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Abstract

Graphs considered in this paper are finite simple undirected graphs. Let G = (V (G), E(G)) be a
graph with E(G) = {e1, e2, . . . , em}, for some positive integer m. The edge space of G, denoted
by E (G), is a vector space over the field Z2. The elements of E (G) are all the subsets of E(G).
Vector addition is defined as X + Y = X � Y, the symmetric difference of sets X and Y, for
X, Y 2 E (G). Scalar multiplication is defined as 1 ·X = X and 0 ·X = ; for X 2 E (G). Let H
be a subgraph of G. The uniform set of H with respect to G, denoted by EH(G), is the set of all
elements of E (G) that induces a subgraph isomorphic to H . The subspace of E (G) generated by
EH(G) shall be denoted by EH(G). If EH(G) is a generating set, that is EH(G) = E (G), then H

is called a generator subgraph of G. This study determines the dimension of subspace generated
by the set of all subsets of E(G) with even cardinality and the subspace generated by the set of all
k- subsets of E(G), for some positive integer k, 1  k  m. Moreover, this paper determines all
the generator subgraphs of star graphs. Furthermore, it gives a characterization for a graph G so
that star is a generator subgraph of G.
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1. Introduction

Many studies in graph theory use algebraic structures to develop new classes of graphs. Using
the graph properties, the characteristics of the new developed graphs were obtained. This method
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leads to the development of many interesting results. For instance, to mention some, non-abelian
group was used in [12], refer to [8] on the use of vector space, and [6] used commutative ring.
There are several studies that can be found in the literature that are similar to the previous examples.
However, some of them use different algebraic structures.

On the other hand, graph theory has been linked to algebra. An example is the concept of the
edge space of a graph. The edge space of a graph G is a vector space over the field Z2 = {0, 1}.
Researchers can investigate the subspaces of the edge space generated by some classes of subgraph
of a graph. One interesting idea is to find a subgraph H of G such that the set of all subsets of the
E(G) that induces a subgraph isomorphic to H spans the edge space of G. Here, H is said to be
a generator subgraph of G. Precise definitions of the edge space and the generator subgraph are
given in the next section.

The problem on generator subgraph of a graph was introduced by Gervacio in 2008. Most
of the previous researches on this problem focused on the determination and characterization of
generator subgraphs of a particular graph. These graphs include path, cycle, complete graph [2],
complete bipartite graph [10], fan, and wheel [5] graphs. It can be noted that among the special
graphs being studied, only the generator subgraphs of the complete graphs were completely known.

Prior to the introduction of the generator subgraph problem, Gervacio and Mame [4], intro-
duced the universal and primitive graphs. The study focused on the determination whether the
given graph G is a universal graph or a primitive graph. It is related to the problem on generator
subgraphs in the sense that the term universal graphs later became the generator graphs described
in [2], and at present called the generator subgraph of complete graphs [3]. A characterization of
the primitive graphs was found. There is no characterization for universal graphs but one signifi-
cant result found was a necessary condition for universal graphs. It was shown that if G is universal
then the size of G is odd. This result gives rise to the fundamental theorem on generator subgraph
that any generator subgraph has an odd number of edges. Since then, in identifying generator
subgraphs of a graph G, we only consider the subgraphs with odd number of edges.

The introduction of the generator subgraph of a graph is interesting. It may be applied to some
problems to replace ordinary subgraphs so that new results may be obtained. For instance, this can
be potentially applied to network science study; see [11].

In this paper, we introduce the even edge space of graph and determine its dimension. Also,
we investigate the subspace of the edge space of a graph G generated by the set of all k - subset of
the edge set of G. And, using these results, we determine all the generator subgraphs of stars and
give a characterization for an arbitrary graph G so that the star graph is a generator subgraph of a
graph G.

Results of this study are useful in determining the generator subgraph of a graph. The intro-
duction of the even edge space of a graph opens a new method for finding the generator subgraph
of a graph. In this sense, the authors believed that more results on this problem will be obtained in
the future.

