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Abstract

A domatic partition P of a graph G = (V,E) is a partition of V into classes that are pairwise
disjoint dominating sets. Such a partition P is called b-maximal if no larger domatic partition P ′
can be obtained by gathering subsets of some classes of P to form a new class. The b-domatic
number bd(G) is the minimum cardinality of a b-maximal domatic partition of G. In this paper, we
characterize the graphs G of order n with bd(G) ∈ {n− 1, n− 2, n− 3}. Then we prove that for
any graph G on n vertices, bd(G) + bd(G) ≤ n + 1, where G is the complement of G. Moreover,
we provide a characterization of the graphs G of order n with bd(G) + bd(G) ∈ {n+ 1, n} as well
as those graphs for which bd(G) = bd(G) = n/2.
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1. Introduction

Throughout this paper, G denotes a simple graph with vertex set V = V (G) and edge set
E = E(G). The order |V | of G is denoted by n = n(G). For every vertex v ∈ V , the open
neighborhood NG(v) = N(v) is the set {u ∈ V (G) | uv ∈ E(G)} and the closed neighborhood
of v is the set N [v] = N(v) ∪ {v}. The private neighborhood of a vertex v ∈ S with respect to S
is the set pn [v, S] = {u ∈ V (G) | N [u] ∩ S = {v}} . For any S ⊆ V, we denote the subgraph of
G induced by S with 〈S〉 . The degree of a vertex v, denoted by dG(v), is the number of vertices
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adjacent to v. We denote by ∆(G) = ∆ and δ(G) = δ the maximum degree and the minimum
degree in V (G), respectively. A universal vertex is a vertex that is adjacent to all other vertices of
the graph, that is a vertex whose degree is exactly n− 1.

The complement G of G is the graph with vertex set V (G) and with exactly the edges that do
not belong to G. The complete graph of order n is denoted by Kn, and K1 is called the trivial
graph. The complete bipartite graph with partition sets X , Y such that |X| = p and |Y | = q is
denoted by Kp,q. We write Pn for the path of order n and Cn for the cycle of length n. If G is any
graph, the prism graph of G is the the graph obtained by taking two copies of G, say G1 and G2,
with the same vertex labelings and joining each vertex of G1 to the vertex of G2 having the same
label by an edge; in other words, the prism graph of G is the Cartesain product G�K2. The join
of two simple graphs G and H , written G ∨ H is the graph obtained by taking the disjoint union
of G and H and adding all edges {xy | x ∈ V (G), y ∈ V (H)}.

A dominating set of a graph G is a set D of vertices such that every vertex in V�D is adjacent
to some vertex in D. The domination number of G, denoted by γ(G), is the minimum cardinality
of a dominating set of G.

In 1977, Cockayne and Hedetniemi [3] introduced the concept of domatic partition as a parti-
tion of V into dominating sets. They defined the domatic number d(G) as the largest number of
sets in a domatic partition ofG. For related works in this area see, for instance, [1, 2, 8, 9]. In 2013,
Favaron [4] introduced the b-domatic number as follows. A domatic partitionP = {C1, C2, ..., Cp}
is b-maximal if there do not exist p subsets C ′i ⊂ Ci (among them p− 1 are possibly empty) such
that the partition P ′= {C1�C ′1, C2�C ′2, ..., Cp�C ′p, C ′1∪C ′2∪ ...∪C ′p} is domatic. The b-domatic
number ofG, denoted bd(G), is the minimum cardinality of a b-maximal domatic partition ofG. A
bd(G)-domatic partition of a graph G is a b-maximal domatic partition of G of cardinality bd(G).
On the basis of these definitions, bd(G) ≤ d(G) for every graph G.

In this paper, we first characterize the graphs G of order n with bd(G) ∈ {n − 1, n − 2, n −
3}. Then we prove that for any graph G on n vertices, bd(G) + bd(G) ≤ n + 1. Moreover,
we characterize all graphs G with bd(G) = bd(G) = n/2 as well as those graphs for which
bd(G) + bd(G) ∈ {n+ 1, n}.

2. Known results

In this section, we list some known results that will be useful in our investigations.

Proposition 2.1 ([3]). For any graph G of order n, d(G) ≤ min{δ(G) + 1, n/γ(G)}.

Theorem 2.1 ([4]). Let G1, . . . , Gk be the components of a disconnected graph G without isolated
vertices. Then bd(G) = min{bd(Gi) | 1 ≤ i ≤ k}.

Since the vertex set of a graph G is the unique domatic partition if and only if δ(G) = 0, the
following lower bound is immediate.

