Electronic Journal of Graph Theory and Applications

Some new results on the b-domatic number of graphs

Mohammed Benatallah ${ }^{\text {a }}$, Mustapha Chellali ${ }^{\text {b }}$, Noureddine Ikhlef Eschouf ${ }^{\text {c }}$
${ }^{a}$ RECITS Laboratory, Faculty of Sciences, UZA Djelfa, Algeria
${ }^{b}$ LAMDA-RO Laboratory, Department of Mathematics, University of Blida, B.P. 270, Blida, Algeria
${ }^{c}$ Faculty of Sciences, Department of Mathematics and Computer Science, University of Yahia Fares, Medea, Algeria
m_benatallah@yahoo.fr, m_chellali@yahoo.com, nour_echouf@yahoo.fr

Abstract

A domatic partition \mathcal{P} of a graph $G=(V, E)$ is a partition of V into classes that are pairwise disjoint dominating sets. Such a partition \mathcal{P} is called b-maximal if no larger domatic partition \mathcal{P}^{\prime} can be obtained by gathering subsets of some classes of \mathcal{P} to form a new class. The b-domatic number $b d(G)$ is the minimum cardinality of a b-maximal domatic partition of G. In this paper, we characterize the graphs G of order n with $b d(G) \in\{n-1, n-2, n-3\}$. Then we prove that for any graph G on n vertices, $b d(G)+b d(\bar{G}) \leq n+1$, where \bar{G} is the complement of G. Moreover, we provide a characterization of the graphs G of order n with $b d(G)+b d(\bar{G}) \in\{n+1, n\}$ as well as those graphs for which $b d(G)=b d(\bar{G})=n / 2$.

Keywords: domatic number, b-domatic number, Nordhaus-Gaddum inequalities Mathematics Subject Classification: 05C69, 05C70
DOI:10.5614/ejgta.2021.9.1.5

1. Introduction

Throughout this paper, G denotes a simple graph with vertex set $V=V(G)$ and edge set $E=E(G)$. The order $|V|$ of G is denoted by $n=n(G)$. For every vertex $v \in V$, the open neighborhood $N_{G}(v)=N(v)$ is the set $\{u \in V(G) \mid u v \in E(G)\}$ and the closed neighborhood of v is the set $N[v]=N(v) \cup\{v\}$. The private neighborhood of a vertex $v \in S$ with respect to S is the set $p n[v, S]=\{u \in V(G) \mid N[u] \cap S=\{v\}\}$. For any $S \subseteq V$, we denote the subgraph of G induced by S with $\langle S\rangle$. The degree of a vertex v, denoted by $d_{G}(v)$, is the number of vertices

Received: 28 March 2018, Revised: 15 June 2020, Accepted: 6 October 2020.
adjacent to v. We denote by $\Delta(G)=\Delta$ and $\delta(G)=\delta$ the maximum degree and the minimum degree in $V(G)$, respectively. A universal vertex is a vertex that is adjacent to all other vertices of the graph, that is a vertex whose degree is exactly $n-1$.

The complement \bar{G} of G is the graph with vertex set $V(G)$ and with exactly the edges that do not belong to G. The complete graph of order n is denoted by K_{n}, and K_{1} is called the trivial graph. The complete bipartite graph with partition sets X, Y such that $|X|=p$ and $|Y|=q$ is denoted by $K_{p, q}$. We write P_{n} for the path of order n and C_{n} for the cycle of length n. If G is any graph, the prism graph of G is the the graph obtained by taking two copies of G, say G_{1} and G_{2}, with the same vertex labelings and joining each vertex of G_{1} to the vertex of G_{2} having the same label by an edge; in other words, the prism graph of G is the Cartesain product $G \square K_{2}$. The join of two simple graphs G and H, written $G \vee H$ is the graph obtained by taking the disjoint union of G and H and adding all edges $\{x y \mid x \in V(G), y \in V(H)\}$.

A dominating set of a graph G is a set D of vertices such that every vertex in $V \backslash D$ is adjacent to some vertex in D. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G.

