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Abstract

Given a positive integer k and a graph G = (V,E), a function f from V to the power set of Ik is
called a k-rainbow function if for each vertex v 2 V , f(v) = ; implies [u2N(v)f(u) = Ik where
N(v) is the set of all neighbors of vertex v and Ik = {1, . . . , k}. Finding a k-rainbow function
of minimum weight of

P
v2V |f(v)|, which is called the k-rainbow domination problem, is known

to be NP-complete for arbitrary graphs and values of k. In this paper, we propose a dynamic
programming algorithm to solve the k-rainbow domination problem for graphs with bounded tree-
width tw in O

⇣�
2k+1 + 1

�tw
n

⌘
time, where G has n vertices. Moreover, we also show that the

same approach is applicable to solve the weighted k-rainbow domination problem with the same
complexity. Therefore, both problems of k-rainbow and weighted k-rainbow domination belong
to the class FPT, or fixed parameter tractable, with respect to tree-width. In addition to formally
showing the correctness of our algorithms, we also implemented these algorithms to illustrate some
examples.
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1. Introduction

Different variations of dominating sets are defined and studied in graph theory and solving these
problems algorithmically is an active field of study both among mathematicians and computer
scientists [16]. The concept of k-rainbow domination for a graph G was initially proposed and
studied in [7, 8]. It is shown that it coincides with the standard domination of the Cartesian product
of G with Kk, the complete graph with k vertices.

It is known that rainbow domination problem is NP-complete for arbitrary graphs and values
of k. More interestingly, the k-rainbow domination is still NP-complete for chordal and bipartite
graphs [11]. The same thing holds for split graphs [15] or planar graphs [26]. Even, when restricted
to chordal or bipartite graphs, the 2-rainbow domination problem is known to be NP-complete [9].
By the way, the k-rainbow domination problem can be solved in linear time for trees [11, 26]
and for cographs [15]. In addition, polynomial time algorithms are proposed to solve 2-rainbow
domination for interval graphs [15] and k-rainbow domination for strongly chordal graphs [10].

Beside algorithmic and computational complexity approaches to the k-rainbow domination
problem, several scholars tried to provide bounds on k-rainbow domination number for some
classes of graphs and/or for specific values of k. For example, the 2-rainbow domination num-
ber for a variety of graph classes such as paths, cycles and suns in [9], generalized Peterson graphs
P (n, 2) in [20] is determined. In addition to these exact values, upper or lower bounds for the
2-rainbow domination number in some other kinds of graphs such as generalized Peterson graphs
P (n, 3) in [25], and a tight upper bound for generalized Peterson graphs P (n, k) for n � 4k+1 in
[22] are obtained. Another interesting topic studied for rainbow domination problem is bounding
the 2-rainbow domination number of lexicographic product of two graphs G and H in terms of the
2-rainbow domination of G and H [19].

There is also a line of research comparing rainbow domination with other kinds of domination,
e.g. Roman domination number in [24, 14] and perfect domination in [13].

One trivial way to compute the k-rainbow domination number exactly is to use the fact that
�rk(G) = � (G⇤Kk) [7, 8]. This way, one can compute the exact value of �rk(G) by iterative
computing the � (G⇤Kk). Note that this is feasible since �rk(G)  k ⇥ �(G) by Vizing’s conjec-
ture. The time complexity of this approach is O

�
1.4969n⇥k

�
for G with n vertices [21, 15].

It has been shown that k-rainbow domination problem belongs to FPT, i.e. fixed parameter
tractable, in [15]. Their proof uses the fact that every graph property which can be expressed in
monadic second-order logic is fixed-parameter tractable with respect to tree-width or rank-width
[12] and then expresses the k-rainbow domination problem in monadic second-order logic.

In this paper, we will show that k-rainbow domination problem belongs to FPT by propos-
ing a dynamic programming approach and give its runtime as O

⇣�
2k+1 + 1

�tw
n

⌘
for arbitrary

graphs of fixed tree-width tw with n vertices. To enhance the algorithm, we use a certain type of
monotonicity in our algorithm. The idea of using monotonicity in dynamic programming algo-
rithms for domination like problems of fixed tree-width is due to [1]. In [1], several algorithms are
proposed to solve ordinary, independent, total, perfect, total perfect domination and perfect code
problems for graphs of fixed tree-width tw with time complexity of O (qtwn) for q = 2, 4, 5, 4, 5
and 4, respectively. We also show that our proposed algorithm is applicable to weighted k-rainbow
domination problem with some minor changes.
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The rest of the paper is organized as follows. Some necessary topics in graph theory and k-
rainbow domination are reviewed in Section 2. In Section 3, we first illustrate our fixed-parameter
algorithm for 2-rainbow domination problem and is then followed by a rigorous correctness proof
and runtime enhancement by a modification in handling join bags. In Section 4, we will generalize
the algorithm of Section 3 for arbitrary values of k and obtain its runtime. Section 5 solves the
wighted k-rainbow problem by the same algorithmic approach. A conclusion is drawn in Section
6. Finally, the algorithms of this paper are illustrated in several examples in Appendix A by
implementing them in Python 2.7.1.

2. Preliminaries

In this section, we will review some vital topics and set our notation. Throughout the paper,
graph G = (V,E) is a simple undirected graph with the set of the vertices V and the set of edges
E. The open neighborhood, or simply neighborhood, of a vertex v 2 V in G is denoted by
N(v) and is equal to N(v) = {u 2 V | {u, v} 2 E}. We define N

A
G (v) = NG(v) \ A for any

set A ✓ V . A k-rainbow dominating function, or kRDF for short, is a function f of the form
f : V ! P ({1, . . . , k}) such that f(v) = ; implies [u2N(v)f(u) = {1, . . . , k}. Note that P (A)
denotes the power set of A. The weight of a kRDF f is defined as wt(f) =

P
v2V |f(v)|. The

k-rainbow domination problem for a graph G is finding a kRDF function f with minimum weight.
The minimum weight of any kRDF on G is called the k-rainbow domination number of G and is
denoted by �rk(G). It is easy to see that 1-rainbow domination problem coincides with the ordinary
domination problem. More interestingly, it is known that �rk(G) = � (G⇤Kk) where �(G), ⇤ and
Kk denote the ordinary domination number of graph G, the Cartesian product of two graphs, and
the complete graph with k vertices, respectively [8].