Proposition 2.2 ([4]). If G is a graph of minimum degree δ(G) ≥ 1, then bd(G) ≥ 2.

Proposition 2.3 ([4]). bd(Kn) = n, bd(Cn) = 2 for n ≥ 4, and bd(Kp,q) = 2 (p ≥ q ≥ 1).
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In [5], the authors gave some sufficient conditions for graphs to attain equality in the bound of
Proposition 2.2. Recall that a set S ⊆ V is independent if no two vertices in S are adjacent.

Theorem 2.2 ([5]). If G has a vertex whose neighbors form an independent set, then bd(G) = 2.

Proposition 2.4 ([5]). If G is a prism graph, then bd(G) = 2.

Theorem 2.3 ([5]). Let P be a domatic partition of a graph G = (V,E). If there exists a vertex
v ∈ V such that each vertex of NG [v] is either isolated in its class or has a private neighbor with
respect to its class, then P is b-maximal.

It has been shown in [5] that if G has a universal vertex v, then bd(G�v) = bd(G) − 1. This
result can be generalized as follows.

Proposition 2.5. Let A be the set of universal vertices in a graph G. Then bd(G) = bd(G�A) +
|A| .

We note that if G is a graph without universal vertices, then γ(G) ≥ 2. So, the next result
follows immediately from Proposition 2.1 and the fact bd(G) ≤ d(G).

Corollary 2.1. If G is a graph of order n without universal vertices, then bd(G) ≤ n
2
.

3. Graphs with large b-domatic number

In this section, we give a characterization of graphs G of order n ≥ 3 for which bd(G) ∈
{n− 1, n− 2, n− 3}. We recall that graphs G of order n with bd(G) = n have been characterized
in [4].

Proposition 3.1 ([4]). Let G be a graph of order n. Then bd(G) = n if and only if G is isomorphic
to Kn.

Proposition 3.2. Let G be a graph of order n. Then bd(G) = n− 1 if and only if G is isomorphic
to graph Kn − e, where e is an arbitrary edge of the complete graph Kn.

Proof. LetP = {U1, U2, ..., Un−1} be an (n−1)-domatic partition ofG.Without loss of generality,
we may assume that U1 = {a, b} and Ui = {ui} for each i ∈ {2, ..., n−1}. Clearly dG(ui) = n−1,
since each ui dominates V (G). Now, if ab ∈ E, then G = Kn and by Proposition 3.1, bd(G) = n,
a contradiction. Hence ab /∈ E, and thus G = Kn − e.

The converse is obvious.

Proposition 3.3. Let G be a graph of order n ≥ 3. Then bd(G) = n − 2 if and only if G ∈
{K3, K2∪K1, P4, C4, 2K2} orG is isomorphic to G1∨Kn−3 orG2∨Kn−4,whereG1 ∈ {K3, K2∪
K1} and G2 ∈ {P4, C4, 2K2}.
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Proof. If n = 3, then bd(G) = 1 and thusG has an isolated vertex. ThereforeG ∈ {K3, K2∪K1}.
Assume now that n ≥ 4 and let P = {U1, U2, ..., Un−2} be an (n− 2)-domatic partition of G such
that |U1| ≥ |U2| ≥ ... ≥ |Un−2|. Clearly, either |U1| = 3 and |U2| = 1 or |U1| = |U2| = 2.
Moreover, if n ≥ 5, then |Ui| = 1 for each i /∈ {1, 2}.

Suppose first that |U1| = 3 and |Ui| = 1 for each i 6= 1. Let Ui = {ui} for each i ∈ {2, ..., n−
2}. Since each ui dominates V (G), G = G1 ∨Kn−3, where G1 = 〈U1〉. By Propositions 3.1 and
3.2, G1 /∈ {K3, P3}. Hence G1 = K2 ∪K1 or K3.

Now suppose that |U1| = |U2| = 2, and let G2 = 〈U1 ∪ U2〉 . Assume first that n = 4. Since U1

dominates U2, each vertex of U1 has a neighbor in U2, and likewise each vertex of U2 has a neighbor
in U1. Now using the fact that G2 /∈ {K4, K4 − e} (by Propositions 3.1 and 3.2) we deduce that
G2 ∈ {P4, C4, 2K2}. Assume now that n ≥ 5 and let Ui = {ui} for each i ∈ {3, ..., n − 2}. As
previously, every ui dominates V (G), and thus G = G2 ∨Kn−4.