In 1977, Cockayne and Hedetniemi [3] introduced the concept of domatic partition as a partition of V into dominating sets. They defined the domatic number $d(G)$ as the largest number of sets in a domatic partition of G. For related works in this area see, for instance, [1, 2, 8, 9]. In 2013, Favaron [4] introduced the b-domatic number as follows. A domatic partition $\mathcal{P}=\left\{C_{1}, C_{2}, \ldots, C_{p}\right\}$ is b-maximal if there do not exist p subsets $C_{i}^{\prime} \subset C_{i}$ (among them $p-1$ are possibly empty) such that the partition $\mathcal{P}^{\prime}=\left\{C_{1} \backslash C_{1}^{\prime}, C_{2} \backslash C_{2}^{\prime}, \ldots, C_{p} \backslash C_{p}^{\prime}, C_{1}^{\prime} \cup C_{2}^{\prime} \cup \ldots \cup C_{p}^{\prime}\right\}$ is domatic. The b-domatic number of G, denoted $b d(G)$, is the minimum cardinality of a b-maximal domatic partition of G. A $b d(G)$-domatic partition of a graph G is a b-maximal domatic partition of G of cardinality $b d(G)$. On the basis of these definitions, $b d(G) \leq d(G)$ for every graph G.

In this paper, we first characterize the graphs G of order n with $b d(G) \in\{n-1, n-2, n-$ $3\}$. Then we prove that for any graph G on n vertices, $b d(G)+b d(\bar{G}) \leq n+1$. Moreover, we characterize all graphs G with $b d(G)=b d(\bar{G})=n / 2$ as well as those graphs for which $b d(G)+b d(\bar{G}) \in\{n+1, n\}$.

2. Known results

In this section, we list some known results that will be useful in our investigations.
Proposition 2.1 ([3]). For any graph G of order n, $d(G) \leq \min \{\delta(G)+1, n / \gamma(G)\}$.
Theorem 2.1 ([4]). Let G_{1}, \ldots, G_{k} be the components of a disconnected graph G without isolated vertices. Then $b d(G)=\min \left\{b d\left(G_{i}\right) \mid 1 \leq i \leq k\right\}$.

Since the vertex set of a graph G is the unique domatic partition if and only if $\delta(G)=0$, the following lower bound is immediate.

Proposition 2.2 ([4]). If G is a graph of minimum degree $\delta(G) \geq 1$, then $b d(G) \geq 2$.
Proposition 2.3 ([4]). $b d\left(K_{n}\right)=n, b d\left(C_{n}\right)=2$ for $n \geq 4$, and $b d\left(K_{p, q}\right)=2(p \geq q \geq 1)$.

In [5], the authors gave some sufficient conditions for graphs to attain equality in the bound of Proposition 2.2. Recall that a set $S \subseteq V$ is independent if no two vertices in S are adjacent.

Theorem 2.2 ([5]). If G has a vertex whose neighbors form an independent set, then $b d(G)=2$.
Proposition 2.4 ([5]). If G is a prism graph, then $b d(G)=2$.
Theorem 2.3 ([5]). Let \mathcal{P} be a domatic partition of a graph $G=(V, E)$. If there exists a vertex $v \in V$ such that each vertex of $N_{G}[v]$ is either isolated in its class or has a private neighbor with respect to its class, then \mathcal{P} is b-maximal.

It has been shown in [5] that if G has a universal vertex v, then $b d(G \backslash v)=b d(G)-1$. This result can be generalized as follows.

Proposition 2.5. Let A be the set of universal vertices in a graph G. Then $b d(G)=b d(G \backslash A)+$ $|A|$.

We note that if G is a graph without universal vertices, then $\gamma(G) \geq 2$. So, the next result follows immediately from Proposition 2.1 and the fact $b d(G) \leq d(G)$.

Corollary 2.1. If G is a graph of order n without universal vertices, then $b d(G) \leq \frac{n}{2}$.

3. Graphs with large b-domatic number

In this section, we give a characterization of graphs G of order $n \geq 3$ for which $b d(G) \in$ $\{n-1, n-2, n-3\}$. We recall that graphs G of order n with $b d(G)=n$ have been characterized in [4].

Proposition 3.1 ([4]). Let G be a graph of order n. Then $\operatorname{bd}(G)=n$ if and only if G is isomorphic to K_{n}.

Proposition 3.2. Let G be a graph of order n. Then $b d(G)=n-1$ if and only if G is isomorphic to graph $K_{n}-e$, where e is an arbitrary edge of the complete graph K_{n}.