It is well-known that the k-rainbow domination problem is NP-complete. A main road of attack
against NP-complete problems is studying their complexity with respect to some fixed parameter
such as tree-width [1]. A problem is FPT if its running time with respect to a fixed parameter t
and complexity parameter n is O

�
f(t)nO(1)

�
for an arbitrary function f which depends only on

parameter t.
The notion of tree-width is proposed in [17, 18] and is a famous fixed-parameter. Our pre-

sentation is taken from [3]. Given a graph G = (V,E), a tree decomposition of G is a pair
T = (X , T = (I, F )) where X = {Xi | i 2 I} ✓ P (V ) and tree T satisfies:

1. [i2IXi = V ,
2. for all edges {u, v} 2 E, there exists an i 2 I such that {u, v} ✓ Xi,
3. for all i, j, k 2 I , if j is on the path from i to k in T , then Xi \Xk ✓ Xj .

Note that the last condition can be substituted by:

3. for each v 2 V , the set of bags {i 2 I | v 2 Xi} is a subtree of T .

The elements of set X which correspond the nodes of tree T are called bags. Note that we reserve
the term vertex for elements of V and bags for elements of X . Also, the set Xi is the corresponding
bag to node i 2 I in tree T . Note that we will use the term bag for node i 2 I and Xi 2

X interchangeably when there is no chance of confusion. The width of a tree decomposition is
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defined as maxi2I |Xi| � 1 and the tree-width of a graph G equals the minimum width over all
tree decompositions of G and is denoted as tw(G), or simple tw whenever the G is clear from the
context. Computing the tree-width of arbitrary graphs is an NP-complete problem [2]. However,
finding exact or an approximate solution is an active field of research, e.g. [6, 5]. Recently, it is
shown that tree-width is computable in O

? (2.9512n) for a graph with n vertices in polynomial
space [6]. Note that O?(·) is used to suppress all other polynomially bounded terms dependent on
the complexity parameter [23].

A tree decomposition T for graph G can be simply rooted by designating a bag as the root bag.
A rooted tree decomposition is called nice whenever each bag i 2 I is one of the following types:

• leaf bag: i has no child.

• forget bag: i has exactly one child j where Xi ✓ Xj and |Xi| = |Xj|� 1.

• introduce bag: i has exactly one child j such that Xj ✓ Xi and |Xi| = |Xj|+ 1.

• join bag: i has exactly two children j and j
0 where Xi = Xj = Xj0 .

In addition to being nice, if all leaf bags i satisfy |Xi| = 1, then it is called very nice [4]. The input
tree decomposition to our algorithm is supposed to be very nice, however, as Lemma 2.1 shows,
any tree decomposition can be converted in polynomial time to a corresponding very nice one with
the same tree-width.

Lemma 2.1. Let G be a graph with n vertices. Given a tree decomposition T of G of width tw
with O(n) bags, then a very nice tree decomposition of width tw can be obtained with at most
O(4n) bags in O (cn) time for some constant c.

Note that Lemma 2.1 stated here is a corollary of Lemma 6 in [4], which was stated for nice
tree decomposition rather very nice ones. It is easy to see that a very nice tree decomposition can
be easily obtained from a nice tree decomposition by adding extra bags to leaves.

For a graph G and its corresponding tree decomposition T = ({Xi}i2I , (I, F )), we associate a
subgraph of G as Gi = (Vi, Ei) to each bag Xi where Vi is the union of all Xj 2 X such that either
j = i or j is a descendant of bag i in tree T and Ei is the set of all edges in E which has both of its
endpoints in Vi.

3. Algorithm for 2-Rainbow Domination

In this section, we illustrate the idea of our proposed algorithm for k = 2 and consider its cor-
rectness and running time. The input to this algorithm is a graph G = (V,E) and its corresponding
very nice tree decomposition T = (X , T = (I, F )) where X = {Xi | i 2 I and Xi ✓ V }. We
assume that for every i 2 I , there is a fixed ordering on Xi, i.e. Xi = (xi1 , · · · , xini

) where
i1  i2  · · ·  ini .

For each bag Xi, 5|Xi| different color labellings like Li = (`i1 , . . . , `ini
) are defined where

|Xi| = ni and `ij 2 P ({1, 2}) [ {⇤}. For ` 2 P ({1, 2}) [ {⇤}, |`| is defined as

|`| =

⇢
0, if ` = {⇤} ,

card (`) , otherwise, (1)
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where card(`) denotes the cardinality of set `. It is worth noting that for each bag, the maxi-
mum number of color labels equals 5tw+1 where the tree-width of graph is tw. For each bag Xi,
the cost and validation functions are of the form Ci : (P ({1, 2}) [ {⇤})|Xi|

! N [ {+1} and
Ei : (P ({1, 2}) [ {⇤})|Xi|

! {1,+1}, respectively. The first function denotes the cost of each
coloring and the last one denotes the validity of the colorings. Finally, for coloring Lm, sn(Lm) is
defined as

sn(Lm) =

⇢
{1, 2} \W n

i , if `n = {⇤} ,

undefined, otherwise, (2)

where W
n
i = [

vo2N
Xi
G (vn)

`o such that `o is the label of vertex vo and n 2 {1, . . . , ni}.
A key ingredient to our algorithm is a kind of monotonicity introduced in [1] for dynamic

programming for domination like problems. Let � be a partial ordering on P ({1, 2}) [ {⇤} such
that

1. ⇤ � ;,
2. |`|  |`

0
| implies ` � `

0,

for all `, `
0
2 P ({1, 2}) [ {⇤}. This ordering is naturally extensible to colorings Li, Lj 2

(P ({1, 2}) [ {⇤})n, that is Li � Lj if and only if `ik � `jk for k = 1, . . . , n where Li =
(`i1 , . . . , `in) and Lj = (`j1 , . . . , `jn). Mapping C : (P ({1, 2}) [ {⇤})n ! N [ {+1} is called
monotonous if only if Li � Lj implies C(Li)  C(Lj) for all Li, Lj 2 (P ({1, 2}) [ {⇤})n.

1- Initialization Step:. For all leaf bags Xi where i 2 I , the cost and validation functions are
defined as

Ci(Lm) = |`|, (3)

and
Ei(Lm) =

⇢
1, if ` = ;,

1, otherwise, (4)

respectively, for all possible colorings Lm = (`). Finally, s1(Lm) is defined as

s1(Lm) =

⇢
{1, 2} , if ` = {⇤} ,

undefined, otherwise. (5)

Lemma 3.1. The initialization step consisting of evaluating the cost and validation functions for
a leaf node can be carried out in O (1) time.

