Electronic Journal of Graph Theory and Applications

The 4-girth-thickness of the complete multipartite graph

Christian Rubio-Montiel
División de Matemáticas e Ingeniería, FES Acatlán, Universidad Nacional Autónoma de México
Naucalpan de Juárez 53150-Mexico
christian.rubio@apolo.acatlan.unam.mx

Abstract

The g-girth-thickness $\theta(g, G)$ of a graph G is the smallest number of planar subgraphs of girth at least g whose union is G. In this paper, we calculate the 4 -girth-thickness $\theta(4, G)$ of the complete m-partite graph G when each part has an even number of vertices.


```
Keywords: thickness, planar decomposition, complete multipartite graph, girth Mathematics Subject Classification : 05C10
DOI: 10.5614/ejgta.2019.7.1.14
```


1. Introduction

The thickness $\theta(G)$ of a graph G is the smallest number of planar subgraphs whose union is G. Equivalently, it is the smallest number of parts used in any edge partition of $E(G)$ such that each set of edges in the same part induces a planar subgraph.

This parameter was introduced by Tutte [20] in the 60s. The problem to calculate the thickness of a graph G is an NP-hard problem [16] and a few of exact results can be found in the literature, for example, if G is a complete graph [2, 5, 6], a hypercube [15], or a complete multipartite graph for some particular values [21, 22]. Even for the complete bipartite graph there are only partial results [7, 13].

Some generalizations of the thickness for complete graphs have been studied, for instance, the outerthickness θ_{o}, defined similarly but with outerplanar instead of planar [12], the S-thickness θ_{S},

Received: 21 June 2018, Revised: 12 January 2019, Accepted: 1 February 2019.
considering the thickness on a surface S instead of the plane [4], and the k-degree-thickness θ_{k} taking a restriction on the planar subgraphs: each planar subgraph has maximum degree at most k [9].

The thickness has applications in the design of circuits [1], in the Ringel's earth-moon problem [14], and to bound the achromatic numbers of planar graphs [3], etc. See the survey [17].

In [19], the author introduced the g-girth-thickness $\theta(g, G)$ of a graph G as the minimum number of planar subgraphs of girth at least g whose union is G, a generalization of the thickness owing to the fact that the g-girth-thickness is the usual thickness when $g=3$ and also the arboricity number when $g=\infty$ because the girth of a graph is the size of its shortest cycle or ∞ if it is acyclic. See also [11].

In this paper, we obtain the 4 -girth-thickness $\theta\left(4, K_{n_{1}, n_{2}, \ldots, n_{m}}\right)$ of the complete m-partite graph $K_{n_{1}, n_{2}, \ldots, n_{m}}$ when n_{i} is even for all $i \in\{1,2, \ldots, m\}$.

2. Calculating $\boldsymbol{\theta}\left(4, K_{n_{1}, n_{2}, \ldots, n_{m}}\right)$

Given a simple graph G, we define a new graph $G \bowtie G$ in the following way: If G has vertex set $V=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$, the graph $G \bowtie G$ has as vertex set two copies of V, namely, $\left\{u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ and two vertices $x_{i} y_{j}$ are adjacent if $w_{i} w_{j}$ is an edge of G, for the symbols $x, y \in\{u, v\}$. For instance, if $w_{1} w_{2}$ is an edge of a graph G, the graph $G \bowtie G$ has the edges $u_{1} u_{2}, v_{1} v_{2}, u_{1} v_{2}$ and $v_{1} u_{2}$. See Figure 1 .

Figure 1. An edge of G produces four edges in $G \bowtie G$.

On the other hand, an acyclic graph of n vertices has at most $n-1$ edges and a planar graph of n vertices and girth $g<\infty$ has at most $\frac{g}{g-2}(n-2)$ edges, see [8]. Therefore, a planar graph of n vertices and girth at least 4 has at most $2(n-2)$ edges for $n \geq 4$ and at most $n-1$, otherwise. In consequence, the 4 -girth-thickness $\theta(4, G)$ of a graph G is at least $\left\lceil\frac{|E(G)|}{2(n-2)}\right\rceil$ for $n \geq 4$ and at least $\left\lceil\frac{|E(G)|}{n-1}\right\rceil$, otherwise.

