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Abstract

Let T be a tree of order n. For any edge labeling f : E → {1, 2, 3, ...} the weight of a path P is the
sum of the labels of the edges of P and is denoted by w(P ). If the weights of the nC2 paths in T
are exactly 1, 2,...,nC2, then f is called a Leech labeling and a tree which admits a Leech labeling
is called a Leech tree. In this paper we determine all Leech trees having diameter three. We also
prove that the tree obtained from the path Pn = (v1, v2, ..., vn) by attaching a pendent vertex at
vn−1 is not a Leech tree for all n ≥ 4.
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1. Introduction

By a graph G = (V,E) we mean a finite undirected graph with neither loops nor multiple
edges. The order |V | and the size |E| are denoted by n and m respectively. For graph theoretic
terminology we refer to Chartrand and Lesniak [2].

Let f : E → {1, 2, 3, ...} be an edge labeling of G. The weight of a path P in G is the sum of
the labels of the edges of P and is denoted by w(P ). Leech [5] introduced the concept of a Leech
tree, while considering a problem in electrical engineering, where edge labels represent electrical
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resistance. Let T be a tree of order n. An edge labeling f : E → {1, 2, 3, ...} is called a Leech
labeling if the weights of the nC2 paths in T are exactly 1, 2,...,nC2. A tree which admits a Leech
labeling is called a Leech tree. Since each edge label is the weight of a path of length one, it
follows that f is an injection and 1,2 are edge labels for all n ≥ 3. Leech found five Leech trees
which are given in Figure 1 and these are the only known Leech trees.

Figure 1. Leech trees.

Taylor [8] proved that if T is a Leech tree of order n, then n = k2 or k2 + 2 for some integer
k. Since then it has been proved by several authors ([1],[7],[9] ) that no Leech trees of order 9,
11 or 16 exist, leaving n = 18 as the smallest open case. Some variations of Leech trees such
as modular Leech trees ([3], [4]), minimal distinct distance trees [1] and leaf-Leech trees [6] have
been investigated by several authors.

Szekely et al. [7] have proved the following theorem.

Theorem 1.1. [7] If there is a Leech tree on n vertices, then it has no paths larger than n√
2
(1 +

o(1)).

A double star Br,s is a tree with vertex set {u, v, u1, u2, ..., ur, v1, v2, ..., vs} in which uv is an
edge, each ui is a pendent vertex adjacent to u and each vj is pendent vertex adjacent to v. If both
r and s are not zero, the double star Br,s are precisely the trees having diameter three. In this paper
we determine all Leech trees having diameter three. We also prove that the tree obtained from the
path Pn = (v1, v2, ..., vn) by attaching a pendent vertex at vn−1 is not a Leech tree for all n ≥ 4.

2. Leech trees with diameter three

For any positive integer n , we denote the set {1, 2, ....., n} by [n]. We proceed to prove that the
double stars B1,1 and B2,2 are the only Leech trees of diameter three.

Theorem 2.1. The double star T = Br,s, where both r and s are non-zero, is a Leech tree if and
only if T = B1,1 or B2,2.
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Proof. Let f be a Leech labeling of Br,s where r ≥ s ≥ 1. Let S denote the set of all path weights
in the labeling process. Since uv is the unique nonpendent edge of T , the label 1 is assigned to
either uv or to a pendent edge. We consider two cases.
Case 1: f(uv) = 1.

Without loss of generality, let f(uu1) = 2. Then S = [3]. The next available edge label is 4,
which has to be used to get path of weight 4. If f(vv1) = 4, then S = [7] − {6}. To get path
weight 6, one of the pendent edges must be assigned the label 6 and this gives two paths of weight
7 , which is a contradiction. Hence f(uu2) = 4 and S = [6]. To get path weight 7 an edge has
to be assigned label 7. If f(uu3) = 7, then S = [11] − {10} and a path of weight 10 cannot be
obtained in any subsequent labeling. If f(vv1) = 7, then S = [11] − {9} and a path of weight 9
cannot be obtained in any subsequent labeling.
Case 2: f(uu1) = 1.