Proof. The proof is clear considering the fact that the input tree decomposition is very nice. There-
fore, every leaf bag has exactly one member and each of the cost and validation functions have at
most 5 possible inputs.

Lemma 3.2. The mapping Ci defined in Equation (3) is monotonous.

Proof. It is clear.
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2- Iterative Updating:. In a bottom-up traversal of the tree decomposition, from the leaves to
the root, after initialization step and based on the bag type, the cost and validation functions are
calculated according to the following rules.

• INTRODUCE: Let i be an introduce bag with child j such that Xi = Xj [ {v} for some
vertex like v 2 V . Suppose that Lm =

�
`1, . . . , `nj

�
is a coloring for bag Xj and t 2

P ({1, 2}) [ {⇤}. Let �t(Lm) =
⇣
`
0
1, . . . , `

0
nj

⌘
such then

`
0

n =

⇢
⇤, if vn 2 N

Xi
G (v), `n = ; and sn (Lm) ✓ t,

`n, otherwise, (6)

where Lm =
⇣
`
00
1 , . . . , `

00
nj

⌘
where

`
00

n =

⇢
⇤, if `n = ;,

`n, otherwise. (7)

Lemma 3.3. For all t 2 P({1, 2}) [ {⇤}, it is the case that Cj(Lm) = Cj(�t(Lm)).

Proof. As we just replace the ; by {⇤} in function �t and the cost of both is zero, then the
cost function does not change.

Lemma 3.4. The cost and validation functions for introduce bag Xi with child bag Xj are
defined as

Ci(Lm ⇥ `) =

8
>>>><

>>>>:

Cj(Lm), if ` = {⇤} ,

Cj(Lm), if ` = ;,

Cj(�{1} (Lm)) + 1, if ` = {1} ,
Cj(�{2} (Lm)) + 1, if ` = {2} ,
Cj(�{1,2} (Lm)) + 2, if ` = {1, 2} ,

(8)

and

Ei(Lm ⇥ `) =

(
1, if ` = ; and [

xn2N
Xj
G (v)

`n 6= {1, 2} ,

E(Lm), otherwise,
(9)

respectively, where Lm0 = Lm ⇥ ` =
�
`1, . . . , `nj , `

�
is a coloring for bag Xi, Lm =�

`1, . . . , `nj

�
is a coloring for bag Xj and ` 2 P ({1, 2}) [ {⇤}. If ` 6= {⇤}, then we

set sn(Lm0) to sn(Lm) \ ` for all vn 2 N
Xj

G (v) which satisfies `n = {⇤}. Otherwise, i.e.
` = {⇤}, we set sn(Lm0) to {1, 2} \ [

vn2N
Xi
G (v)

`n.

Proof. In Equation (8), we consider the following cases for `:

Case 1. ` = {⇤} or ` = ;. The value of cost function does not change if the label of the
introduced vertex ` is {⇤} or ;.
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Case 2. ` = {1} or ` = {2} . Without loss of generality, we assume that ` = {1}. So, {1}
appears in [

xk2N
Xj
G (v)

`k,

for Lm =
�
`1, . . . , `nj

�
. To evaluate Ci(Lm ⇥ {1}), suppose `k = ; for some vertices

vk 2 Xj . Since v is labeled by {1} and we have sk(Lm) ✓ {1} for some xk 2

N(v) which is labeled by ; in Lm. So, by the Lemma 3.3, we obtain Ci(Lm ⇥ `) =
Cj(�{1}(Lm)) + 1.

Case 3. ` = {1, 2} . This case can be shown with the same approach for the previous case.

For correctness of Equation (9), it is enough to verify its validity for color Lm ⇥ ;. Since
Xi is the first node with vertex v present, then all of the neighbors of v appear in Xi and its
ascendant bags in T . So we set E(Lm ⇥ ;) = 1 if [vk2N(v)`k 6= {1, 2}. In other cases, the
validity Lm ⇥ ; is similar to the validity of Lm.

It is not hard to verify the following statement.

Lemma 3.5. The cost function defined in Equation (8) is monotonous if the cost function for
Xj is also monotonous.

Lemma 3.6. The cost and validation functions defined in Equations (8) and (9) can be
calculated in O (5nini) time.

Proof. For bag Xi, there are 5|Xi| different color labels that we need to compute. Also, to
compute the cost and validation functions for every color label, we need to spend O (|Xi|)
time. Therefore, the cost and validation functions are computable in O

�
5|Xi||Xi|

�
time.

• FORGET: Let i is a forget bag with child j such that Xi = Xj \ {v}. Suppose that Lm =�
`1, . . . , `nj

�
be a coloring for bag Xj .

Lemma 3.7. The cost and validation functions for forget bag Xi with child bag Xj are
defined as

Ci(Lm0) = min
m2M

{Cj (Lm)⇥ Ej (Lm)} , (10)

and
Ei(Lm0) =

⇢
1, if Ej (Lm) = 1,

1, otherwise, (11)

where Lm0 =
�
`1, . . . , `nj�1

�
is a coloring for bag Xi and

M = {m
00
| Lm00 = Lm0 ⇥ `, ` 2 P ({1, 2})} . (12)

Also, we have considered `nj as the corresponding color for vertex v. Finally, for n =
1, . . . , nj � 1, we set sn(Lm0) = sn(Lm).
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Proof. For each color Lm of bag Xi, there are 5 different color labels Lm⇥({⇤} , ;, {1}, {2}, {1, 2})
for bag Xj . Since Xi is a forget bag, then there are no other ascendant bags of bag Xi which
contains v. So, we consider minimum value of all C(Lm ⇥ `) needs to be computed, where
Lm ⇥ ` is a valid labeling. If all possible color labels of Lm ⇥ ` are invalid, then label Lm

cannot lead to a valid color label for bag Xi.

The following lemmas are easy to verify.

Lemma 3.8. The cost function defined in Equation (10) is monotonous if the cost function
for Xj is also monotonous.

Lemma 3.9. The cost and validation functions defined in Equations (10) and (11) can be
calculated in O (5ni) time.

