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Abstract

A r-perfect code in a graph G = (V (G), E(G)) is a subset C of V (G) for which the balls of
radius r centered at the vertices of C form a partition of V (G). In this paper, we study the exis-
tence of perfect codes in corona product and generalized hierarchical product of graphs where the
cardinality of U is equal to one or two. Also, we give some examples as applications of our results.
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1. Introduction

Throughout this paper all graphs considered are finite, simple and connected. The distance
d(u, v) between the vertices u and v of a graph G is equal to the length of a shortest path that
connects u and v.

Let G = (V (G), E(G)) be a graph. Any subset CG of V (G) is named a code in G. Suppose
Sr(c) = {u | u ∈ V (G) and d(u, c) ≤ r}, c ∈ CG. For a positive integer r, we call CG a r-perfect
code iff ∪c∈CG

Sr(c) = V (G) and Sr(ci) ∩ Sr(cj) = ∅ for each ci, cj ∈ CG, where i 6= j. For
more information, we recommend the readers to look at [13]. Perfect codes have been used to
model the problem of efficient placement of resources in a network. Also, they play a central role
in the fast growing of error-correcting codes theory. Perfect codes in direct [11, 20], strong [1]
and lexicographic [17] product of graphs have been investigated by many authors. Later, in [6, 7],
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r-perfect codes have been studied over Cartesian products. In this paper, we study r-perfect codes
over generalized hierarchical and corona product of graphs.

There are more than twenty graph operations. One can use these graph operations for com-
puting invariants of big graphs in terms of invariants of their factors. Also, some graph operations
have some applications in other fields. For example, generalized hierarchical product has some ap-
plications in computer science and chemistry [14, 15]. This graph operation have been introduced
by Barriére et al. [4, 5] as follows:

A graph G with a specified vertex subset U ⊆ V (G) is denoted by G(U). Suppose G and H
are graphs and U ⊆ V (G). The generalized hierarchical product, denoted by G(U) uH , is the
graph with vertex set V (G) × V (H) and two vertices (g, h) and (g′, h′) are adjacent if and only
if g = g′ ∈ U and hh′ ∈ E(H) or, gg′ ∈ E(G) and h = h′. If |U | = |{z}| = 1, then we have
hierarchical product defined as follows:

The hierarchical product G u H is the graph with vertices the 2−tuples x2x1, x1 ∈ V (H)
and x2 ∈ V (G), and edges defined by the following adjacencies:

x2x1 ∼
{

x2y1, if y1 ∼ x1 in H ,
y2x1, if y2 ∼ x2 in G and x1 = z.

Let G and H be two graphs. The corona product G ◦H , is obtained by taking one copy of G
and |V (G)| copies of H; and by joining each vertex of the i-th copy of H to the i-th vertex of G,
where 1 ≤ i ≤ |V (G)|. This product was first introduced by Harary in 1969 [9]. We encourage
the readers to consult [2, 16, 18, 19] for more information on corona product.

The eccentricity e(u) of a vertex u in a graph G is defined as the largest distance between u
and other vertices of G. The radius of G, denoted by rad(G), is the minimum eccentricity among
the vertices of G. The diameter of G, denoted by diam(G) is the maximum eccentricity among
the vertices of G. A vertex v is a central vertex if e(v) = rad(G). The central vertex set of G is
denoted by Z(G).

The hypercube Qn is a graph in which vertices are n-tuples (v1, v2, . . . , vn) that vi ∈ {0, 1}
and two vertices are adjacent when their n-tuples differ in exactly one coordinate. We denote the
path and cycle graphs of order n by Pn and Cn, respectively. The empty graph on n vertices is
the graph complement of the complete graph Kn, and is denoted by K̄n. The graph K1 is also
called the trivial graph. All other graphs are nontrivial. Our other notations are standard and
taken mainly from the standard books of graph theory.