For the converse, if G ∈ {K3, K2 ∪K1, P4, C4, 2K2}, then one can easily check that bd(G) =
n − 2. Now let G = G1 ∨ Kn−3 or G = G2 ∨ Kn−4. If A is the set of universal vertices of G,
then according to Proposition 2.5, bd(G) = bd(H) + |A| , where H ∈ {G1, G2}. If H = G1, then
bd(G1) = 1 and |A| = n − 3, implying that bd(G) = n − 2. If H = G2, then bd(G2) = 2 and
|A| = n− 4, implying that bd(G) = n− 2.

Let H be the family of graphs G of order 6 with δ(G) ≥ 2 and 3 ≤ ∆(G) ≤ 4, where each
vertex is contained in a triangle. We note that H contains exactly 14 graphs that can be found in
[7] (see pages 218− 224).

In the sequel, we shall show that all graphs of H, except those depicted in Figure 1, have a
b-domatic number equal to 3.
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Figure 1. Four graphs of order 6 with b-domatic number 2

Recall that it was shown in [5] that bd(H1) = bd(H4) = 2.

Proposition 3.4. The only graphs ofH with b-domatic number 2 are H1, H2, H3 and H4.

Proof. Let G ∈ H, and assume that bd(G) = 2. Let P = {U1, U2} be a 2-domatic partition of G
such that |U1| ≤ |U2| . As G has order 6 and maximum degree at most 4, 3 ≤ |U2| ≤ 4 and so
2 ≤ |U1| ≤ 3. Consider the following two cases.

Case 1. |U1| = 2 and |U2| = 4. Let U1 = {a, b} and U2 = {x, y, z, t}. We distinguish between
two subcases, depending on whether the edge ab exists or not.
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Case 1.1. ab /∈ E. Since every vertex of G belongs to a triangle, every vertex in U2 is not
isolated in 〈U2〉. If 〈U2〉 does not have two independent edges, then clearly 〈U2〉 is a star K1,3,
centered, without loss of generality, at x. Note that 〈U2〉 has no triangle. Using the fact that every
vertex of G is contained in a triangle and y, z, t form an independent set in 〈U2〉 , we deduce that
every triangle containing one of y, z and t also contains x. This implies that x is adjacent to both
a and b, implying that dG(x) = 5, a contradiction. Hence, we can assume that 〈U2〉 has two
independent edges.

Now, let Ta and Tb be two triangles containing a and b, respectively. Since ab /∈ E(G), Ta
and Tb has at most two common vertices. Suppose first that there is no common vertex between
Ta and Tb. Without loss of generality, let V (Ta) = {a, x, y} and V (Tb) = {b, z, t}. In this case,
{{a, b}, {x, z}, {y, t}} is a domatic partition of G, a contradiction. Suppose now that y is the
unique common vertex between Ta and Tb. Without loss of generality, let V (Ta) = {a, x, y} and
V (Tb) = {b, y, z}. Since t is dominated by U1, let tb ∈ E. If tz ∈ E, then {a, x, y} and {b, z, t}
induces two independent triangles and as above we can get a domatic partition of order 3. So
tz /∈ E. Since t belongs to a triangle, we must have yt ∈ E but then dG(y) = 5, a contradiction.
Finally, we may assume that all triangles containing a and b have two common neighbors. Hence
let V (Ta) = {a, x, y} and V (Tb) = {b, x, y}. Note that since ∆ ≤ 4, each of x and y has at most
one neighbor in {z, t}. Also, since U1 dominates U2, we may assume that zb ∈ E. Suppose that
zt ∈ E. Then bt /∈ E, for otherwise there are two independent triangles. Therefore at ∈ E and
so az /∈ E (else there are two independent triangles). Since each of z and t belongs to a triangle,
we have xz, ty ∈ E. But then {a, y, t} and {b, x, z} are two triangles with no common vertex, a
contradiction. Hence zt /∈ E. Since 〈U2〉 has two independent edges, we can assume that ty ∈ E.
Then at /∈ E for otherwise {a, y, t} and {b, x, y} are two triangles with one common vertex, a
contradiction. Thus bt ∈ E but then {a, x, y} and {b, y, t} are two triangles with one common
neighbor, a contradiction.

Case 1.2. ab ∈ E(G). Clearly since ∆(G) ≤ 4, neither a nor b is adjacent to all U2. Moreover,
since {U1, U2} is a 2-domatic partition of G, we assume without loss of generality, that at /∈ E
and so bt ∈ E. Likewise bx /∈ E and so ax ∈ E. Note that x and t are not isolated in U2 since
δ(G) ≥ 2. However, at most one of y, z is isolated in U2, for otherwise x and t do not belong to
any triangle.