• JOIN: Let i is a join bag with two children j and j
0. Since Xi is a join bag, we know that

Xi = Xj = Xj0 . Suppose that Lm =
�
`
m
1 , . . . , `

m
ni

�
, Lm0 =

⇣
`
m0
1 , . . . , `

m0
nj

⌘
and Lm00 =

⇣
`
m00
1 , . . . , `

m00
nj0

⌘
be colorings for bags Xi, Xj and Xj0 , respectively. Colorings Lm0 and Lm00

divide coloring Lm whenever for all n = 1, . . . , ni we have

1. `
m
n = {⇤} implies `m0

n = `
m00
n = {⇤},

2. `
m
n = ; implies either `m0

n = `
m00
n = ;, `m0

n = {⇤} ^ `
m00
n = ; or `m0

n = ; ^ `
m00
n = {⇤},

3. `
m
n = {1} implies either `

m0
n = `

m00
n = {1}, `m0

n 2 {⇤, ;} ^ `
m00
n = {1} or `

m0
n =

{1} ^ `
m00
n 2 {⇤, ;},

4. `
m
n = {2} implies either `

m0
n = `

m00
n = {2}, `m0

n 2 {⇤, ;} ^ `
m00
n = {2} or `

m0
n =

{2} ^ `
m00
n 2 {⇤, ;},

5. `
m
n = {1, 2} implies either `m0

n = {1, 2} or `m00
n = {1, 2}.

These five cases partition the state space for possible colorings of bag Xi and hence can be
used to construct the cost and validation of colorings for Xi.

Lemma 3.10. The cost and validation function for join bag Xi with children Xj and Xj0 are
defined as:

Ci(Lm) = min
m0,m002Mm

n
Cj(Lm0)⇥ Ej(Lm0)+

Cj0(Lm00)⇥ Ej0(Lm00)�
niX

n=1

���`m
0

n \ `
m00

n

���
o
,

(13)

and
Ei(Lm) =

⇢
1, if Cj(Lm) = 1 and Cj0(Lm) = 1,

1, otherwise, (14)

respectively, where

Mm = {(m0
,m

00) | Lm0 and Lm00 divide Lm}. (15)

We set sn(Lm) = sn(Lm0) \ sn(Lm00) for all n = 1, . . . , ni and (m0
,m

00) 2 Mm.
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Proof. We determine color labels of bag Xi using labels of bags Xj and Xj0 . Suppose v 2 Xi

and nodes Xj and Xj0 are children of Xi. Also, assume that Lm0 = (`m
0

i1 , `
m0
i2 , · · · , `

m0
ini
) and

Lm00 = (`m
00

i1 , `
m00
i2 , · · · , `

m00
ini

) are color labels for Xj and Xj0 . If `m0
v = `

m00
v = {⇤}, node v

will be labeled by {⇤} in L
m
v . If `m0

v = {⇤} and `
m00
v = d 6= {⇤} or vice versa, then node v

will be labeled by d in L
m
v . If `m0

v = d1 6= {⇤} and `
m00
v = d2 6= {⇤}, then node v will be

labeled by d1 [ d2 in L
m
v . It is easy to see

C(Lm) = C(Lm0)⇥ E(Lm0) + C(Lm00)⇥ E(Lm00)�
X

xt2Xi

|`
m0

t \ `
m00

t |. (16)

If there are no any valid color labels Lm0 or Lm00 to compute Lm, then we set C(Lm) = 1

and E(Lm) = 1, otherwise E(Lr
i ) = 1.

Lemma 3.11. The cost function in Equation (13) is monotonous if the cost functions for Xj

and Xj0 are also monotonous.

Lemma 3.12. The cost and validation functions defined in Equations (13) and (14) can be
calculated in O (25nini).

Proof. These values can be calculated by combining the colorings for bags j and j
0, which

are totally O (25nini) pairs.

3- Final Step:. Suppose that Xi is the root of the tree decomposition T . Then, we have

�r,2(G) = min
r=1,...,5ni

{Ci(L
r
i )⇥ Ei(L

r
i ) | L

r
i does not contain ⇤} . (17)

3.1. Correctness and Time Complexity
By the above steps, we have the following results.

Theorem 3.1. The value computed in Equation (17) is the 2-rainbow domination number of graph
G.

Proof. It is obvious that the domination computed in Equation (17) is the 2-rainbow domination
as we just considered valid color labels in the root of the tree. The property of tree decomposition
guarantees that every vertex in graph is labeled along the algorithm. In the leaf bags, we have
initialized with the possible color labels corresponding to that leaf bag. For introduce bags, we
have considered and computed the cost and validation of all color labels after addition of the new
vertex. Also, for forget and join bags, we have chosen the minimum cost for among color labels.
So, as all the vertices have labels and we have selected valid color labels in the tree root and also,
minimum color label is preserved for each color label in the bottom-up approach of the algorithm,
then the result is easily concluded.

Corollary 3.1. The value in Equation (17) can be computed in O (25twN) time for a graph G with
N nodes and treewidth of tw given a very nice tree decomposition for it.

Proof. This is directly follows from Lemmas 3.1, 3.6, 3.9, and 3.12.
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3.2. Improving the Time Complexity
The time complexity of the proposed algorithm for determining the 2-rainbow domination

number of a graph G can be improved to O (9twN) if the division condition of join bags is re-
placed by the followings. Suppose that Lm =

�
`
m
1 , . . . , `

m
ni

�
, Lm0 =

⇣
`
m0
1 , . . . , `

m0
nj

⌘
and Lm00 =

⇣
`
m00
1 , . . . , `

m00
nj0

⌘
are colorings for bags Xi, Xj , and Xj0 , respectively. Colorings Lm0 and Lm00

divide coloring Lm whenever for all n = 1, . . . , ni we have
1. `

m
n = {⇤} implies `m0

n = `
m00
n = {⇤},

2. for label ` 2 P ({1, 2}), it is the case that `mn = ` implies that `m0
n , `

m00
n 2 {`, {⇤}} ^ `

m0
n 6=

`
m00
n .

Lemma 3.13. The cost and validation functions defined in Equations (13) and (14) can be calcu-
lated in O (9nini) if we use the improved division condition in place of the original one.
Proof. The running time of step 2 is given by

T =
X

Lm2(P({1,2})[{⇤})ni

|{(Lm0 , Lm00) : Lm0 and Lm00 divide Lm}|.