2. Perfect codes in hierarchical product

We find the following notation useful for results of this section. Let G be a graph and H be a
rooted graph with the root vertex z. In following, G′ denotes the copy of G and Hi denotes the i-th
copy of H , corresponding to xi ∈ V (G′), with the root vertex zi = (xi, z) in G uH . Note that by
the previous notation, xi = zi in G u H . Also, when H is a graph, G has an r-perfect code and
r′ = min{rad(G), r}, then Wrj denotes the ball of radius (r − j) centered at the vertex z in H ,
for each j ∈ {0, 1, . . . , r′}. Moreover, the notation Arj is used to denote the subgraph of H whose
vertex set is V (H)\Wrj and whose edge set consists of all edges of H which have both ends in
V (H)\Wrj , for each i ∈ {0, 1, · · · , r′}. In other words, Arj = H[V (H)\Wrj]. Furthermore, let
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C = {CH | CH is a r-perfect code in H} and D = (d1, d2, . . . , dn) be a decreasing sequence such
that di = min{dH(x, z) | x ∈ CH and CH ∈ C}.

Proposition 2.1. If G uH is an r-perfect graph, then G or H is an r-perfect graph.

Proof. Let CGuH be an r-perfect code in G u H . Assume, to the contrary, that G and H do not
have any r-perfect code. So CGuH ∩ G′ 6= ∅ and CGuH * V (G′). Since G is not an r-perfect
graph, then there exist xi ∈ V (G′) that dGuH(u, xi) > r for each u ∈ CGuH ∩ V (G′). Therefore,
there exists a subset C ′ ⊂ CGuH ∩Hi for which the balls of radius r centered at the vertices of C ′

form a partition of Hi, contrary to the assumption that H does not have any r-perfect code.

Let X and Y be subsets of V (G). Then distance between two sets X and Y , denoted by
d(X, Y ), is equal to min{dG(x, y) | x ∈ X and y ∈ Y }.

Proposition 2.2. Suppose H is a graph and C0, C1, · · · , Cr′ are r-perfect codes in Ar0, Ar1, · · · , Arr′ ,
respectively, such that dH(Ci,Wri) > r, i = 0, 1, · · · , r′. Then G uH is an r-perfect graph.

In the following, W i
rj denotes the i-th copy of Wrj corresponding to Hi in G uH .

Proposition 2.3. If G is an r-perfect graph and CGuH is an r-perfect code in G u H such that
CGuH ∩ V (G′) 6= ∅ and CGuH * V (G′), then dHi

(CHi
,W i

rj) > r for j = 0, 1, . . . , r′ and
i = 1, . . . , |V (G)| where CHi

= CGuH ∩Hi.

Proposition 2.4. Suppose G and H are two graphs and CGuH is an r-perfect code in G uH and
CAri

is an arbitrary r-perfect code of Ari. If Ari does not have any r-perfect code, or there exist
x ∈ CAri

and y ∈ Wri that dH(x, y) ≤ r for at least one i ∈ {0, 1, · · · , r′}, then all elements of
CGuH are either in G′, or in ∪|V (G)|

i=1 (V (Hi) \ {zi}).

Proof. Suppose G and H are two graphs and CGuH is an r-perfect code in G u H and Ari does
not have any r-perfect code, or there exist x ∈ CAri

and y ∈ Wri that dH(x, y) ≤ r for at least
one i ∈ {0, 1, · · · , r′}. Assume, to the contrary, that xi and v are elements of CGuH with xi ∈ G′

and v ∈ ∪|V (G)|
i=1 (V (Hi) \ {zi}). Hence, there exist xl ∈ V (G′) that dGuH(xi, xl) ≤ r. This implies

that Ardl does not have any r-perfect code, or there exist x ∈ CArdl
and y ∈ Wrdl that d(x, y) ≤ r

where dl = d(xl, CGuH) and Ardl ⊆ Hl. Therefore, e(z) (the eccentricity of the root vertex z of
H) must be less than or equal to r. Now we consider two cases:

Case 1. d(v, xi) ≤ r. This case derives a contradiction because e(z) ≤ r.

Case 2. d(v, xi) > r. Thus, there exists xt with d(xi, xt) = r and so d(u, xt) must be more than r
for a vertex u ∈ V (Hk) which is contrary to e(z) ≤ r.

Therefore, all elements of CGuH are either in G′, or in ∪|V (G)|
i=1 (V (Hi) \ {zi}), but not both.