Graphs considered in this paper are finite simple undirected graphs. By a graph G, we mean
an ordered pair (V (G), E(G)), where V (G) is a finite non-empty set of elements called vertices

and E(G) is a set of 2� subset of V (G) whose elements are called edges. The sets V (G) and
E(G) are called the vertex set and edge set of G, respectively. The order of G is the cardinality
of V (G), denoted by |V (G)| and the size of G is the cardinality of E(G), denoted by |E(G)|.
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If [x, y] 2 E(G), we say that x is adjacent to y or y is adjacent to x. Let G = (V (G), E(G))
and H = (V (H), E(H)) be graphs. A mapping � : V (G) 7�! V (H) is called isomorphism if the
following conditions are satisfied: (i) � is bijective, (ii) [a, b] 2 E(G) implies [�(a),�(b)] 2 E(H),
and (iii) [c, d] 2 E(H) implies [��1(c),��1(d)] 2 E(G). Graph G1 is isomorphic to a graph G2,

written as G1 ' G2, if there exists an isomorphism � : V (G1) 7�! V (G2). The degree of a
vertex x in a graph G is the number of edges incident with x and denoted by deg(x). A vertex in a
graph is called an isolated vertex if its degree is zero. Sometimes isolated vertex is called a trivial

component of a graph. A vertex in a graph with degree 1 is called a pendant vertex while an edge
of the graph incident to a pendant vertex is called pendant edge. We use the usual notations for
some special classes of graphs, Kn for complete graph of order n, Pn for path of order n, and Sn

for star graph of order n+ 1.
Other terms in graph theory whose definitions are not given here may be found in several graph

theory books, e.g. Chartrand and Zhang [1]. For the vector spaces, reader may refer to the book
written by E.D. Nering [9].

2. Preliminaries

Here, we give the definition of the edge space of a graph and the generator subgraph of a graph
and discuss some of their properties. Some known results are also included in this section.

Let G = (V (G), E(G)) be a graph with E(G) = {e1, e2, . . . , em}, for some positive integer m.

The edge space of G, denoted by E (G), is a vector space over the field Z2 = {0, 1}. The elements
of E (G) are all the subsets of E(G). Vector addition is defined as X+Y = X � Y, the symmetric
difference of sets X and Y, for X, Y 2 E (G). Scalar multiplication is defined as 1 · X = X and
0 ·X = ; for X 2 E (G).

It can be verified that the set A = {{e1}, {e2}, . . . , {em}} forms a basis of E (G). Hence,
dimE (G) = m, the size of G. Valdez, Gervacio and Bengo [5] called this set the natural basis for
the edge space of G.

For a non-empty set X ✓ E(G), the smallest subgraph of G with edge set X is called the edge-
induced subgraph of G, which we denote by G[X]. In this paper, when we say induced subgraph,
we mean an edge-induced subgraph of a graph.

Let H be a subgraph of G. The uniform set of H with respect to G, denoted by EH(G), is the set
of all elements of E (G) that induces a subgraph isomorphic to H . The subspace of E (G) generated
by EH(G) shall be denoted by EH(G). If EH(G) is a generating set, that is EH(G) = E (G), then
H is called a generator subgraph of G.

Clearly, EH(G) ✓ E (G). To show that a subgraph H is a generator subgraph of G, it is suffi-
cient to show that E (G) ✓ EH(G). That is, the basis {{e1}, {e2}, . . . , {em}} ✓ EH(G). Equiva-
lently, we have the following remark.
Remark 2.1. Let H be a subgraph of G. Then H is a generator subgraph of G if and only if for
every e 2 E(G) the singleton {e} 2 EH(G).

For example, let G = K4, a complete graph of order 4, where E(K4) = {e1, e2, . . . , e6} as
shown in Figure 1. Let H = P4, a path of order 4. We show that P4 is a generator subgraph of K4.

First, we identify the elements of EP4(K4). Let A1 = {e2, e4, e5}. Then A1 2 EP4(K4) since
G[A1] is isomorphic to P4, as shown in Figure 2.
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Figure 1. The labeling of K4
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Figure 2. The graph G[A1]

By enumerating all the elements of EP4(K4), we have the following:

A1 = {e2, e4, e5}; A7 = {e3, e4, e5}
A2 = {e2, e4, e6}; A8 = {e1, e3, e6}
A3 = {e1, e2, e6}; A9 = {e2, e3, e4}
A4 = {e2, e3, e5}; A10 = {e1, e2, e4}
A5 = {e1, e5, e6}; A11 = {e1, e4, e6}
A6 = {e3, e5, e6}; A12 = {e1, e3, e5}

Next, we show that each singleton is an element of EP4(K4). By trial and error, we have

A1 + A2 + A5 = (A1 + A2) + A5

= (A1�A2)�A5

= ({e2, e4, e5}�{e2, e4, e6})�{e1, e5, e6}
= {e5, e6}�{e1, e5, e6}
= {e1}.

