edges of the subgraph T
n�1 [ T

n at least once, that is,
crD(T n�1 [ T

n
, T

k) � 1 + 2 = 3 due to the Woodall’s result [17]. Further, if there is
a subgraph T

k, k 6= n � 1, n such that crD(T n�1 [ T
n
, T

k) = 3 then crD(G⇤
, T

k) � 2.
Thus, let us denote LD(T n�1

, T
n) = {T k : crD(T n�1 [ T

n
, T

k) = 3 and crD(G⇤
, T

k) = 2},
and l = |LD(T n�1

, T
n)|. Remark that crD(G⇤ [ T

n�1 [ T
n
, T

k) = 5 is fulfilling only for
subgraphs T k 2 LD(T n�1

, T
n). Hence, we discuss two possibilities:

1) Suppose that l < 2
⌅
n+2
4

⇧
, that is, �l � 1 � 2

⌅
n+2
4

⇧
. Again, by summing of two

corresponding values of Table 2, crD(T n�1 [ T
n
, T

k) � 4 + 3 = 7 holds for any
T

k 2 RD with k 6= n� 1, n. Hence, by fixing the graph G
⇤ [ T

n�1 [ T
n, we have

crD(G
⇤ +Dn) � 4

j
n� 2

2

kj
n� 3

2

k
+ 7(r � 2) + 5l + 6(n� r � l) + 3 + 1

� 4
j
n� 2

2

kj
n� 3

2

k
+ 6n+ r � l � 10 � 4

j
n� 2

2

kj
n� 3

2

k
+ 6n

+

⌃
n
2

⌥
+ 2

2
+

✓
1� 2

j
n+ 2

4

k◆
� 10 � 4

j
n

2

kj
n� 1

2

k
+ n+

j
n

2

k
.
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2) Suppose that l � 2
⌅
n+2
4

⇧
. So, the inequality r + l  n forces �r � 2

⌅
n+2
4

⇧
� n.

As crD(T n�1 [ T
n
, T

k) = 3 for each T
k 2 LD(T n�1

, T
n), there are at least

⌃
l
2

⌥

different subgraphs T
k such that crD(T n�1

, T
k) = 1 or crD(T n

, T
k) = 1. Fur-

ther, it is not difficult to verify that if crD(T n�1
, T

k) = 1 or crD(T n
, T

k) = 1, then
rotD(tk) 2 {(15324), (14523)} or rotD(tk) 2 {(15342), (12543)}, respectively. Since
the minimum number of interchanges of adjacent elements of (15324) required to pro-
duce (14523) = (13254) is two, then crD(T k1 , T

k2) � 2+2 = 4 holds for any two sub-
graphs T k1 , T

k2 2 LD(T n�1
, T

n) with rotD(tk1) = (15324) and rotD(tk2) = (14523),
see Woodall’s result [17]. The same holds for the second pair of the rotations (15342)
and (12543). Hence, for some i 2 {n� 1, n}, crD(G⇤ [ T

i [ T
k
, T

j) � 2 + 1+ 4 = 7
is fulfilling for any T

j 2 LD(T n�1
, T

n) with crD(T i
, T

j) = 1 and k 6= j. By the
antipode-free drawing D, crD(G⇤ [ T

i [ T
k
, T

j) � 2 + 2 + 1 = 5 is also true for any
T

j 2 LD(T n�1
, T

n) with crD(T i
, T

j) = 2. Thus, by fixing the graph G
⇤[T

i[T
k, we

have

crD(G
⇤ +Dn) � 4

j
n� 2

2

kj
n� 3

2

k
+ 5(r � 1) + 7

✓l
l

2

m
� 1

◆
+ 5

j
l

2

k

+6(n� r � l) + 1 + 2 + 1 � 4
j
n� 2

2

kj
n� 3

2

k
+ 6n� r + 2

l
l

2

m
� l � 8

� 4
j
n� 2

2

kj
n� 3

2

k
+ 6n+ 2

j
n+ 2

4

k
� n� 8 � 4

j
n

2

kj
n� 1

2

k
+ n+

j
n

2

k
.