Proposition 2.5. Suppose G and H are two graphs and CGuH is an r-perfect code in G uH such
that CGuH ∩ V (G′) 6= ∅. If Ari does not have any r-perfect code, or there exist x ∈ CAri

and
y ∈ Wri that dH(x, y) ≤ r for at least one i ∈ {0, 1, · · · , r′}, then |CGuH | = 1.
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Proof. Suppose CGuH is an r-perfect code in G u H that CGuH ∩ V (G′) 6= ∅. If Ari does not
have any r-perfect code, or there exist x ∈ CAri

and y ∈ Wri such that dH(x, y) ≤ r for at least
one i ∈ {0, 1, · · · , r′}, then by Proposition ??, CGuH ⊆ V (G′). Assume, to the contrary, that
xi, xj ∈ CGuH . Therefore, there exists xl ∈ V (G′) with d(xi, xl) = r. So d(u, xi) > r and
d(u, xj) > r for each u ∈ V (Hl) \ {zl}, contrary to the assumption that CGuH is an r-perfect
code.

Proposition 2.6. Suppose CGuH is an r-perfect code in G uH such that CGuH ∩ V (G′) 6= ∅ and
Ar

i does not have any r-perfect code, or there exist x ∈ CAr
i

and y ∈ W r
i that dH(x, y) ≤ r for at

least one i ∈ {0, 1, · · · , r′}. Then G is an r-perfect graph iff G uH has a (r + e(z))-perfect code
C ′GuH that C ′GuH ∩ V (G′) 6= ∅.

Proposition 2.7. G u H has an r-perfect code CGuH with CGuH ∩ V (G′) = ∅ iff either of the
following two conditions holds.

i. d1 = r.

ii. There exists di ∈ D that G has a (r − di)-perfect code and Ar−di,j has an r-perfect code
CAr−di,j

such that there does not exist u ∈ Wr−di,j that d(x, u) ≤ r for each x ∈ CAr−di,j

and j ∈ {1, 2, . . . , r′}.

Proof. It is clear that if either of the conditions holds then there is an r-perfect code CGuH in GuH
that CGuH ∩ V (G′) = ∅.

Conversly, suppose that CGuH is an r-perfect code in GuH that CGuH ∩V (G′) = ∅. We show
that if the second condition does not hold then the first condition must be hold. Assume, to the
contrary, that there exist xi and u ∈ Hi ∩ CGuH which dGuH(xi, u) < r. Let xi+1xi be an edge of
G′, then dGuH(xi+1, u) ≤ r. On the other hand, by our assumption there exists v ∈ CGuH ∩Hi+1

with dGuH(xi+1, v) ≤ r, contrary to the assumption that CGuH is a perfect code.

Proposition 2.8. If CGuH is an r-perfect code in GuH such that CGuH * V (G′), then |V (G)| ≤
|CGuH |.

Proof. Let CGuH be an r-perfect code in GuH that CGuH * V (G′). Now assume, to the contrary,
that there exists a copy Hk in G u H such that V (Hk) ∩ CGuH = ∅. So, there are two cases as
follows:

i. There is a vertex xi ∈ CGuH that dGuH(xi, v) ≤ r, for each v ∈ V (Hk).

ii. There is a vertex u in (V (Hl) \ {zl}) ∩ CGuH that dGuH(u, v) ≤ r, for each v ∈ V (Hk).

In the first case, r must be bigger than or equal to e(z) and since CGuH * V (G′), then there exist
xj that dGuH(xi, xj) = r, contrary to the assumption that CGuH is an r-perfect code. By a similar
argument, we have a contradiction in the second case.

Theorem 2.1. For each r, r ∈ {e(z) + 1, . . . , e(z) + rad(G) − 1}, G u H does not have any
r-perfect code.
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Figure 1. DD2,4.

Example 1. Dendrimers are branched molecules have a high degree of molecular uniformity. The
molecular graph of this molecules is constructed from a core and some branches connecting to the
core. The notation DDp,r shows the graph of the regular dicentric dendrimer [8]. It is clear that
DDp,r = P2 uH , where H is a tree of progressive degree p and generation r (in other words, the
graph H is a complete n-ary Tree, T (n, k), for k = 2). The graph depicted in Figure 1 is DD2,4.
By previous results, this graph is an r-perfect graph where r ≥ 5 but does not have any r-perfect
code where r < 5.