Let Lm = (`i1 , `i2 , · · · , `ini
) be a labeling for bag Xi, and

zd = |{t 2 {i1, i2, · · · , ini} : `t = d and Lm is a color label for bag Xi}|,

for d 2 P ({1, 2}) [ {⇤}, we have

T =
niX

z;=0

ni�z;X

z{1}=0

ni�z;�z{1}X

z{2}=0

ni�z;�z{1}�z{2}X

z{1,2}=0

✓
ni

z;

◆
2z;

✓
ni � z;

z{1}

◆
2z{1}

✓
ni � z; � z{1}

z{2}

◆
2z{2}

✓
ni � z; � z{1} � z{2}

z{1,2}

◆
2z{1,2}

=
niX

z;=0

ni�z;X

z{1}=0

ni�z;�z{1}X

z{2}=0

✓
ni

z;

◆
2z;

✓
ni � z;

z{1}

◆
2z{1}

✓
ni � z; � z{1}

z{2}

◆
2z{2}3ni�z;�z{1}�z{2}

= 3ni

niX

z;=0

ni�z;X

z{1}=0

ni�z;�z{1}X

z{2}=0

✓
ni

z;

◆
(2/3)z;

✓
ni � z;

z{1}

◆
(2/3)z{1}

✓
ni � z; � z{1}

z{2}

◆
(2/3)z{2}

= 3ni

niX

z;=0

ni�z;X

z{1}=0

✓
ni

z;

◆
(2/3)z;

✓
ni � z;

z{1}

◆
(2/3)z{1}(5/3)ni�z;�z{1}

= 5ni

niX

z;=0

ni�z;X

z{1}=0

✓
ni

z;

◆
(2/5)z;

✓
ni � z;

z{1}

◆
(2/5)z{1}

= 5ni

niX

z;=0

✓
ni

z;

◆
(2/5)z;(7/5)ni�z;
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= 7ni

niX

z;=0

✓
ni

z;

◆
(2/7)z;

= 7ni(9/7)ni = 9ni

Theorem 3.2. The value computed in Equation (17) is the 2-rainbow domination number of graph
G if the division condition is changed as is described in this section.

Proof. The proof is similar to the proof of Theorem 3.1.

Theorem 3.3. The value in Equation (17) can be computed in O (9twN) time for a graph G with
N nodes and treewidth of tw given a very nice tree decomposition for it and that the improved
division condition is used for join bags.

Proof. The proof is similar to the proof of Corollary 3.1, except that the division condition for join
bags is different with time complexity of Lemma 3.13.

4. Generalization for arbitrary k

The algorithm stated in Section 3 can be easily generalized to compute the k-rainbow dom-
ination number of a graph G with N vertices in O

⇣�
2k+1 + 1

�tw
N

⌘
. This is easily done by

substituting the set {1, 2} by the set {1, . . . , k}, using the improved division condition stated in
Section 3.2 and changing the way we compute the cost function of an introduce bag Xi with child
Xj such that Xi = Xj [ {v}, Equation (8), as

Ci(Lm ⇥ `) =

⇢
Cj(Lm), if ` 2 {;, ⇤} ,

Cj (�` (Lm)) + |`| , otherwise, (18)

where bag Xj is labeled by Lm =
�
`1, . . . , `nj

�
and ` 2 P ({1, . . . , k}) [ {⇤}.

Theorem 4.1. Given that Xi is the root of the tree decomposition, then the value of

min
m=1,...,(2k+1)

ni
{Ci(Lm)⇥ Ei(Lm) | Lm does not contain ⇤} , (19)

equals the k-rainbow domination number of a graph G and can be computed in O

⇣�
2k+1 + 1

�tw
N

⌘

time given a very nice tree decomposition of it, where N is the number of its nodes and its tree-
width equals tw.

Proof. By changing {1, 2} to {1, . . . , k}, it is easy to see that

• the initialization step can be done in O(1) time,

• the cost and validation functions for an introduce bag Xi can be determined in O
��
2k + 1

�ni
ni

�
,
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• the cost and validation functions for a forget bag Xi can be evaluated in in O
��
2k + 1

�ni
ni

�
,

too.

The time complexity of calculating the cost and validation functions for a join bag Xi equals

T =
X

Lm2(P({1,...,k})[{⇤})ni

|{(Lm0 , Lm00 | Lm0 and Lm00 divide Lm)}| . (20)

By induction on the number of ⌃s in T , denoted as #⌃, we show T =
�
2k+1 + 1

�ni . If #⌃ = 1,
then T =

Pni

z=0

�
ni

z

�
(2)z = 3ni . Let p � 2 be given and suppose (18) is true for #⌃ = p. Then

T =
niX

zp+1=0

✓
ni

zp+1

◆
(2)zp+1

ni�zp+1X

zp=0

✓
ni � zp+1

zp

◆
(2)zp

ni�zpX

zp�1=0

✓
ni � zp

zp�1

◆
(2)zp�1

· · ·

ni�
P2

i=p ziX

z0=0

✓
ni �

P2
i=p zi

z1

◆
(2)z1

=
niX

zp+1=0

✓
ni

zp+1

◆
(2)zp+1(2p+ 1)ni�zp+1

= (2p+ 1)ni((2p+ 3)/(2p+ 1))ni

= (2(p+ 1) + 1)ni .

Thus, (18) holds for #⌃ = p+ 1, and the proof of the induction step is complete.
For 2-rainbow domination, we have #⌃ = 4 so T = 9ni . Also for k-rainbow domination

number, it is easy to see that #⌃ = 2k, therefore we have T = (2k+1 + 1)ni .

5. Weighted k-Rainbow Domination

In this section, we extend the approach discussed in Section 4 in order to find the weighted
domination of a graph G = (V,E). Each vertex v 2 V has k positive weights which are denoted
by wj(v) for j = 1, . . . , k. Then, for a rainbow function f : V ! (P ({1, . . . , k}) [ {⇤}), its cost
w(f) equals

w(f) =
X

v2V

X

j2f(v)

wj(v). (21)

Note that f(v) is the same as the label of v. The only modification we need to make in the approach
of Section 4 is to change the cost functions. Everything else remains the same. To be precise, we
will use the following modified cost functions:

1. for a leaf bag Xi = {v} with coloring Lm = (`1), its cost function is modified as

Ci(Lm) =

⇢
0, if `1 2 {;, ⇤} ,P

j2`1
wj(v), otherwise. (22)
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2. for an introduce bag Xi with child Xj such that Xi = Xj [ {v}, we use the following cost
function

Ci(Lm ⇥ `) =

⇢
Cj(Lm), if ` 2 {;, ⇤} ,

Cj (�` (Lm)) +
P

j2` wj(v), otherwise, (23)

where bag Xj is labeled by Lm =
�
`1, . . . , `nj

�
and ` 2 P ({1, . . . , k}) [ {⇤}.