Lemma 2.1. If G is a tree of order n then $G \bowtie G$ is a bipartite planar graph of size $2(2 n-2)$.
Proof. By induction over n. The basis is given in Figure 1 for $n=2$. Now, take a tree G with $n+1$ vertices. Since it has at least a leaf, we say, the vertex w_{1} incident to w_{2} then we delete w_{1} from G and by induction hypothesis, $H \bowtie H$ is a bipartite planar of size $2(2 n-2)$ edges for $H=G \backslash\left\{w_{1}\right\}$. Since H is connected, the vertex labeled w_{2} has at least a neighbour, we say, the

The 4-girth-thickness of the complete multipartite graph | C. Rubio-Montiel

vertex labeled w_{3}, then $u_{2} v_{3} v_{2}$ is a path in $H \bowtie H$ and the edge $u_{2} v_{2} \notin E(H \bowtie H)$. Add the paths $u_{2} v_{1} v_{2}$ and $u_{2} u_{1} v_{2}$ to $H \bowtie H$ such that both of them are "parallel" to $u_{2} v_{3} v_{2}$ and identify the vertices u_{2} as a single vertex as well as the vertices v_{2}. This proves that $G \bowtie G$ is planar. To verify that is bipartite, given a proper coloring of $H \bowtie H$ with two colors, we extend the coloring putting the same color of v_{3} to v_{1} and u_{1}. Then the resulting coloring is proper. Due to the fact that we add four edges, $H \bowtie H$ has $2(2 n-2)+4=2(2(n+1)-2)$ edges and the lemma follows.

Now, we recall that the arboricity number or ∞-girth-thickness $\theta(\infty, G)$ of a graph G equals (see [18])

$$
\max \left\{\left\lceil\frac{|E(H)|}{|V(H)|-1}\right\rceil: H \text { is an induced subgraph of } G\right\} .
$$

We have the following theorem.
Theorem 2.1. If G is a simple graph of $n \geq 2$ vertices and e edges, then

$$
\left\lceil\frac{e}{n-1}\right\rceil \leq \theta(4, G \bowtie G) \leq \theta(\infty, G)
$$

Proof. Since $G \bowtie G$ has $2 n \geq 4$ vertices, $4 e$ edges and

$$
\frac{|E(G \bowtie G)|}{2(|V(G \bowtie G)|-2)}=\frac{4 e}{2(2 n-2)}=\frac{e}{n-1},
$$

it follows the lower bound

$$
\left\lceil\frac{e}{n-1}\right\rceil \leq \theta(4, G \bowtie G)
$$

To verify the upper bound, take an acyclic edge partition $\left\{F_{1}, F_{2}, \ldots, F_{\theta(\infty, G)}\right\}$ of $E(G)$. Therefore, $\left\{F_{1} \bowtie F_{1}, F_{2} \bowtie F_{2}, \ldots, F_{\theta(\infty, G)} \bowtie F_{\theta(\infty, G)}\right\}$ is an edge partition of $E(G \bowtie G)$ (where $F_{i} \bowtie F_{i}:=E\left(\left\langle F_{i}\right\rangle \bowtie\left\langle F_{i}\right\rangle\right)$ and $\left\langle F_{i}\right\rangle$ is the induced subgraph of the edge set F_{i} for all $i \in$ $\{1,2, \ldots, \theta(\infty, G)\})$. Indeed, an edge $x_{j} y_{j^{\prime}} \in E(G \bowtie G)$ is in $F_{i} \bowtie F_{i}$ if and only if $w_{j} w_{j}^{\prime} \in$ $E(G)$ is in F_{i}. By Lemma 2.1, the result follows.

Corollary 2.1. If G is a simple graph of $n \geq 2$ vertices and e edges with $\theta(\infty, G)=\left\lceil\frac{e}{n-1}\right\rceil$, then

$$
\theta(4, G \bowtie G)=\left\lceil\frac{e}{n-1}\right\rceil
$$

Next, we estimate the arboricity number of the complete m-partite graph.
Lemma 2.2. If $K_{n_{1}, n_{2}, \ldots, n_{m}}$ is the complete m-partite graph then $\theta(\infty, G)=\left\lceil\frac{e}{n-1}\right\rceil$ where $n=$ $n_{1}+n_{2}+\ldots+n_{m}$ and $e=n_{1} n_{2}+n_{1} n_{3}+\ldots+n_{m-1} n_{m}$.