We consider three subcases.
Subcase a: f(uv) = 2.

Then S = {1, 2, 3}. If f(vv1) = 4, then S = [7] − {5}. If an edge incident at v is given
the label 5, then path weight 7 is repeated. If an edge incident at u is given the label 5, then path
weight 6 is repeated. Hence f(uu2) = 4 and S = [6]. The next available edge label is 7 which
has to be used to get path weight 7. If f(vv1) = 7, then S = [13] − {8, 11, 12}. Now if an edge
is assigned label 8, then we get two paths with weight 10, a contradiction. Hence f(uu3) = 7 and
S = [11] − {10}. Now if f(uu4) = 10, then path weight 11 is repeated. If f(vv1) = 10, then
S = [19]− {14, 15, 17, 18} and if any edge is assigned label 14, then path weight 16 is repeated.
Subcase b: f(uu2) = 2.

Then S = [3]. If f(uv) = 4, then proceeding as in subcase a, we get a contradiction. Suppose
f(uu3) = 4. Then S = [6]. Now the label 7 can be assigned to one of the edges uu4, uv or vv1.
Suppose f(uu4) = 7. Then S = [11] − {10}. If 10 is assigned to uu5 or uv, then path weight 11
is repeated. Hence let f(vv1) = 10. Then S = [11]. Now if f(uu5) = 12, then the paths (u5, u, v)
and (v1, v, u, u2) both have weight 12 + f(uv). A similar contradiction arises if f(vvj) = 12.
Hence f(uv) = 12 and S = [29] − {15, 17, 18, 20, 21, 25, 27, 28}. Now no edge can be assigned
the label 15, which is a contradiction. Next , we take f(uv) = 7. Then S = [11]− {10}. Now any
edge incident at u cannot be assigned label 10, since this gives two paths of weight 11. Suppose
f(vv1) = 10. Then 12 /∈ S and further 12 cannot be assigned as a label to any edge, which is a
contradiction.

Now, suppose f(vv1) = 7. Then 8 cannot be assigned to any pendent edge since this gives two
paths of weight 8 + f(uv). Hence f(uv) = 8. Then 11 /∈ S and if the label 11 is to be assigned to
any edge, we get two paths of weight 11 + f(uv) which is again a contradiction.

Finally , suppose f(vv1) = 4. Then S = [4]. If 5 is assigned to a pendent edge, then we get
two paths of weight 5 + f(uv). Hence f(uv) = 5 and S = [11]− {8}. If the label 8 is assigned to
uu3, we get two paths of weight 9. Hence f(vv2) = 8 and S = [15]. This gives a Leech labeling
of B2,2. If there are more edges, we continue the labeling process. If f(uu3) = 16, then 19 /∈ S
and assigning the label 19 to any edge gives two paths of weight 20 or 21. If f(vv3) = 16, then
17 /∈ S and label 17 cannot be assigned to any edge.
Subcase c: f(vv1) = 2.

Then S = {1, 2}. If 3 is assigned to a pendent edge, we get two paths of weight 3 + f(uv).
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Hence f(uv) = 3 and S = [6]. This gives a Leech labeling of B1,1. Suppose there are more edges.
If f(uu2) = 7, then 9 /∈ S and 9 cannot be assigned to any edge. If f(vv2) = 7, then 8 /∈ S and
the label 8 cannot be assigned to any edge. Thus B2,2 and B1,1 are the only double stars which are
Leech Trees.