3. for a forget bag, we use exactly the same approach.
4. for a join node Xi with children Xj and Xj0 , we will change Equation (13) to

Ci(Lm) = min
m0,m002Mm

n
Cj(Lm0)⇥ Ej(Lm0)

+ Cj(Lm00)⇥ Ej(Lm00)�
niX

n=1

w`m0
n \`m00

n
(vn)

o
,

(24)

where Xi = (v1, . . . , vni) and wt(v) for t ✓ {1, . . . , k} and vertex v 2 V is defined as

wt(v) =

⇢ P
j2t wj(v), if t /2 {;, ⇤} ,

0, if t 2 {;, ⇤} .
(25)

Theorem 5.1. Given that Xi is the root of the tree decomposition, then the value of

�wr,k = min
m=1,...,(2k+1)

ni
{Ci(Lm)⇥ Ei(Lm) | Lm does not contain ⇤} , (26)

equals the weighted k-rainbow domination of a graph G and can be computed in O

⇣�
2k+1 + 1

�tw
N

⌘

time given a very nice tree decomposition of it, where N is the number of its nodes and its treewidth
equals tw.

Proof. The proof is similar to the proof of Theorem 4.1.

6. Conclusion

In this paper, we presented a novel dynamic programming algorithm to solve the k-rainbow
domination for graphs with bounded tree-width tw in O

⇣�
2k+1 + 1

�tw
n

⌘
time. This problem

is known to be NP-hard for general graphs and arbitrary values of k. We also used the same
approach to solve the weighted k-rainbow domination problem with the same complexity. So, we
have shown that both problems belong to the class FPT with respect to tree-width. We have also
illustrated our algorithms by implementing them in Python.
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Appendix A: Illustrative Examples

The algorithms in this paper are implemented in Python 2.7.11. Moreover, we have used
networkx 1.11 to represent graph structures as well as using some basic algorithms. Through-
out the examples in this section, we are going to compute the (weighted) k-rainbow domination of
the graph in Figure 1a with the corresponding tree decomposition in Figure 1b.

Computing the cost and validation functions for a tree decomposition can be viewed as a table-
filling algorithms. So, we use a hash table with color labels as keys for each bag. A tricky issue
is computing the cost and validations for join bags. To accommodate with the proposed running
time, we need to take a generative approach, that is for each color labels of a join bag, generate the
set of possible color labels.

Running the algorithm to compute the 2-rainbow domination for the graph G gives �r,2 = 4
with 2-rainbow function f2 defined as follows

f2(A) = {1, 2} , f2(B) = ;, f2(C) = ;,

f2(D) = {2} , f2(E) = ;, f2(F ) = {1}.
(27)

The values of cost, validation and symbol functions for leaf bag {F}, forget bag {E}, introduce
bag {E,F} and join bag {A,C} are given in Tables 1, 2, 3 and 4 respectively.
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(a) Main Graph G.
(b) Very Nice Tree Decomposition of Graph G.

Table 1: Cost, validation and symbol functions for leaf bag {F} for 2-rainbow domination

F s C E
{1, 2} undefined 2 1
{} undefined 0 1

{1} undefined 1 1
{2} undefined 1 1
{⇤} {1, 2} 0 1

We also run the algorithm to compute the 3-rainbow domination for the graph G which gives
�r,3 = 5 with 3-rainbow function f3 defined as follows

f3(A) = {1, 2} , f3(B) = ;, f3(C) = {3} ,
f3(D) = {1} , f3(E) = ;, f3(F ) = {3}.

(28)

The values of cost, validation and symbol functions for leaf bag {D}, forget bag {C}, introduce
bag {C,D} and join bag {A,C} are given in Tables 5, 6, 7 and 8 respectively.

Finally, we run the algorithm to compute the weighted 2-rainbow domination for the graph G

with respect to the weights in Table 9. The algorithm returns �wr,2 = 8 with weighted 2-rainbow
function fw,2 defined as follows

f(A) = {1, 2} , f(B) = ;, f(C) = ;,

f(D) = {1} , f(E) = ;, f(F ) = {1} .
(29)

The values of cost, validation and symbol functions for leaf bag {F}, forget bag {E}, introduce
bag {E,F} and join bag {A,C} are given in Tables 10, 11, 12 and 13 respectively.
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Table 2: Cost, validation and symbol functions for forget bag {E} for 2-rainbow domination

E s C E
{1, 2} undefined 3 1
{} undefined 2 1
{1} undefined 2 1
{2} undefined 2 1
{⇤} {1} 1 1

Table 3: Cost, validation and symbol functions for introduce bag {E,F} for 2-rainbow domination

E s F s C E
{1} undefined {2} undefined 2 1
{1, 2} undefined {1, 2} undefined 4 1
{} undefined {} undefined 0 1

{} undefined {1} undefined 1 1

{⇤} {1, 2} {⇤} undefined 0 1
{1} undefined {1, 2} undefined 3 1
{⇤} {1, 2} {} undefined 0 1

{} undefined {⇤} undefined 0 1

{2} undefined {⇤} undefined 1 1
{1} undefined {⇤} undefined 1 1
{2} undefined {1} undefined 2 1
{1, 2} undefined {⇤} undefined 2 1
{⇤} undefined {1, 2} undefined 2 1
{1, 2} undefined {1} undefined 3 1
{1} undefined {1} undefined 2 1
{} undefined {1, 2} undefined 2 1
{1} undefined {} undefined 1 1

{2} undefined {1, 2} undefined 3 1
{} undefined {2} undefined 1 1

{1, 2} undefined {} undefined 2 1

{2} undefined {2} undefined 2 1
{⇤} {1} {2} undefined 1 1
{⇤} {2} {1} undefined 1 1
{1, 2} undefined {2} undefined 3 1
{2} undefined {} undefined 1 1
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Table 4: Cost, validation and symbol functions for join bag {A,C} for 2-rainbow domination

A s C s C E
{1} undefined {2} undefined 4 1
{1, 2} undefined {1, 2} undefined 6 1
{} undefined {} undefined 5 1
{} undefined {1} undefined 5 1
{⇤} undefined {⇤} undefined 3 1
{1} undefined {1, 2} undefined 5 1
{⇤} undefined {} undefined 4 1
{2} undefined {1} undefined 5 1
{2} undefined {⇤} undefined 4 1
{1} undefined {⇤} undefined 3 1
{} undefined {⇤} undefined 4 1
{1} undefined {1} undefined 4 1
{⇤} undefined {1, 2} undefined 5 1
{1, 2} undefined {1} undefined 5 1
{1, 2} undefined {⇤} undefined 4 1
{} undefined {1, 2} undefined 5 1
{1} undefined {} undefined 4 1
{2} undefined {1, 2} undefined 6 1
{} undefined {2} undefined 5 1