Figure 2. 1-perfect code, 2-perfect code, 3-perfect code and 6-perfect code in Sun6,4 .

Example 2. Consider the sun graph Sunm,n = Cm u Pn, introduced by Y.-N. Yeh and I. Gutman

[19]. By Proposition 2.5, one can see that Sunm,n has a
(

[m
2

] + n − 1
)

-perfect code. Also, by
Proposition 2.7, if m = 1 then Sunm,n has an (n − 1)-perfect code and if m 6= 1 and n

2r+1
∈

{0, r + 1, . . . , 2r}, then Sunm,n has an r-perfect code. Moreover, by Proposition 2.3, if r ≤ [m
2

]
or m

2r+1
= 0 then Sunm,n is an r-perfect code, see Figure 2.

3. Perfect codes in generalized hierarchical product

In this section, we study perfect codes of generalized hierarchical product when |U | = 2. To do
this, some new notations are needed. Throughout this section, U = {u1, u2}, Gi denotes the i-th
copy of G, corresponding to xi ∈ V (H), and H1 and H2 denote the copies of H corresponding to
u1, u2 in G(U) uH , respectively. Also, since U is fixed, we simplify the notation G(U) uH into
GuH . Moreover, aW b

i = {x ∈ V (G) | d(u1, x) ≤ d(u1, a)− i or d(u2, x) ≤ d(u2, b)− i} where
i ∈ {0, 1, . . . ,max{r − d(u1, a), r − d(u2, b)}}.
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Theorem 3.1. G u H is an r-perfect code CGuH with |CGuH | = |CGuH ∩ (H1 ∪ H2)| = 1 iff
d(u1, u2) ≤ r and rad(H) + min{e(u1), e(u2)} ≤ r.

Proof. Let x ∈ Z(H1), d(u1, u2) ≤ r and rad(H) + min{e(u1), e(u2)} ≤ r. Without loss of
generality, assume min{e(u1), e(u2)} = e(u2). Since rad(H) + e(u2) ≤ r, then {x} is a perfect
code in G uH .

Conversely, suppose GuH has an r-perfect code CGuH with |CGuH | = |CGuH∩(H1∪H2)| = 1.
If d(u1, u2) > r, then it is clear that G u H does not have any r-perfect code with one element.
On the other hand, if d(u1, u2) ≤ r, then it is not difficult to see that rad(H) + min{e(u1), e(u2)}
must be smaller than r.

Theorem 3.2. If d(u1, u2) > r and G u H is an r-perfect graph, then CGuH has at least one
element in V (G(U) uH) \

(
V (H1) ∪ V (H2)

)
.

Proof. Assume, to the contrary, that CGuH does not have any element in
(
∪|V (H)|

i=1 V (Gi)
)
\(

V (H1)∪V (H2)
)
. Since d(u1, u2) > r, then CGuH∩V (H1) 6= ∅ 6= CGuH∩V (H2). Thus there ex-

ists at least one vertex h ∈ V (H) such that (u1, h), (u2, h) ∈ CGuH , and so dGuH((u1, h), (u2, h)) =
2r + 1. On the other hand, dGuH((u1, h), (u2, h)) = dG(u1, u2) and hence dG(u1, u2) = 2r + 1.
Now, suppose Gh′ is the copy of G, corresponding to h′ ∈ V (H), in G(U) u H where hh′ ∈
E(H). Therefore, there exists a vertex (x, h′) in Gh′ such that dG(U)uH((u1, h), (x, h′)) > r and
dG(U)uH((u2, h), (x, h′)) > r, a contradiction.