Firstly, suppose, without loss of generality, that z is isolated in U2. Then z must be adjacent to
both a and b. As each of x and t lies on a triangle, xy and ty ∈ E. Clearly, y has a neighbor in
U1. Assume that y is adjacent to both a, b. If xt /∈ E, then G = H1, otherwise G = H2. Note that
bd(H1) = 2 as proved in [5]. Likewise bd(H2) = 2 by Theorem 2.3 since z is isolated in U2 and
each of a, b has a private neighbor with respect to U1. Assume now that y is adjacent either to a or
to b, but not to both of them. In this case, tx ∈ E since t belongs to a triangle, whence, G = H3.
The above argument applied to z shows that bd(H3) = 2.

Suppose now that U2 contains no isolated vertex. Since x belongs to a triangle, x must be
adjacent to at least one of y, z, say y. By the same argument, t has a neighbor in {y, z}. Observe
that each of a and b has a neighbor in {y, z} because each of them belongs to a triangle. Clearly,
U1 dominates y and z. If zt or zx ∈ E, then {{a, b}, {x, t}, {y, z}} is a domatic partition of G,
a contradiction. Hence zt, zx /∈ E implying that zy ∈ E since z is not isolated in U2. Therefore
ty ∈ E because t belongs to a triangle. As y has a neighbor in U1 and ∆ ≤ 4, y is adjacent to
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exactly one of a, b. Up to symmetry, let yb ∈ E. Then ay /∈ E, and thus az and zb ∈ E since a
belongs to a triangle. Since x lies on a triangle, xt ∈ E. In this case, {{a, b}, {x, y}, {z, t}} is a
domatic partition of G, a contradiction.

Case 2. |U1| = |U2| = 3. Let U1 = {a, b, c} and U2 = {x, y, z}. Here again, we distinguish
between four subcases.

Case 2.1. U1 is an independent set. Clearly every vertex of U1 is adjacent to at least two vertices
of U2. Suppose that a vertex of U1, say a is adjacent to all U2. Since every triangle containing a
vertex of U1 must contain two vertices of U2, there is a vertex in U2 adjacent to every vertex of
G, which leads to a contradiction since ∆ ≤ 4. Therefore, every vertex of U1 has exactly two
neighbors in U2. Now, it is easy to see that U2 induces a K3 and so G = H1.

Case 2.2. 〈U1〉 contains exactly one edge. Thus assume that bc ∈ E, and a is isolated in 〈U1〉 .
Then a is adjacent at least two adjacent vertices of U2, say x and y. Suppose that zb and zc /∈ E.
Then za ∈ E and each of b and c has a neighbor in {x, y}. Since each of b and c belongs to a
triangle, we have by or cx, say by ∈ E. Also one of x and y, say y, is adjacent to both b and c.
Since z belongs to a triangle, xz ∈ E (yz /∈ E since ∆ ≤ 4). But then {{a, c}, {y, z}, {b, x}}
is a domatic partition of G, a contradiction. Hence N(z) ∩ {b, c} 6= ∅. Without loss of generality,
let zb ∈ E. Clearly N(c) ∩ U2 6= ∅. If cz ∈ E, then {{a, b}, {y, z}, {c, x}} is a domatic partition
of G, a contradiction. Then cz /∈ E and thus c must be adjacent to one of x, y. Up to symmetry,
let cy ∈ E. If zx ∈ E, then {{a, b}, {y, z}, {c, x}} is a domatic partition of G, a contradiction.
Hence zx /∈ E and therefore zy ∈ E since z belongs to a triangle. Then by /∈ E since ∆ ≤
4, which means that za, bx, cx ∈ E since each of z, b belongs to a triangle. But then again,
{{a, b}, {x, z}, {c, y}} is domatic partition, a contradiction.

Case 2.3. 〈U1〉 contains exactly two edges. Without loss of generality, let ba, bc ∈ E. Seeing
the above situations, 〈U2〉 = P3 or K3.