{1, 2} undefined {} undefined 4 1
{2} undefined {2} undefined 5 1
{⇤} undefined {2} undefined 4 1
{⇤} undefined {1} undefined 4 1
{1, 2} undefined {2} undefined 5 1
{2} undefined {} undefined 5 1

Table 5: Cost, validation and symbol functions for leaf bag {D} for 3-rainbow domination

D s C E
{1, 2, 3} undefined 3 1
{1, 2} undefined 2 1
{1, 3} undefined 2 1
{2} undefined 1 1
{1} undefined 1 1
{3} undefined 1 1
{2, 3} undefined 2 1
{} undefined 0 1

{⇤} {1, 2, 3} 0 1
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Table 6: Cost, validation and symbol functions for forget bag {C} for 3-rainbow domination

C s C E
{1, 2, 3} undefined 4 1
{1, 2} undefined 3 1
{1, 3} undefined 3 1
{2} undefined 2 1
{1} undefined 2 1
{3} undefined 2 1
{⇤} {1, 2} 1 1
{} undefined 3 1

{2, 3} undefined 3 1
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Table 7: Cost, validation and symbol functions for introduce bag {C,D} for 3-rainbow domination

C s D s C E
{1} undefined {2} undefined 2 1
{1, 2} undefined {1, 2} undefined 4 1
{⇤} {1, 2, 3} {} undefined 0 1

{1, 2} undefined {1, 2, 3} undefined 5 1
{3} undefined {2, 3} undefined 3 1

{1, 2, 3} undefined {1, 3} undefined 5 1
{3} undefined {3} undefined 2 1
{1, 3} undefined {⇤} undefined 2 1
{1} undefined {1, 2} undefined 3 1
{2, 3} undefined {1, 2} undefined 4 1
{2} undefined {⇤} undefined 1 1

{1, 2, 3} undefined {1} undefined 4 1
{2, 3} undefined {3} undefined 3 1
{} undefined {1, 3} undefined 2 1

{1, 3} undefined {1} undefined 3 1
{⇤} {1, 2, 3} {⇤} undefined 0 1
{1} undefined {3} undefined 2 1
{1} undefined {1} undefined 2 1
{1, 2} undefined {⇤} undefined 2 1
{1} undefined {1, 2, 3} undefined 4 1
{} undefined {} undefined 0 1

{⇤} {1, 2} {3} undefined 1 1
{1, 3} undefined {1, 3} undefined 4 1
{⇤} {2} {1, 3} undefined 2 1
{1, 2} undefined {1} undefined 3 1
{1, 2, 3} undefined {⇤} undefined 3 1
{2} undefined {1} undefined 2 1
{2} undefined {1, 3} undefined 3 1
{3} undefined {1} undefined 2 1

{1, 2, 3} undefined {2, 3} undefined 5 1
{⇤} {3} {1, 2} undefined 2 1
{} undefined {1, 2, 3} undefined 3 1
{} undefined {3} undefined 1 1

{} undefined {1} undefined 1 1

{1, 2} undefined {2, 3} undefined 4 1
{1} undefined {⇤} undefined 1 1
{1, 2} undefined {1, 3} undefined 4 1
{1, 2, 3} undefined {1, 2, 3} undefined 6 1
{2} undefined {3} undefined 2 1
{1, 3} undefined {} undefined 2 1

{1, 2, 3} undefined {3} undefined 4 1
{1, 3} undefined {1, 2, 3} undefined 5 1
{3} undefined {1, 2, 3} undefined 4 1
{2, 3} undefined {2, 3} undefined 4 1
{1, 3} undefined {3} undefined 3 1
{2, 3} undefined {1, 3} undefined 4 1
{2} undefined {1, 2, 3} undefined 4 1
{2, 3} undefined {⇤} undefined 2 1
{1, 2, 3} undefined {1, 2} undefined 5 1
{1} undefined {1, 3} undefined 3 1
{1} undefined {2, 3} undefined 3 1
{3} undefined {⇤} undefined 1 1
{2, 3} undefined {2} undefined 3 1
{2, 3} undefined {1} undefined 3 1
{1, 2, 3} undefined {2} undefined 4 1

{} undefined {1, 2} undefined 2 1

{⇤} undefined {1, 2, 3} undefined 3 1
{1, 2} undefined {3} undefined 3 1
{3} undefined {2} undefined 2 1
{3} undefined {1, 3} undefined 3 1
{1} undefined {} undefined 1 1

{} undefined {⇤} undefined 0 1

{2} undefined {1, 2} undefined 3 1
{} undefined {2} undefined 1 1

{2} undefined {2, 3} undefined 3 1
{3} undefined {1, 2} undefined 3 1
{1, 3} undefined {1, 2} undefined 4 1
{1, 2} undefined {} undefined 2 1

{⇤} {1} {2, 3} undefined 2 1
{1, 3} undefined {2, 3} undefined 4 1
{2} undefined {2} undefined 2 1
{1, 3} undefined {2} undefined 3 1
{⇤} {1, 3} {2} undefined 1 1
{⇤} {2, 3} {1} undefined 1 1
{2, 3} undefined {} undefined 2 1

{3} undefined {} undefined 1 1

{1, 2} undefined {2} undefined 3 1
{1, 2, 3} undefined {} undefined 3 1

{2, 3} undefined {1, 2, 3} undefined 5 1
{2} undefined {} undefined 1 1

{} undefined {2, 3} undefined 2 1
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Table 8: Cost, validation and symbol functions for join bag {A,C} for 3-rainbow domination

A s C s C E
{1} undefined {2} undefined 5 1
{3} undefined {2, 3} undefined 6 1
{⇤} undefined {} undefined 5 1
{1, 2} undefined {1, 2, 3} undefined 7 1
{1, 2, 3} undefined {2, 3} undefined 7 1
{1, 2, 3} undefined {1, 3} undefined 7 1
{3} undefined {3} undefined 5 1
{1, 3} undefined {⇤} undefined 5 1
{1} undefined {1, 2} undefined 6 1
{2, 3} undefined {1, 2} undefined 7 1
{} undefined {1, 2} undefined 5 1

{1, 2, 3} undefined {1} undefined 6 1
{1, 2} undefined {1, 2} undefined 6 1
{} undefined {1, 3} undefined 7 1