3. A family of non-Leech trees

All the known Leech trees given in Figure 1 have diameter at most three. Theorem 2.1 implies
that there is no other Leech tree with diameter at most three. The path Pn are trees with diameter
n − 1 and Pn is a Leech tree if and only if n = 2, 3 or 4. Thus all trees of diameter n − 1
have been characterized. Hence the most natural question in this direction is to determine all
Leech trees of diameter n− 2. We observe that K1,3 is a Leech tree with diameter n− 2. Now let
Pn = (v1, v2, . . . , vn) be a path on n vertices with n ≥ 3. Let Gn be the graph obtained from Pn

by attaching a pendant vertex v′n adjacent to vn−1. Clearly Gn is a graph of order n + 1 and has
diameter n − 1. In this section we prove that Gn is not a Leech tree for n ≥ 4. This shows K1,3

is the only Leech tree with diameter n − 2, thus giving a characterization of all Leech trees with
diameter n−2. Though most of the cases in the proof of this theorem follow from Theorem 1.1, we
have given an independent proof and we believe that this proof technique along with Theorem 1.1
will be of help in moving towards the proof of the well known basic conjecture that the number of
Leech trees is finite.

Since any tree of order n < 18 other than the five Leech trees given in Figure 1 is not a Leech
tree, it is enough to prove that Gn is not a Leech tree for n ≥ 17. We need the following Lemma.

Lemma 3.1. Suppose f is a Leech labeling of Gn where n ≥ 17. Let P = (v′n, vn−1, vn). Then
w(P ) < n+1C2 − 85.

Proof. Suppose w(P ) ≥ n+1C2 − 85 = n2+n−170
2

. Then one of the edges v′nvn−1 or vn−1vn must
have label greater than or equal to w(P )

2
.

Let f(vn−1vn) ≥ w(P )
2
≥ n2+n−170

4
.

The n−1C2 subpaths of the path (v1, v2, ..., vn−1) have distinct weights and hence
w((v1, v2, ..., vn−1)) ≥n−1C2.

Hence w(Pn) ≥n−1 C2+f(vn−1vn) ≥ (n−1)(n−2)
2

+ n2+n−170
4

= 3n2−5n−166
4

. Since w(Pn) ≤n+1

C2, it follows that n3−5n−166
4

≤n+1 C2. This gives n2−7n−166 ≤ 0. However n2−7n−166 > 0
for n ≥ 17 which is a contradiction. Hence w(P ) < n+1C2 − 85.

Theorem 3.1. The tree Gn is not a Leech tree for n ≥ 17.

Proof. Suppose there exists a Leech labeling f for Gn. There are three maximal paths Pn =
(v1, v2, ..., vn), P ′n = (v1, v2, ..., vn−1, v

′
n) and P = (v′n, vn−1, vn) and one of these paths must have

weight n+1C2. It follows from Lemma 3.1 that either Pn or P ′n has weight n+1C2. We may assume
without loss of generality that w(Pn) =

n+1 C2. Now the path of weight n+1C2 − 1 is either P ′n or
Pn − v1.
Case 1: w(P ′n) =

n+1 C2 − 1.
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In this case f(vn−1v
′
n) = f(vn−1vn) − 1 and w((vi, vi+1, ...vn−1, v

′
n)) =

w((vi, vi+1, ..., vn−1, vn)) − 1. Hence the path of weight n+1C2 − 2 is either Pn − v1 or Pn − vn.
Suppose w(Pn − v1) =n+1 C2 − 2. Then w(P ′n − v1) =n+1 C2 − 3. Hence f(v1v2) = 2.
Since f(v2v3) 6= f(v1v2) = 2, the path Pn − {v1, v2} cannot have weight n+1C2 − 4. Hence
the path of weight n+1C2 − 4 is Pn − vn and so f(vn−1vn) = 4 and f(vn−1v

′
n) = 3. Also

w(Pn − {vn, v1}) =n+1 C2 − 6. Now the path of weight n+1C2 − 5 is either Pn − {v1, v2}
or Pn − {vn, vn−1}. If w(Pn − {v1, v2}) =n+1 C2 − 5, then f(v2v3) = 3 = f(vn−1v

′
n). If

w(Pn − {vn, vn−1}) =n+1 C2 − 5, then f(vn−2vn−1) = 1 and hence w(vn−2vn−1v
′
n) = f(vn−1vn),

giving a contradiction.
Now, suppose w(Pn − vn) =n+1 C2 − 2. Then f(vn−1vn) = 2 and f(vn−1v