Suppose first that 〈U2〉 is a path P3 centered at y. Assume that by ∈ E. Since ∆ ≤ 4, one
of bx and bz /∈ E, say bz /∈ E. Likewise, one of ya and yc /∈ E. Up to symmetry let yc /∈ E.
Since each of c and z belongs to a triangle, we have cx, bx ∈ E and az, ay ∈ E. In this case,
π = {{a, c}, {x, z}, {b, y}} is a domatic partition of G, a contradiction. Hence by /∈ E. Since each
Ui is a dominating set of G, we assume, up to isomorphism, that bx and ya ∈ E. If ax /∈ E, then
using the fact that each of a and x belongs to a triangle, we have az, xc ∈ E. But π is a domatic
partition of G, a contradiction. Hence ax ∈ E. If cz ∈ E, then π is a domatic partition of G.
Hence cz /∈ E. Therefore az ∈ E and cx ∈ E since each of z and c belong to a triangle. Again π
is a domatic partition of G, a contradiction.

Now suppose that 〈U2〉 is a K3. Since b is adjacent to at least one vertex of U2 and not to all U2

because of ∆ ≤ 4, we may assume, without loss of generality, that by ∈ E and bx /∈ E. Likewise,
vertex y must be non-adjacent to at least one vertex in U1. Up to isomorphism, let ya /∈ E. Now
since a lies on a triangle, we must have az ∈ E and either ax or bz ∈ E. Assume first that ax ∈ E.
If cz ∈ E, then d(z) = 4, whence, bz /∈ E and therefore cy ∈ E (so that b lies on a triangle).
But then {{a, c}, {x, y}, {b, z}} is a domatic partition of G, a contradiction. Then cz /∈ E and
so cy ∈ E since c belongs to a triangle. As above, we have a domatic partition of order 3, a
contradiction. Hence ax /∈ E, implying that cx ∈ E since x has at least one neighbor in U1.
Assume now that bz ∈ E. Then d(z) = 4, which means that cz /∈ E. Therefore cy ∈ E since c lies
on a triangle. But then {{a, c}, {x, z}, {b, y}} would be a domatic partition of G, a contradiction.
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Case 2.4. 〈U1〉 contains exactly three edges, that is 〈U1〉 = K3. Seeing the above situations,
〈U2〉 = K3. Since {U1, U2} is a 2-domatic partition of G and ∆ ≤ 4, each vertex of U1 has
either one or two neighbors in U2. Suppose that N(a) = {x, y}. Then za /∈ E since ∆ ≤ 4 and
therefore N(z)∩{b, c} 6= ∅. Without loss of generality, assume that zc ∈ E. Suppose that bz ∈ E.
Then {{a, c}, {x, z}, {b, y}} is a domatic partition of G, a contradiction. Hence bz /∈ E and so
N(b) ∩ {x, y} 6= ∅. By symmetry, assume that by ∈ E. Then {{a, c}, {y, z}, {b, x}} is a domatic
partition of G, a contradiction. Thus |N(t) ∩ U2| = 1 for every t ∈ {a, b, c}. Therefore G = H4.
As proved in [5], bd(H4) = 2.

Corollary 3.1. If G ∈ H�{H1, H2, H3, H4}, then bd(G) = 3.

Proof. Let G ∈ H�{H1, H2, H3, H4}. By Propositions 2.2 and 3.4, bd(G) ≥ 3. Since G has no
universal vertex, the equality follows from Corollary 2.1.

Proposition 3.5. Let G be a graph of order n ≥ 4. Then bd(G) = n − 3 if and only if G is
isomorphic to one of the following graphs.

i) H or H ∨Kn−4, where H ∈ {K4, K2 ∪K2, P3 ∪K1, K3 ∪K1},

ii) H or H ∨Kn−5, where H or H ∈ {C5, P5, K2,3, P3 ∪K2, F1, F2, F3}. (F1, F2, F3 are given
in Figure 2).

iii) H or H ∨Kn−6, where H = 2K3 or H ∈ H�{H1, H2, H3, H4}.

F1

u u u
u u���

F2

u u u
u u

@
@
@

F3

u u u
u u

@
@
@

Figure 2. Three graphs of order 5 with b-domatic number 2

Proof. If n = 4, then bd(G) = 1 and thus G has at least one isolated vertex. Therefore G ∈
{K4, K2 ∪K2, P3 ∪K1, K3 ∪K1}. Hence we can assume that n ≥ 5. Then bd(G) ≥ 2 and thus
G has no isolated vertices. Let P = {U1, U2, ..., Un−3} be an (n− 3)-domatic partition of G such
that |U1| ≥ |U2| ≥ ... ≥ |Un−3|. We distinguish between three cases.