{1, 3} undefined {1} undefined 6 1
{1} undefined {3} undefined 5 1
{1, 2} undefined {⇤} undefined 4 1
{1} undefined {1, 2, 3} undefined 7 1
{⇤} undefined {1, 2, 3} undefined 6 1
{} undefined {} undefined 7 1
{⇤} undefined {3} undefined 4 1
{1, 3} undefined {1, 3} undefined 7 1
{⇤} undefined {1, 3} undefined 5 1
{} undefined {1, 2, 3} undefined 6 1

{1, 2, 3} undefined {⇤} undefined 5 1
{2} undefined {1} undefined 5 1
{2} undefined {1, 3} undefined 6 1
{3} undefined {1} undefined 5 1
{3} undefined {} undefined 6 1
{⇤} undefined {1, 2} undefined 5 1
{1, 2} undefined {1} undefined 5 1
{} undefined {3} undefined 6 1
{} undefined {1} undefined 6 1
{1} undefined {⇤} undefined 4 1
{1, 2} undefined {1, 3} undefined 6 1
{1, 2, 3} undefined {1, 2, 3} undefined 8 1
{2} undefined {3} undefined 5 1
{⇤} undefined {1} undefined 4 1

{1, 2, 3} undefined {3} undefined 6 1
{1, 3} undefined {1, 2, 3} undefined 8 1
{3} undefined {1, 2, 3} undefined 7 1
{⇤} undefined {⇤} undefined 3 1
{1, 3} undefined {3} undefined 6 1
{2} undefined {⇤} undefined 4 1
{2, 3} undefined {1, 3} undefined 7 1
{1} undefined {1} undefined 5 1
{2, 3} undefined {⇤} undefined 5 1
{1, 2, 3} undefined {1, 2} undefined 7 1
{1} undefined {1, 3} undefined 6 1
{1} undefined {2, 3} undefined 6 1
{3} undefined {⇤} undefined 4 1
{2, 3} undefined {2} undefined 6 1
{2, 3} undefined {1} undefined 6 1
{1, 2, 3} undefined {2} undefined 6 1
{2, 3} undefined {3} undefined 6 1
{2} undefined {1, 2, 3} undefined 7 1
{1, 2} undefined {3} undefined 5 1
{3} undefined {2} undefined 5 1
{2, 3} undefined {1, 2, 3} undefined 8 1
{3} undefined {1, 3} undefined 6 1
{1} undefined {} undefined 6 1
{} undefined {⇤} undefined 5 1
{2} undefined {1, 2} undefined 6 1
{} undefined {2} undefined 6 1
{2} undefined {2, 3} undefined 6 1
{1, 2} undefined {2, 3} undefined 6 1
{1, 3} undefined {1, 2} undefined 7 1
{1, 2} undefined {} undefined 5 1
{⇤} undefined {2, 3} undefined 5 1
{1, 3} undefined {2, 3} undefined 7 1
{2} undefined {2} undefined 5 1
{1, 3} undefined {2} undefined 6 1
{⇤} undefined {2} undefined 4 1
{1, 3} undefined {} undefined 7 1
{2, 3} undefined {} undefined 7 1
{1, 2} undefined {2} undefined 5 1
{1, 2, 3} undefined {} undefined 5 1
{3} undefined {1, 2} undefined 6 1
{2} undefined {} undefined 6 1
{} undefined {2, 3} undefined 7 1

{2, 3} undefined {2, 3} undefined 7 1
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Table 9: Weights for vertices of graph G where the ith row corresponds to the weight of color i for the vertex of
corresponding column

A B C D E F
1 2 3 2 2 3 1
2 3 1 1 2 2 3

Table 10: Cost, validation and symbol functions for leaf bag {F} for weighted 2-rainbow domination

F s C E
{1, 2} undefined 4 1
{} undefined 0 1

{1} undefined 1 1
{2} undefined 3 1
{⇤} {1, 2} 0 1

Table 11: Cost, validation and symbol functions for forget bag {E} for weighted 2-rainbow domination

E s C E
{1, 2} undefined 6 1
{} undefined 4 1
{1} undefined 4 1
{2} undefined 3 1
{⇤} {2} 1 1
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Table 12: Cost, validation and symbol functions for introduce bag {E,F} for weighted 2-rainbow domination

E s F s C E
{1} undefined {2} undefined 6 1
{1, 2} undefined {1, 2} undefined 9 1
{} undefined {} undefined 0 1

{} undefined {1} undefined 1 1

{⇤} {1, 2} {⇤} undefined 0 1
{1} undefined {1, 2} undefined 7 1
{⇤} {1, 2} {} undefined 0 1

{} undefined {⇤} undefined 0 1

{2} undefined {⇤} undefined 2 1
{1} undefined {⇤} undefined 3 1
{2} undefined {1} undefined 3 1
{1, 2} undefined {⇤} undefined 5 1
{⇤} undefined {1, 2} undefined 4 1
{1, 2} undefined {1} undefined 6 1
{1} undefined {1} undefined 4 1
{} undefined {1, 2} undefined 4 1
{1} undefined {} undefined 3 1

{2} undefined {1, 2} undefined 6 1
{} undefined {2} undefined 3 1

{1, 2} undefined {} undefined 5 1

{2} undefined {2} undefined 5 1
{⇤} {1} {2} undefined 3 1
{⇤} {2} {1} undefined 1 1
{1, 2} undefined {2} undefined 8 1
{2} undefined {} undefined 2 1
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Table 13: Cost, validation and symbol functions for join bag {A,C} for weighted 2-rainbow domination

A s C s C E
{1} undefined {2} undefined 8 1
{1, 2} undefined {1, 2} undefined 11 1
{} undefined {} undefined 10 1
{} undefined {1} undefined 7 1
{⇤} undefined {⇤} undefined 5 1
{1} undefined {1, 2} undefined 10 1
{⇤} undefined {} undefined 7 1
{2} undefined {1} undefined 8 1
{2} undefined {⇤} undefined 6 1
{1} undefined {⇤} undefined 7 1
{} undefined {⇤} undefined 8 1
{1} undefined {1} undefined 9 1
{⇤} undefined {1, 2} undefined 8 1
{1, 2} undefined {1} undefined 10 1
{1, 2} undefined {⇤} undefined 8 1
{} undefined {1, 2} undefined 8 1
{1} undefined {} undefined 7 1
{2} undefined {1, 2} undefined 9 1
{} undefined {2} undefined 9 1

{1, 2} undefined {} undefined 8 1
{2} undefined {2} undefined 7 1
{⇤} undefined {2} undefined 6 1
{⇤} undefined {1} undefined 7 1
{1, 2} undefined {2} undefined 9 1
{2} undefined {} undefined 8 1
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