′
n) = 1. Now

f(vivi+1) ≥ 3 for all i, 1 ≤ i ≤ n− 2 and hence there is no path of weight n+1C2 − 3, which is a
contradiction.
Case 2: w(Pn − v1) =

n+1 C2 − 1.
In this case f(v1v2) = 1. Since f(v2v3) ≥ 2, we have w(Pn − {v1, v2}) ≤n+1 C2 − 3. Hence

w(P ′n) =n+1 C2 − 2 and w(P ′n − {v1}) =n+1 C2 − 3. Also f(vn−1v
′
n) = f(vn−1vn) − 2 and

no subpath of P ′n can have weight n+1C2 − 4. Hence one of the paths Pn − {v1, v2} or Pn − vn
must have weight n+1C2 − 4. Suppose w(Pn − {v1, v2}) =n+1 C2 − 4. Then f(v2v3) = 3 and
w(P ′n − {v1, v2}) =n+1 C2 − 6. Now let f(vn−1vn) = k. Then f(vn−1v

′
n) = k − 2. Since 1, 3 and

4 are already path weights, it follows that k ≥ 7 and there is no path of weight n+1C2 − 5, which
is a contradiction. Hence it follows that w(Pn − vn) =n+1 C2 − 4. In this case f(vn−1vn) = 4,
f(vn−1v

′
n) = 2 and w(Pn − {v1, v2}) =n+1 C2 − 5. Since the pendent edges of Pn have labels 1

and 4 and w((v′n, vn−1, vn)) = 6, it follows that no subpath of Pn has weight n+1C2−6. Also since
w(P ′n) =

n+1 C2− 2 and the pendent edges of P ′n have labels 1 and 2, no subpath of P ′n has weight
n+1C2 − 6. Thus there is no path of weight n+1C2 − 6, which is a contradiction. Hence there is no
Leech labeling for Gn.

Observation 3.1. In Lemma 3.1 we have assumed that n ≥ 17, which gives w((v′n, vn−1, vn)) <
n+1

C2 − 85. However in the proof of Theorem 3.1 we only require w((v′n, vn−1, vn)) <n+1 C2 − 6.
Hence the proof of Theorem 3.1 holds for n ≥ 9 which shows that the proof is independent of the
known results of non existence of Leech trees of order 9, 11 and 16.

4. Conclusion sand Scope

All the five known Leech trees given in Figure 1 are double stars and we have proved that no
other double star is a Leech tree. Hence the basic conjecture on Leech trees can be restated as
follows.
Leech Tree Conjecture: The only Leech trees are the double stars B0,0, B1,1, B2,2, B1,0 = B0,1

and B2,0 = B0,2.

References

[1] B. Calhoun, K. Ferland, L. Lister and J. Polhill, Minimal distinct distance trees, J. Combin.
Math. Combin. Comput. 61 (2007), 33–57.

209



www.ejgta.org

Two classes of non-Leech trees | Seena Varghese et al.

[2] G. Chartrand and L.Lesniak, Graphs and digraphs, CRC (2005).

[3] D. Leach, Modular Leech trees of order atmost 8, J. Combin., (2014), Article ID 218086.

[4] D. Leach and M. Walsh, Generalized Leech trees, J. Combin. Math. Combin. Comput. 78
(2011), 15–22.

[5] J. Leech, Another tree labeling problem, Amer. Math. Monthly 82 (1975), 923–925.

[6] M. Ozen, H. Wang, D. Yalman, Note on Leech-type questions of tree, Integers 16 (2016),
#A21

[7] L.A. Szekely, H. Wang and Y. Zhang, Some non-existence results on Leech trees, Bull. Inst.
Combin. Appl. 44 (2005), 37–45.

[8] H. Taylor, Odd path sums in an edge-labeled tree, Math. Magazine 50 (5) (1977), 258–259.

[9] H. Taylor, A distinct distance set of 9 nodes in a tree of diameter 36, Discrete Math. 93
(1991), 167–168.

210