Case 1. |U1| = 4 and |Ui| = 1 for each i 6= 1. It is clear that G = H ∨Kn−4, where H = 〈U1〉 .
If H has a universal vertex, say x, then {U1�{x}, U2, ..., Un−3, {x}} is a domatic partition of G of
cardinality n− 2, a contradiction. Hence H has no universal vertices. If H ∈ {P4, C4, 2K2}, then
according to Proposition 3.3, one can easily see that bd(G) = n−2, a contradiction. Consequently,
H ∈ {K4, K2 ∪K2, P3 ∪K1, K3 ∪K1}.

Case 2. |U1| = 3, |U2| = 2. Let H = 〈U1 ∪ U2〉 . Observe that if n = 5, then P = {U1, U2}
and thus G = H, while if n ≥ 6, then |Ui| = 1 for each i /∈ {1, 2} and thus G = H ∨ Kn−5.
Since U1 dominates U2, each vertex of U1 has a neighbor in U2, and likewise each vertex of U2

has a neighbor in U1. Hence δ(H) ≥ 1. Now, assume that ∆(H) = 4, and let x be a vertex of H
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with dH(x) = 4. Then P ′ = {U ′1, U ′2, U3, ..., Un−3} is an (n − 3)-domatic partition of G, where
U ′1 = (U1 ∪ U2)�{x} and U ′2 = {x}. But such a case has been already considered (see Case 1).
Hence ∆(H) ≤ 3. By examining all graphs H of order five with 1 ≤ δ(H) ≤ ∆(H) ≤ 3 listed in
[7] (see pages 216–217), we have H or H ∈ {C5, P5, K2,3, P3 ∪K2, F1, F2, F3}.

Case 3. |U1| = |U2| = |U3| = 2. Let H = 〈U1 ∪ U2 ∪ U3〉 . Clearly, if n = 6, then G = H,
while if n ≥ 7, then |Ui| = 1 for each i /∈ {1, 2, 3}, and thus G = H ∨Kn−6. Note that by Propo-
sition 2.5, bd(H) = 3, and thus every vertex of H is contained in a triangle (by Theorem 2.3).
Therefore δ(H) ≥ 2. By a similar argument to that used in Case 2, we shall have ∆(H) ≤ 4. Ob-
serve that if ∆(H) = 2, then either H = 2K3 or H = C6. However, the case H = C6 is excluded
since bd(C6) = 2. For the next, we may assume that H is a graph of order 6 satisfying δ(H) ≥ 2
and 3 ≤ ∆(H) ≤ 4 and every vertex is contained in a triangle. Thus H ∈ H. Using Propositions
2.5 and 3.4, one can see that H /∈ {H1, H2, H3, H4}. Consequently, H ∈ H�{H1, H2, H3, H4}.

Conversely, if G is isomorphic to one of the graphs H given in the statement, then bd(G) =
n−3. Assume now thatG is isomorphic to one of the join graphs described in items (i), (ii) or (iii).
Let A be the set of universal vertices of G. According to Proposition 2.5, bd(G) = bd(H) + |A| .
If G fulfills (i), then bd(H) = 1 and |A| = n − 4, implying that bd(G) = n − 3. If G fulfills (ii),
then bd(H) = 2 (by Theorem 2.1, Proposition 2.3 and Theorem 2.2) and |A| = n − 5, implying
that bd(G) = n− 3. Finally, if G fulfills (iii), then bd(H) = 3 (by Corollary 3.1) and |A| = n− 6,
implying that bd(G) = n− 3.

4. Graphs G of order n with bd(G) = bd(G) = n
2

Our aim in this section is to characterize the graphsG of order n such that bd(G) = bd(G) = n
2
.

To do this, we will use a result by Dunbar et al. [6] who characterized the graphs G of order n
such that d(G)d(G) = n2/4. Let us first define the family Gk of graphs given in [6] as follows. For
each integer k ≥ 2, let I = {1, 2, ...k}. If G ∈ Gk, then the vertices of the graph G can be labelled
u1, u2, ..., uk, v1, v2, ...vk so that each i ∈ I satisfies one of the following conditions:

(C1) : For all l ∈ I − {i} ,
either uiul, vivl ∈ E(G) and uivl, viul ∈ E(G) or
uiul, vivl ∈ E(G) and uivl, viul ∈ E(G);

(C2) : There exists a j ∈ I − {i} , such that

(a) For all l ∈ I − {i, j} , either
uiul, vivl ∈ E(G) and uivl, viul ∈ E(G) or
uiul, vivl ∈ E(G) and uivl, viul ∈ E(G);

(b) uiuj, uivj, viuj ∈ E(G) and uivi, ujvj, vivj ∈ E(G);
(c) in the graph G,

NG(ui)�Vij = NG(uj)�Vij and NG(vi)�Vij = NG(vj)�Vij,
where Vij = {ui, uj, vi, vj} .