Similarly,

{e2} = A2 + A6 + A7

{e3} = A5 + A7 + A11

{e4} = A2 + A4 + A6

{e5} = A8 + A11 + A12

{e6} = A1 + A5 + A10

This shows that P4 is a generator subgraph of K4 by Remark 2.1.
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2.1. Some Known Results

Here, we give some useful results which will be applied in the succeeding sections.

Theorem 2.1 (Gervacio, [2]). Let H be a subgraph of the graph G. If H is a generator subgraph

of G, then |E(H)| is odd.

For a nonempty graph G and considering the path P2, it can be observed that EP2(G) is pre-
cisely the set of all singletons in E (G), which is a basis of E (G). Consequently, we have the
following theorem.

Theorem 2.2. Let G be a graph with |E(G)| = m > 0. Then the path P2 is a generator subgraph

of G.

Let G be a graph and consider a subgraph H of G that contain an isolated vertex. It is obvious
that EH(G) = ;. Thus, EH(G) = ;. A useful remark is stated below.

Remark 2.2. If H is a generator subgraph of G, then H contains no isolated vertex.

The next theorem is equivalent to the known theorem in linear algebra about dimension of a
subspace of a vector space over a field.

Theorem 2.3. Let G be a graph with |E(G)| = m. If H is a generator subgraph of G, then

|EH(G)| � m.

The converse of the above theorem is not true. For instance, let G = W4, a wheel of order 5
and H = S3, a star graph of order 4. It can be shown that |ES3(W4)| = 8 = dim E (W4). It can be
verified that the subspace generated by ES3(Wn) has dimension 7. Hence, ES3(Wn) does not span
E (W4) so S3 is not a generator subgraph of W4.

3. Even Edge Space of a Graph

By E ⇤(G), we mean the set of all subsets of E(G) with even cardinality. The first result gives
a relation between E ⇤(G) and E (G).

Theorem 3.1. Let G be a graph with E(G) = {e1, e2, . . . , em}. Then E ⇤(G) is a subspace of

E (G). Moreover, dimE ⇤(G) = m� 1.

Proof. Clearly, E ⇤(G) is a subset of E (G) and E ⇤(G) is not empty since ; 2 E ⇤(G). Let X1, X2 2
E ⇤(G), then X1 +X2 2 E ⇤(G) since |X1 +X2| = |X1�X2| = |X1|+ |X2|� 2|X1 \X2| is even.
Further, let c 2 Z2 and X 2 E ⇤(G), then either c ·X = ; or c ·X = X . In both cases, |c ·X| is
even so c ·X 2 E ⇤(G). Hence, E ⇤(G) is a subspace of E (G).

Now, we find the dimension of E ⇤(G). Let E 0(G) = {X 2 E (G) : |X| is odd}. We know that
E (G) is the power set of a non-empty set E(G). Klasar [7] showed that if S is a non-empty set and
P(S) is the power set of S then the number of elements of P(S) with even cardinality is equal
to the number of elements of P(S) with odd cardinality. Thus, |E ⇤(G)| = |E 0(G)| = 1

2 |E (G)| =
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2m�1
. Now, let dimE ⇤(G) = k and let B = {X1, X2, . . . , Xk} be a basis for E ⇤(G). Then any

vector X 2 E ⇤(G) is of the form

c1X1 + c2X2 + . . .+ ckXk

and, since B is linearly independent, the coefficients ci are uniquely determined by X. Since ci is
either 0 or 1 for each i, the total number of vectors in E ⇤(G) must be 2k. Since |E ⇤(G)| = 2m�1

,

it follows that k = m� 1.

In this paper, we shall call the vector space E ⇤(G) the even edge space of a graph G.

The following remark is a known result in linear algebra.

Remark 3.1. If A ✓ E ⇤(G), then the set of all linear combinations of the elements of A is a
subspace of E ⇤(G).

Consequently, we have the next theorem.

Theorem 3.2. Let H be a subgraph of G. If |E(H)| is even, then EH(G) ✓ E ⇤(G).

Proof. Since |E(H)| is even, each A 2 EH(G) has even cardinality. Thus EH(G) ✓ E ⇤(G). By
Remark 3.1, EH(G) ✓ E ⇤(G).