Proof. By induction over n. The basis is trivial for $K_{1,1}$. Let $G=K_{n_{1}, n_{2}, \ldots, n_{m}}$ with $n>2$ and $H=G \backslash\{u\}$ a proper induced subgraph of G for any vertex u. By the induction hypothesis, $\theta(\infty, H)=\max \left\{\left\lceil\frac{|E(F)|}{|V(F)|-1}\right\rceil: F \leq H\right\}=\left\lceil\frac{|E(H)|}{(n-1)-1}\right\rceil$, where $F \leq H$ indicates that F is an
induced subgraph of H. Since u is an arbitrary vertex and by the hereditary property of the induced subgraphs, we only need to show that

$$
\frac{|E(H)|}{n-2} \leq \frac{e}{n-1}
$$

because

$$
\max \left\{\left\lceil\frac{|E(F)|}{|V(F)|-1}\right\rceil: F \leq G\right\}=\max \left\{\left\lceil\frac{e}{n-1}\right\rceil,\left\lceil\frac{|E(H)|}{n-2}\right\rceil: H=G \backslash\{u\}, u \in V(G)\right\} .
$$

We prove it in the following way. Without loss of generality, u is a vertex in a part of size n_{m}.
Since

$$
\begin{array}{ccccccc}
n_{1}+ & n_{1} n_{2}+ & \ldots & +n_{1} n_{m}+ & & n_{1}^{2}+ & n_{1} n_{2}+ \\
n_{2}+ & \ldots & +n_{2} n_{m}+ & & n_{2} n_{1}+ & n_{2}^{2}+ & \ldots \\
& & & & & +n_{1} n_{m}+ \\
& & & & & & \\
& & n_{m-1} n_{m} n_{m}+ \\
& & n_{m-1} n_{1}+ & n_{m-1} n_{2}+ & \ldots & +n_{m-1} n_{m}
\end{array}
$$

then $e+n_{1}+n_{2}+\ldots+n_{m-1} \leq n\left(n_{1}+n_{2}+\ldots+n_{m-1}\right)$ and

$$
\begin{gathered}
e n-e-n\left(n_{1}+n_{2}+\ldots+n_{m-1}\right)+\left(n_{1}+n_{2}+\ldots+n_{m-1}\right) \leq e n-2 e \\
(n-1)\left(e-\left(n_{1}+n_{2}+\ldots+n_{m-1}\right)\right) \leq e(n-2) \\
\frac{|E(H)|}{n-2} \leq \frac{e}{n-1}
\end{gathered}
$$

and the result follows.
Now, we can prove our main theorem.
Theorem 2.2. If $G=K_{2 n_{1}, 2 n_{2}, \ldots, 2 n_{m}}$ is the complete m-partite graph then $\theta(4, G)=\left\lceil\frac{e}{n-1}\right\rceil$ where $n=n_{1}+n_{2}+\ldots+n_{m}$ and $e=n_{1} n_{2}+n_{1} n_{3}+\ldots+n_{m-1} n_{m}$.

Proof. We need to show that $G=K_{n_{1}, n_{2}, \ldots, n_{m}} \bowtie K_{n_{1}, n_{2}, \ldots, n_{m}}$. Let $\left(W_{1}, W_{2}, \ldots, W_{m}\right)$ be an m partition of $K_{n_{1}, n_{2}, \ldots, n_{m}}$. The graph $K_{n_{1}, n_{2}, \ldots, n_{m}} \bowtie K_{n_{1}, n_{2}, \ldots, n_{m}}$ has the partition $\left(U_{1} \cup V_{1}, U_{2} \cup\right.$ $\left.V_{2}, \ldots, U_{m} \cup V_{m}\right)$ where U_{i} and V_{i} are copies of W_{i} for $i \in\{1,2, \ldots, m\}$. Take two vertices x_{i} and y_{j} in different parts, without loss of generality, $U_{1} \cup V_{1}$ and $U_{2} \cup V_{2}$. If the vertex x_{i} is in U_{1} and y_{j} is in U_{2} then they are adjacent because $w_{i} w_{j}$ is an edge of $K_{n_{1}, n_{2}, \ldots, n_{m}}$ is m-complete. Similarly for $x_{i} \in V_{1}$ and $y_{j} \in V_{2}$. If x_{i} is in U_{1} and y_{j} is in V_{2}, then also they are adjacent because $w_{i} w_{j}$ is an edge of $K_{n_{1}, n_{2}, \ldots, n_{m}}$. By Corollary 2.1 and Lemma 2.2, the theorem follows.