Theorem 3.3. G(U) uH has an r-perfect code CG(U)uH whose elements are in V (G(U) uH) \(
V (H1) ∪ V (H2)

)
if the following conditions hold:

1. min{d(u1, x), d(u2, x)} ≥ r and G[V (G)\aW b
i ] has a r-perfect code CG[V (G)\aW b

i ]
such that

dG(x, y) > r, for each i ∈ {1, 2, . . . ,max{r − d(u1, a), r − d(u2, b)}}, x ∈ CG[V (G)\aW b
i ]

,
y ∈a W b

i and a, b ∈ CG where d(a, u1), d(b, u2) ≤ r;
2. H has a (r − d(u1, a))-perfect code or a (r − d(u2, b))-perfect code.

Proof. Suppose there exist a, b ∈ CG such that d(a, u1) ≤ r and d(b, u2) ≤ r. Without loss of
generality, we may suppose that d(u2, a) ≥ d(u1, b).

By the first condition, one can see that if rad(H) ≤ r − d(u2, b) or r − d(u2, b) < rad(H) ≤
r − d(u1, a), then G(U) uH has an r-perfect code.

Now, suppose rad(H) > r − d(u1, a). Without loss of generality, we may suppose that H
has a (r − d(u1, a))-perfect code. Let c ∈ CH , H ′ = H[V ′] and H ′′ = H[V ′′] where V ′ =
{x ∈ V (H) | d(c, x) ≤ r − d(u1, a)} and V ′′ = {x ∈ V (H) | d(c, x) > r − d(u1, a)}. By
the previous argument, it is clear that G u H ′ and G u H ′′ have r-perfect codes. Therefore, it
is sufficient to prove that G u H is an r-perfect code if for each x ∈ CGuH′′ and y ∈ V (H ′),
dGuH((x, h), (g, y)) > r where h is a vertex of H , corresponding to copy G[V (G) \a W b

i ]. Since
min{d(u1, x), d(u2, x)} ≥ r for each x ∈ CG[V (G)\aW b

i ]
, then dGuH((x, h), (g, y)) > r for each

x ∈ CGuH′′ and y ∈ V (H ′).

Similarly, we can prove the following theorem:
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Theorem 3.4. If G[V (G)\aW b
i ] has an r-perfect code such that dG(x, y) > r and min{d(u1, x), d(u2, x)} ≥

r for each x ∈ CG[V (G)\aW b
i ]

and y ∈a W b
i , i ∈ {0, 1, · · · ,max{r − d(u1, a), r − d(u2, b)}}, then

G uH is an r-perfect graph.

Figure 3. (a) Q3; (b) the 3-perfect code in Q3; (c) the 1-perfect code in Q3.

Example 3. Consider the hypercube Q3. It is clear that Q3
∼= P2(U) u C4 where U = V (P2).

Then by the previous results, Q3 is an r-perfect graph for each i ∈ {1, 3} as shown in Figure 3.

4. Perfect codes in corona product

In this section, we study sufficient conditions for the existence of r-perfect codes in corona
product of graphs. To prove the results of this section, we have to present some notations. Let G′

denote the copy of G and Hi denote the i-th copy of H , corresponding to xi ∈ V (G′), in G ◦H .

Proposition 4.1. If CG◦H is an r-perfect code in G ◦ H such that CG◦H ∩ V (G′) 6= ∅ , then
|CG◦H | = 1.

Proof. Let CG◦H is an r-perfect code in G◦H and u ∈ V (G′)∩CG◦H . Assume, to the contrary, that
|CG◦H | > 1. Then there exists xi ∈ V (G′) such that dG◦H(u, xi) = r and so dG◦H(u,w) = r + 1
for each w ∈ V (Hi). But this is contrary to the hypothesis.

Corollary 4.1. If CG◦H is an r-perfect code in G ◦H , then all elements of CG◦H are either in G′,
or in ∪|V (G)|

i=1 V (Hi).

Proposition 4.2. If CG◦H is an r-perfect code in G ◦ H such that CG◦H ∩ V (G′) = ∅, then
|CG◦H ∩ V (Hi)| ≤ 1, i = 1, 2, . . . , |V (G)|.

Proof. Assume, to the contrary, that u, v ∈ V (Hi). Then dG◦H(u, xi) = dG◦H(v, xi) = 1 which is
contrary to the hypothesis.

Proposition 4.3. G ◦H is a 1-perfect code iff G is the trivial graph, or4(H) = |V (H)| − 1.