We now identify a basis for E ⇤(G). Let G be a graph with E(G) = {e1, e2, . . . , em} and define
B = {X1, X2, . . . , Xm�1}, where X1 = {e1, e2}, X2 = {e1, e3}, . . . , Xm�1 = {e1, em}. Since
X 2 E ⇤(G) can be expressed as a union of disjoint sets {ei, ej} = {e1, ei}�{e1, ej} , where
1  i, j  m, then B spans E ⇤(G). Since |B| = m� 1 = dimE ⇤(G), it follows that B forms a
basis for E ⇤(G).

It is easily seen that E ⇤(G) is a maximal proper subspace of E (G).

4. Subspace generated by the set of all k - subset of the edge set of a graph

As we know from the previous discussions, given a subgraph H of a graph G, the uniform
set EH(G) contains sets with the same cardinality- the size of H. Thus, in the study of generator
subgraph, it is worth investigating the subspace of E (G) generated by the set of all subsets of E(G)
with exactly k elements, where k is a positive integer.

By a k-subset of E(G), we mean a subset of E(G) containing exactly k elements. Here, we
determine the dimension of the subspace of E (G) generated by the set of all k-subsets of E(G).

For convenience, we give the following definition.

Definition 1. Let G be graph with m > 0 edges. For a positive integer k, denote by Ek(G) the set

of all k-subsets of E(G) and let Ek(G) denote the subspace of E (G) generated by Ek(G).

For instance, let G be a graph with E(G) = {e1, e2, . . . , em} for some positive integer m.

Then E1(G) = {{e1}, {e2}, . . . , {em}}. Note that E1(G) is the natural basis for E (G) so E1(G) =
E (G). Thus, dimE1(G) = m. The set Em(G) contains exactly one element, the edge set of G.

Since E(G) is non-empty, dimEm(G) = 1.
The following result shows the relation between Ek(G) and E ⇤(G).
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Lemma 4.1. Let G be a graph with size m > 0 and let k be a positive integer where 1  k  m�1.
Then E ⇤(G) ✓ Ek(G).

Proof. Let G be a graph with E(G) = {e1, e2, . . . , em} and let k be a positive integer where 1 
k  m� 1. Clearly, E ⇤(G) ✓ E1(G) so we may assume that k > 1. Let ei be an element of E(G)
for some i, 1  i  m. Let A 2 Ek(G) such that ei 2 A. Since k < m, there exists ej 2 E(G) such
that ej /2 A for some j, 1  j  m and j 6= i. Define B = {ej}[A\{ei}. Obviously, B 2 Ek(G).
Thus, {ei, ej} = A�B 2 Ek(G). In particular, the set B = {{e1, e2}, {e1, e3}, . . . , {e1, em}} is a
subset of Ek(G). Since B forms a basis for E ⇤(G), it follows that E ⇤(G) ✓ Ek(G).

The next result gives the dimension of Ek(G) for all values of k.

Theorem 4.1. Let G be a graph with size m > 0 and let k be a positive integer where 1  k  m.

Then

dimEk(G) =

8
<

:

1 if k = m,

m� 1 if k is even, and

m if k is odd.

Proof. Let E(G) = {e1, e2, . . . , em} and let k be an integer where 1  k  m. We know earlier
that dimEk(G) = 1 if k = m and dimEk(G) = m if k = 1. We now assume that 1 < k  m� 1.
Consider the two cases: Case 1, k is even. Then Ek(G) consists of sets with even cardinality.
Thus, Ek(G) ✓ E ⇤(G) in view of Remark 3.1. By Lemma 4.1, E ⇤(G) ✓ Ek(G). Therefore
Ek(G) = E ⇤(G). It follows that dimEk(G) = m�1. Case 2, k is odd. Let ei 2 E(G), 1  i  m.

Then there exists A 2 Ek(G) such that ei 2 A. Define B = A\{ei}. Since |A| = k is odd, |B| is
even so B 2 E ⇤(G). By Lemma 4.1, B 2 Ek(G). Now, {ei} = A� B 2 Ek(G). Meaning, Ek(G)
is a generating set for E (G). Hence, E (G) ✓ Ek(G). But we know that Ek(G) ✓ E (G). Therefore
Ek(G) = E (G). It follows that dimEk(G) = m.

The next result determines another basis for the edge space of G.

Theorem 4.2. Let G be a graph with size m > 0. If m is even, then the set Em�1(G) forms a basis

for E (G).

Proof. Let E(G) = {e1, e2, . . . , em}. Let Ai = E(G)\{ei} where 1  i  m. Then Em�1(G) =
{A1, A2, . . . , Am}. Since m is even, m � 1 is odd. By Lemma 4.1, Em�1(G) = E (G). Thus,
Em�1(G) spans E (G). Since |Em�1(G)| = m = dimE (G), it follows that Em�1(G) forms a basis
for E (G).