Both subcases also contradict the assumption of D. Due to the symmetry, the proof proceeds
in the similar way also for the remaining cases of two different configurations {E1, E4},
{E2, E3}, and {E2, E4}.

c) ND = {Ep} for only one p 2 {1, 2, 3, 4}. Without lost of generality, we can assume that
T

n 2 RD with the configuration E1 of the subgraph F
n. Since there are still possibilities

of obtaining a subgraph by which the edges of G⇤ [ T
n are crossed thrice, let us denote

LD(T n) = {T k : crD(G⇤ [ T
n
, T

k) = 3}, and l = |LD(T n)|. It is obvious that LD(T n) and
RD are disjoint subsets of subgraphs due to the assumption ND = {E1}. Now, two possible
subcases may occur:

1) Suppose that l <
⌅
n+2
4

⇧
, that is, �l � 1�

⌅
n+2
4

⇧
. By fixing the graph G

⇤ [ T
n,

crD(G
⇤ +Dn) � 4

j
n� 1

2

kj
n� 2

2

k
+ 4(r � 1) + 3l + 4(n� r � l) + 1

� 4
j
n� 1

2

kj
n� 2

2

k
+ 4n+

✓
1�

j
n+ 2

4

k◆
� 3 � 4

j
n

2

kj
n� 1

2

k
+ n+

j
n

2

k
.

2) Suppose that l �
⌅
n+2
4

⇧
, that is, 2l � 2

⌅
n+2
4

⇧
. For any T

k 2 LD(T n), it is not
difficult to prove that crD(G⇤

, T
k) = 2 and crD(T n

, T
k) = 1 provided by the set SD

is empty. Moreover, it is easy to verify that the rotation rotD(tk) is either (15324) or
(14523). Since the minimum number of interchanges of adjacent elements of (15324)
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required to produce (14523) = (13254) is two, crD(T k1 , T
k2) � 2 + 2 holds for any

two subgraphs T k1 , T
k2 2 LD(T n) with rotD(tk1) 6= rotD(tk2). Consequently, by fixing

the graph G
⇤ [ T

n [ T
k, we have

crD(G
⇤ +Dn) � 4

j
n� 2

2

kj
n� 3

2

k
+ 5(r � 1) + 7(l � 1) + 5(n� r � l) + 3 + 1

� 4
j
n� 2

2

kj
n� 3

2

k
+ 5n+ 2

j
n+ 2

4

k
� 8 � 4

j
n

2

kj
n� 1

2

k
+ n+

j
n

2

k
.

Thus, it was shown in all mentioned cases that there is no good drawing D of the graph G
⇤+Dn

with fewer than 4
⌅
n
2

⇧⌅
n�1
2

⇧
+ n+

⌅
n
2

⇧
crossings. This completes the proof of Theorem 3.1. 2

4. Corollaries

G1 G2

Figure 4. Two graphs G1, and G2 by adding new edges to the graph G⇤.

Let G1 (G2) be the graph obtained from G
⇤ by adding the edge v1v5 (v1v5 and v2v5) in the

subdrawing in Figure 1(a). Since we are able to add both edges v1v5 and v2v5 to the graph G
⇤

without additional crossings in Figure 3, the drawings of the graphs G1 + Dn and G2 + Dn with
4
⌅
n
2

⇧⌅
n�1
2

⇧
+ n +

⌅
n
2

⇧
crossings are obtained. On the other hand, G⇤ +Dn is a subgraph of each

Gi +Dn, and therefore, cr(Gi +Dn) � cr(G⇤ +Dn) for any i = 1, 2. Thus, the next results are
obvious.

Corollary 4.1. cr(Gi +Dn) = 4
j
n
2

kj
n�1
2

k
+ n+

j
n
2

k
for n � 1, where i = 1, 2.
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[14] M. Staš, On the crossing number of the join of the discrete graph with one graph of order
five, Mathematical Modelling and Geometry 5(2) (2017), 12–19.
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[16] M. Staš, On the crossing number of join of the wheel on five vertices with the discrete graph,
Bull. Aust. Math. Soc. 101(3) (2020), 353–361.

[17] D. R. Woodall, Cyclic-order graphs and Zarankiewicz’s crossing number conjecture, J. Graph

Theory 17 (1993), 657–671.

351