Dunbar et al. [6] showed that for any graph G of order n ≥ 4, d(G)d(G) ≤ n2/4, and
characterized all graphs achieving this bound as follows.
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Theorem 4.1 ([6]). For every graph G with order n ≥ 4, d(G)d(G) = n2

4
if and only if G ∼= K4

or G ∈ Gk for some integer k ≥ 2.

The proof of Theorem 4.1 was based on some facts which are summarized in the following
result.

Proposition 4.1 ([6]). Let G be a graph of order n ≥ 4 satisfying d(G)d(G) = n2

4
. Let k = n

2
and

P = {U1, U2, ..., Uk} be a domatic partition of G of cardinality k such that
∑k

i=1 |E(〈Ui〉)| is a
maximum. Then,

(i) k − 1 ≤ δ(G) ≤ ∆(G) ≤ k and k − 1 ≤ δ(G) ≤ ∆(G) ≤ k.

(ii) If Ui is a dominating set of G, then i satisfies Condition (C1).

(iii) If Ui is not a dominating set of G, then i satisfies Condition (C2).

According to Proposition 4.1, every graphG ∈ Gk is either regular or semi-regular of minimum
degree either n/2− 1 or n/2.

Theorem 4.2. For every graph G with order n ≥ 4,

bd(G) = bd(G) =
n

2

if and only if G ∈ {2K2, C4, P4}.

Proof. It is easy to show that if G ∈ {2K2, C4, P4}, then bd(G) = bd(G) = n/2. To prove
the necessity, let G be a graph of order n ≥ 4 with k = bd(G) = bd(G) = n

2
and let P =

{U1, U2, ..., Uk} be a b-maximal partition ofG of cardinality k. Note thatG has no universal vertex
for otherwise G has an isolated vertex and so bd(G) = 1 < n/2, a contradiction. Likewise G has
no universal vertex. Hence γ(G) ≥ 2 and γ(G) ≥ 2. It follows that |Ui| = 2 for all i since k = n

2
.

Moreover, d(G) ≤ n
2

and d(G) ≤ n
2

by Proposition 2.1. Let I = {1, ..., k} and Ui = {ui, vi}
for each i ∈ I. Since bd(G) ≤ d(G) and bd(G) ≤ d(G), we obtain d(G) = d(G) = n

2
and

thus d(G)d(G) = n2

4
. Clearly G 6= K4 which means, by Theorem 4.1, that G ∈ Gk. Since

d(G) = bd(G), each d(G)-domatic partiton of G is a bd(G)-domatic partition of G. Therefore,
we can assume that P is chosen among all d(G)-domatic partitons of G so that

∑k
i=1 |E(〈Ui〉)| is

a maximum. Now, by Proposition 4.1-(i), we have n
2
− 1 ≤ δ(G) ≤ ∆(G) ≤ n

2
. It is a routine

matter to check that if n = 4, then G ∈ {2K2, C4, P4}. Hence we can assume that n ≥ 5, and thus
k = n

2
≥ 3. We distinguish between two cases.

Case 1. Ui is a dominating set of G for all i ∈ I.
By Proposition 4.1-(ii), Condition (C1) is satisfied for all i ∈ I. As Ui is a dominating set of

both G and G, each vertex of any Uj, with j 6= i, is adjacent to exactly one vertex of Ui in G.
Therefore,

∀x ∈ Ui, |pn [x, Ui]| = k − 1. (1)

Moreover, we claim that

for all i ∈ I, NG(ui)� {vi} induces a complete graph.
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Indeed, suppose to the contrary that for a some p ∈ I, there is a vertex up ∈ Up such that
NG(up)� {vp} contains two non-adjacent vertices. Without loss of generality, let uq and ur be
the two non-adjacent vertices in NG(up)� {vp} . By Condition (C1), vertices vq and vr are not ad-
jacent in NG(vp)� {uq} . Let U ′q = {uq, ur, vp} , U ′r = {vq, vr, up} and P ′ = (P� {Up, Uq, Ur})∪{
U ′q, U

′
r

}
. Observe that

U ′q and U ′r are independent sets in G. (2)

Hence by (1) and (2), P ′ satisfies the following: each vertex ofG is either isolated in its class or has
a private neighbor with respect to its class. Therefore, by Theorem 2.3, P ′ is a b-maximal domatic
partition of G of cardinality n

2
− 1, a contradiction, which completes the proof of the claim.