Corollary 4.1. Let G be a graph with size m > 0. If m is odd, then the set Em�1(G) is a linearly

dependent set.

Proof. Since m is odd, Em�1(G) contains sets with even cardinality. By Theorem 3.2, Em�1(G) ✓
E ⇤(G). Thus, dimEm�1(G)  dimE ⇤(G) = m � 1, in view of Theorem 3.1. We know from the
proof of Theorem 4.2 that |Em�1(G)| = m. Therefore, Em�1(G) is linearly dependent.
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5. Generator Subgraphs of Stars

There are several classes of graph where its generator subgraphs have not been explored yet.
One of these is a star graph. Here, we determine the characterization of the generator subgraphs of
star graph. Furthermore, direct applications of the results of the previous sections are shown in the
discussion in this part.

By a star of order n + 1, denoted by Sn, we mean a graph which consists of an independent
set of n vertices each of which is adjacent to a common vertex called the central vertex. The size
of Sn is n. Hence dimE (Sn) = n and dimE ⇤(Sn) = n� 1.

Let E(Sn) = {e1, e2, . . . , en}. For a positive integer q, we can view ESq(Sn) as Eq(Sn), the set
of all q-subsets of E(Sn), since for each A 2 Eq(Sn), Sn[A] ' Sq. In fact, it is easy to verify that
ESq(Sn) = Eq(Sn). However, this equality holds only for some graphs.

First we establish a relation between ESq(Sn) and E ⇤(Sn).

Lemma 5.1. Let Sq be a subgraph of Sn for some positive integers q and n. If q < n, then

E ⇤(Sn) ✓ ESq(Sn).

Proof. Let Sq be a subgraph of Sn where q < n. We know earlier that ESq(Sn) = Eq(Sn). Thus,
by Lemma 4.1, E ⇤(Sn) ✓ ESq(Sn).

The next theorem gives a family of generator subgraphs of Sn.
Theorem 5.1. For positive integers q and n where q < n, the star Sq is a generator subgraph of

Sn if and only if q is odd.

Proof. The necessary condition of the theorem follows directly from Theorem 2.1. Conversely,
assume that q is odd. We know that ESq(Sn) = Eq(Sn). Thus, by Theorem 4.1, dimESq(Sn) =
n = dimE (Sn). Hence, ESq(Sn) = E (Sn). Therefore Sq is a generator subgraph of Sn.

The following theorem is a special case of Theorem 4.1.
Theorem 5.2. Let Sq be a subgraph of Sn for some positive integers q and n where q < n. If q is

even, then dimESq(Sn) = n� 1.

The next result determines the dimension of the subspace generated by the uniform sets of the
subgraphs of star Sn.

Theorem 5.3. Let H be a subgraph of Sn, n > 0. If H contains an isolated vertex then dimEH(Sn) =
0. Moreover, if H does not contain an isolated vertex, then

dimEH(Sn) =

8
<

:

1 if |E(H)| = n,

n� 1 if |E(H)| is even, and

n if |E(H)| is odd.

Proof. Let H be a subgraph of Sn. Then either H contains an isolated vertex or H does not contain
an isolated vertex. Suppose H contains an isolated vertex, then EH(Sn) = ; in view of Remark
2.2. It follows that dimEH(Sn) = 0. If H does not contain an isolated vertex, then H ' Sq for
some positive integer q where 1  q  n. Consider the following three cases: Case 1, 1  q < n

and q is odd. By Theorem 5.1, H is a generator subgraph of Sn so dimEH(Sn) = n. Case 2,
1  q < n and q is even. By Theorem 5.2, dimEH(Sn) = n � 1. Case 3, q = n. Then EH(Sn)
contains exactly one element, the edge set of Sn. Hence, dimEH(Sn) = 1.
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6. Star as a Generator Subgraph of Some Graphs

This section determines some properties of graphs wherein star is one of its generator sub-
graphs.

Theorem 6.1. Let p > 0 be an odd integer. If G is a graph such that for every edge [a, b] in G

either deg(a) > p or deg(b) > p, then star Sp is a generator subgraph of G.