Proof. If G is the trivial graph and u ∈ V (G′), it is clear that {u} is the 1-perfect code in G ◦H .
Now suppose ui be a vertex of Hi, corresponding to the vertex u ∈ V (H). If u is a vertex of degree
|V (H)| − 1, then ∪|V (G)|

i=1 {ui} is the 1-perfect code in G ◦H .
For sufficiency, suppose that G ◦ H has a 1-perfect code CG◦H . According to Corollary 4.1,

there are two cases as follows:
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Case 1. CG◦H ∩ V (G′) = ∅. Thus, by Proposition 4.2, |CG◦H ∩ V (Hi)| ≤ 1, i = 1, 2, ..., |V (G)|.
This implies that there exists ui in Hi of degree (|V (H)| − 1) and so4(H) = |V (H)| − 1.

Case 2. All elements of CG◦H are in G′. In this case, if |CG◦H | > 1, it is clear that G ◦H doesn’t
have any 1-perfect code. Now, suppose |CG◦H | = |{v}| = 1. If G is nontrivial, then there
exists a neighbour vertex xi of a vertex in CG◦H . Thus, d(Hi, CG◦H) = 2, a contradiction.
Therefore, G cannot be nontrivial.

Proposition 4.4. If G ◦ H has an r-perfect code CG◦H with r > 1 and CG◦H * V (G′), then
|CG◦H | = 1.

Proof. Suppose CG◦H is an r-perfect code in G ◦ H and v ∈ CG◦H ∩ V (Hi). To the contrary,
assume that |CG◦H | > 1 and v 6= u ∈ CG◦H . By Corollary 4.1, u /∈ V (G′) and by Proposition 4.2,
u ∈ V (Hj) with i 6= j. Hence, there is a vertex xl ∈ G′ that dG◦H(u, xl) = r and so d(w, u) = r+1
for each w ∈ V (Hl), contrary to the assumption that CG◦H is an r-perfect code.

Theorem 4.1. Let G and H be two graphs and r ≥ 2. Then G ◦ H is an r-perfect graph iff
rad(G) ≤ r − 1.

Proof. We first assume that rad(G) ≤ r − 1 and xi is the central vertex of G′. Then {xi} is the
r-perfect code in G ◦H .

Conversely, suppose that G ◦H has an r-perfect code CG◦H . There are two possible cases for
the elements of CG◦H as follows:

Case 1. CG◦H ∩G′ = ∅. Thus, by Proposition 4.2, |CG◦H ∩ V (Hi)| ≤ 1, i = 1, 2, . . . , |V (G)|. To
the contrary, assume that rad(G) > r − 1. Let u be an element of CG◦H which u ∈ V (Hi).
Since rad(G) > r − 1, then there exists xjxl in the edge set of G′ that dG◦H(u, xj) = r and
dG◦H(u, xl) = r + 1. Therefore, dG◦H(u, v) = r + 1 for each v ∈ V (Hj), contrary to the
assumption that CG◦H is an r-perfect code.

Case 2. All elements of CG◦H are in G′. By proposition 4.1, |CG◦H | = 1 and so rad(G) ≤ r − 1.

Figure 4. (a) G; (b) the 1-perfect code in G; (c) the 4-perfect code in G.
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Example 4. Octanitrocubane is the most powerful chemical explosive with formula C8(NO2)8.
Let G be the graph of this molecule, see part (a) of Figure 4. So, It is clear that G is formed by
corona product Q3 with P1. That is G ∼= Q3◦P1. According to Proposition 4.3, G has the 1-perfect
code as shown in part (b) of Figure 4. On the other hand, Since Q3 and P1 don’t have conditions
of Theorem 4.1, then G doesn’t have any 2-perfect code. Moreover, applying Theorem 4.1 and this
fact that rad(Q3) = 3, G is a 4-perfect graph as shown in part (c) of Figure 4.

A caterpillar is a tree in which all the vertices are within distance 1 of a central path.

Example 5. Consider a caterpillar H = Pn ◦ K̄m. By previous results, if n = 1, H is a 1-perfect
graph and if n > 1, then H is a ([n

2
] + 1)-perfect graph.
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