Due to the fact that $\theta(4, G)=\theta(3, G)=\theta(G)$ for any triangle-free graph G, we obtain an alternative proof for the thickness of the complete bipartite graph $K_{2 n_{1}, 2 n_{2}}$ that is given in [7].

Corollary 2.2. If $G=K_{2 n_{1}, 2 n_{2}}$ is the complete bipartite graph then $\theta(G)=\left\lceil\frac{e}{n-1}\right\rceil$ where $n=$ $n_{1}+n_{2}$ and $e=n_{1} n_{2}$.

Acknowledgement

The authors wish to thank the anonymous referees of this paper for their suggestions and remarks.
C. Rubio-Montiel was partially supported by PAIDI/007/19.

References

[1] A. Aggarwal, M. Klawe and P. Shor, Multilayer grid embeddings for VLSI, Algorithmica 6 (1) (1991), 129-151.
[2] V.B. Alekseev and V.S. Gončakov, The thickness of an arbitrary complete graph, Mat. Sb. (N.S.) 101 (143) (1976), no. 2, 212-230.
[3] G. Araujo-Pardo, F.E. Contreras-Mendoza, S.J. Murillo-García, A.B. Ramos-Tort and C. Rubio-Montiel, Complete colorings of planar graphs, Discrete Appl. Math. 255 (2019), 86-97.
[4] L.W. Beineke, Minimal decompositions of complete graphs into subgraphs with embeddability properties, Canad. J. Math. 21 (1969), 992-1000.
[5] L.W. Beineke and F.Harary, On the thickness of the complete graph, Bull. Amer. Math. Soc. 70 (1964), 618-620.
[6] L.W. Beineke and F.Harary, The thickness of the complete graph, Canad. J. Math. 17 (1965), 850-859.
[7] L.W. Beineke, F.Harary and J.W. Moon, On the thickness of the complete bipartite graph, Proc. Cambridge Philos. Soc. 60 (1964), 1-5.
[8] J.A. Bondy and U.S.R. Murty, Graph theory, Graduate Texts in Mathematics, vol. 244, Springer, New York, 2008.
[9] N.K. Bose and K.A. Prablu, Thickness of graphs with degree constrained vertices, IEEE Trans. on Circuits and Systems 24 (1977), 184-190.
[10] G. Brinkmann, K. Coolsaet, J. Goedgebeur and H. Mélot, House of Graphs: a database of interesting graphs, Discrete Appl. Math. 161 (1-2) (2013), 311-314, Available at http://hog.grinvin.org. Accessed: 2018-02-14.
[11] H. Castañeda-López, P.C. Palomino, A.B. Ramos-Tort, C. Rubio-Montiel and C. Silva-Ruíz, The 6-girth-thickness of the complete graph, arXiv:1709.07466, in review.
[12] R.K. Guy and R.J. Nowakowski, The outerthickness \& outercoarseness of graphs. I. The complete graph \& the n-cube, Topics in combinatorics and graph theory, Physica-Verlag HD, 1990, 297-310.
[13] S. Isao and H. Ozaki, On the planar decomposition of a complete bipartite graph, Siam J. Appl. Math. 16 (2) (1968), 408-416.
[14] B. Jackson and G. Ringel, Variations on Ringel's earth-moon problem, Discrete Math. 211 (1-3) (2000), 233-242.
[15] M. Kleinert, Die Dicke des n-dimensionalen Würfel-Graphen, J. Combin. Theory 3 (1967), 10-15.
[16] A. Mansfield, Determining the thickness of graphs is NP-hard, Math. Proc. Cambridge Philos. Soc. 93 (1) (1983), 9-23.
[17] P. Mutzel, T. Odenthal and M. Scharbrodt, The thickness of graphs: a survey, Graphs Combin. 14 (1) (1998), 59-73.
[18] C. Nash-Williams, Decomposition of finite graphs into forests, J. London Math. Soc. 39 (1964), 12.
[19] C. Rubio-Montiel, The 4-girth-thickness of the complete graph, Ars Math. Contemp. 14 (2) (2018), 319-327.
[20] W.T. Tutte, The thickness of a graph, Indag. Math. 25 (1963), 567-577.
[21] Y. Yang, A note on the thickness of $K_{l, m, n}$, Ars Combin. 117 (2014), 349-351.
[22] Y. Yang, Remarks on the thickness of $K_{n, n, n}$, Ars Math. Contemp. 12 (1) (2017), 135-144.