Proof. Let [a, b] be an edge of G. We show that {[a, b]} 2 ESp(G). Without loss of generality,
assume that deg(a) = r > p for some integer r. Let A = {e1, e2, . . . , er} be the set of all edges
in G incident with a. Let B ✓ A with |B| = p. Then G[A] ' Sr and G[B] ' Sp. Since p is odd,
G[B] is a generator subgraph of G[A] in view of Theorem 5.1. Thus, {ei} 2 ESp(G[A]) ✓ ESp(G)
for all i, 1  i  r. Since [a, b] is one of the e

0
i
s, it follows that {[a, b]} 2 ESp(G). Therefore Sp is

a generator subgraph of G.

Below is an immediate consequence of Theorem 6.1.

Corollary 6.1. Let p > 0 be odd. If G is k- regular and k > p then star Sp is a generator subgraph

of G.

The converse of Theorem 6.1 is not true for p = 1 since a star S1 ' P2 is a generator subgraph
of the graph G = kP2, a graph consisting of k vertex-disjoint copies of P2. If p 6= 1, we have the
following result.

Theorem 6.2. Let p > 1 be odd. Then Sp is a generator subgraph of G if and only if for every

edge [a, b] in G, either deg(a) > p or deg(b) > p.

Proof. Assume that Sp is a generator subgraph of G. Suppose, on the contrary, deg(a)  p and
deg(b)  p for some [a, b] 2 E(G). Partition E(G) into two sets A and B where A = {[a, b] 2
E(G) : deg(a)  p and deg(b)  p} and B = {[a, b] 2 E(G) : deg(a) > p or deg(b) > p}.
Clearly, ESp(G[A])\ESp(G[B]) = ; and ESp(G) = ESp(G[A])[ESp(G[B]). Now, let us consider
the subgraph G[A]. Partition V (G[A]) into two sets X and Y where X = {x 2 V (G[A]) :
deg(x) = p} and Y = {y 2 V (G[A]) : deg(y) < p}. Observe that |ESp(G[A])| = |X| and |X| is
maximum if Y = ;. Let us assume that Y = ;. Then G[A] is p-regular. Thus,

P
v2V (G[X]) deg(v) =

p|X| = 2|E(G[A])|. Since p > 1 is odd, |X| = |ESp(G[A])| < |E(G[A])| = dimE (G[A]). By
Theorem 2.3, Sp is not a generator subgraph of G[A]. Meaning, there exists e 2 E(G[A]) ✓ E(G)
such that {e} /2 ESp(G[A]). It follows that {e} /2 ESp(G). This is a contradiction to the fact that Sp

is a generator subgraph of G. Therefore, for every edge [a, b] in G, either deg(a) > p or deg(b) > p.

For the converse of the theorem, it follows by Theorem 6.1.

The following result determines all graphs whose generator subgraph is the path P2 only.

Theorem 6.3. Let G be a graph with size m > 0. If m  3, then the only generator subgraph of

G is the path P2.
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Proof. Let G be a graph with size m where 1  m  3. We know by Theorem 2.2 that P2 is
a generator subgraph of G. Suppose there exists another generator subgraph of G, say H. Then
1  |E(H)|  3. By Theorem 2.1, |E(H)| is odd. Thus, either |E(H)| = 1 or |E(H)| = 3.
Suppose |E(H)| 6= 1, then |E(H)| = 3. This implies that the size of G is 3. Hence, EH(G) =
{E(G)}. It follows that dimEH(G) = 1 < 3 = dimE (G). This is a contradiction to Theorem 2.3.
Therefore |E(H)| = 1. But H does not contain isolated vertex by Remark 2.2. It follows that H is
isomorphic to P2.

Equivalently, we have the following remark.

Remark 6.1. Let G be a graph with size m. If G has a generator subgraph which is not isomorphic
to P2, then m � 4.

7. Summary and Conclusions

The even edge space was introduced in this paper and found to be a maximal proper subspace
of the edge space of a graph. This leads to a new method of finding the generator subgraph of a
graph. Instead of expressing each singleton of the edge set of graph G as a linear combination of
the elements of the uniform set of a subgraph H, one can show that the even edge space is a subset
of the vector space generated by the uniform set of H. In addition, the dimension of the subspace
generated by the set of all k � subsets was identified. This result is useful in determining the
bounds for the dimension of the subspace generated by the uniform set of a subgraph. Moreover,
all generator subgraphs of star graphs were identified and a characterization for a graph G so that
star graph is a generator subgraph of G was established. The characterization for the generator
subgraph of a graph is still open. Interested researchers may focus on the generator subgraphs of
some classes of graph. Moreover, it may be interesting to see if there is any upper bound on the
order of generator subgraphs in random graphs.
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