Thus for every i ∈ I , the vertices of NG(ui)� {vi} are pairwise adjacent. Then G is a graph
consisting of two disjoint complete graphs each of order n

2
to which s (0 ≤ s ≤ n

2
) independent

edges may be added such that each edge joins a vertex of one Kn
2

to a one vertex of the other Kn
2
.

But then by Theorem 2.2, bd(G) = 2 < bd(G), a contradiction.
Case 2. Ui is not a dominating set of G for some i ∈ I.
By Proposition 4.1-(iii), i satisfies Condition (C2) . Let j ∈ I − {i} such that items (a), (b)

and (c) of Condition (C2) are fulfilled. Observe that ui, vi, uj, vj induce a path P4 : vi-uj-ui-vj
(by item (b)). Also by item (c), each of the pair ui, uj and vi, vj have the same neighborhood in
V (G)� {ui, uj, vi, vj}. Since k ≥ 3, let l ∈ I − {i, j} and P ′ = P�{Ui, Uj, Ul}. Now, by item
(c), either (uiul, ujul ∈ E and vivl, vjvl ∈ E) or (uivl, ujvl ∈ E and viul, vjul ∈ E). In the former,
let P1 = P ′ ∪ {{ui, uj, vl} , {vi, vj, ul}} and in the later let P2 = P ′ ∪ {{ui, uj, ul} , {vi, vj, vl}}.
Whatever, the partition we shall have, P1 and P2 are domatic partitions of G. For the next, we
may assume, without loss of generality, that P1 occurs. To show that P1 is b-maximal, it suffices to
consider Theorem 2.3 on vertex vl and using the fact thatG is regular or semi-regular of (minimum)
degree either n/2− 1 or n/2. Indeed, vl is isolated in its class {ui, uj, vl} and for any x ∈ NG(vl),
vertex xis either isolated in its class (when dG(x) = n/2 − 1) or has a private neighbor with
respect to its class (when dG(x) = n/2). Therefore P1 is a b-maximal domatic partition of G of
order |P ′|+ 2 = (n

2
− 3) + 2 < n

2
, a contradiction.

5. Nordhaus-Gaddum results

In this section, we present a Nordhaus-Gaddum bound for bd(G) + bd(G) in terms of the order
of the graph G, and we characterize extremal graphs attaining this bound.

Theorem 5.1. For any graph G of order n, bd(G) + bd(G) ≤ n + 1, with equality if and only if
G ∼= Kn or Kn.

Proof. By Proposition 2.1, we have

bd(G) + bd(G) ≤ δ(G) + δ(G) + 2. (3)

Moreover, since δ(G) = n−∆(G)− 1, we obtain that

bd(G) + bd(G) ≤ n+ 1 + δ(G)−∆(G), (4)
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and the bound follows since δ(G)−∆(G) ≤ 0.
Now assume that bd(G) + bd(G) = n + 1. Then by (4), we have δ(G) = ∆(G), that is G is a

regular graph. Observe that if neitherG norG has universal vertices, then γ(G) ≥ 2 and γ(G) ≥ 2.
Therefore by Corollary 2.1, bd(G) ≤ n/2 and bd(G) ≤ n/2, implying that bd(G) + bd(G) ≤ n
which leads to a contradiction. Hence at least one of G and G has a universal vertex. Now, if G
has a universal vertex, then bd(G) = 1 and bd(G) = n, implying that G = Kn. While if G has a
universal vertex, then bd(G) = 1 and bd(G) = n implying that G = Kn.

The converse is obvious.

Theorem 5.2. Let G be a graph of order n. If neither G nor G is a complete graph, then

bd(G) + bd(G) ≤ n,

with equality if and only if G ∈ {Kn − e, 2K2, C4, P4}.

Proof. The bound follows from Theorem 5.1 since neither G nor G is a complete graph.
Assume that bd(G) + bd(G) = n. If G has a universal vertex, then bd(G) = 1 and bd(G) =

n− 1. By Proposition 3.2, G = Kn− e, where e is an arbitrary edge of Kn. By symmetry if G has
a universal vertex, then G = Kn − e, where e is an arbitrary edge of Kn. Hence we can assume
that neither G nor G has a universal vertex. It follows that γ(G) ≥ 2 and γ(G) ≥ 2, and so n ≥ 4.
Now since bd(G) + bd(G) = n, Corollary 2.1 implies that bd(G) = bd(G) = n

2
, and by Theorem

4.2, G ∈ {2K2, C4, P4}.
The converse is obvious.
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