Proof. Let $\mathcal{P}=\left\{U_{1}, U_{2}, \ldots, U_{n-1}\right\}$ be an $(n-1)$-domatic partition of G. Without loss of generality, we may assume that $U_{1}=\{a, b\}$ and $U_{i}=\left\{u_{i}\right\}$ for each $i \in\{2, \ldots, n-1\}$. Clearly $d_{G}\left(u_{i}\right)=n-1$, since each u_{i} dominates $V(G)$. Now, if $a b \in E$, then $G=K_{n}$ and by Proposition 3.1, $b d(G)=n$, a contradiction. Hence $a b \notin E$, and thus $G=K_{n}-e$.

The converse is obvious.
Proposition 3.3. Let G be a graph of order $n \geq 3$. Then $\operatorname{bd}(G)=n-2$ if and only if $G \in$ $\left\{\bar{K}_{3}, K_{2} \cup K_{1}, P_{4}, C_{4}, 2 K_{2}\right\}$ or G is isomorphic to $G_{1} \vee K_{n-3}$ or $G_{2} \vee K_{n-4}$, where $G_{1} \in\left\{\bar{K}_{3}, K_{2} \cup\right.$ $\left.K_{1}\right\}$ and $G_{2} \in\left\{P_{4}, C_{4}, 2 K_{2}\right\}$.

Proof. If $n=3$, then $b d(G)=1$ and thus G has an isolated vertex. Therefore $G \in\left\{\bar{K}_{3}, K_{2} \cup K_{1}\right\}$. Assume now that $n \geq 4$ and let $\mathcal{P}=\left\{U_{1}, U_{2}, \ldots, U_{n-2}\right\}$ be an $(n-2)$-domatic partition of G such that $\left|U_{1}\right| \geq\left|U_{2}\right| \geq \ldots \geq\left|U_{n-2}\right|$. Clearly, either $\left|U_{1}\right|=3$ and $\left|U_{2}\right|=1$ or $\left|U_{1}\right|=\left|U_{2}\right|=2$. Moreover, if $n \geq 5$, then $\left|U_{i}\right|=1$ for each $i \notin\{1,2\}$.

Suppose first that $\left|U_{1}\right|=3$ and $\left|U_{i}\right|=1$ for each $i \neq 1$. Let $U_{i}=\left\{u_{i}\right\}$ for each $i \in\{2, \ldots, n-$ $2\}$. Since each u_{i} dominates $V(G), G=G_{1} \vee K_{n-3}$, where $G_{1}=\left\langle U_{1}\right\rangle$. By Propositions 3.1 and 3.2, $G_{1} \notin\left\{K_{3}, P_{3}\right\}$. Hence $G_{1}=K_{2} \cup K_{1}$ or \bar{K}_{3}.

Now suppose that $\left|U_{1}\right|=\left|U_{2}\right|=2$, and let $G_{2}=\left\langle U_{1} \cup U_{2}\right\rangle$. Assume first that $n=4$. Since U_{1} dominates U_{2}, each vertex of U_{1} has a neighbor in U_{2}, and likewise each vertex of U_{2} has a neighbor in U_{1}. Now using the fact that $G_{2} \notin\left\{K_{4}, K_{4}-e\right\}$ (by Propositions 3.1 and 3.2) we deduce that $G_{2} \in\left\{P_{4}, C_{4}, 2 K_{2}\right\}$. Assume now that $n \geq 5$ and let $U_{i}=\left\{u_{i}\right\}$ for each $i \in\{3, \ldots, n-2\}$. As previously, every u_{i} dominates $V(G)$, and thus $G=G_{2} \vee K_{n-4}$.

For the converse, if $G \in\left\{\bar{K}_{3}, K_{2} \cup K_{1}, P_{4}, C_{4}, 2 K_{2}\right\}$, then one can easily check that $b d(G)=$ $n-2$. Now let $G=G_{1} \vee K_{n-3}$ or $G=G_{2} \vee K_{n-4}$. If A is the set of universal vertices of G, then according to Proposition 2.5, bd $(G)=b d(H)+|A|$, where $H \in\left\{G_{1}, G_{2}\right\}$. If $H=G_{1}$, then $b d\left(G_{1}\right)=1$ and $|A|=n-3$, implying that $b d(G)=n-2$. If $H=G_{2}$, then $b d\left(G_{2}\right)=2$ and $|A|=n-4$, implying that $b d(G)=n-2$.

Let \mathcal{H} be the family of graphs G of order 6 with $\delta(G) \geq 2$ and $3 \leq \Delta(G) \leq 4$, where each vertex is contained in a triangle. We note that \mathcal{H} contains exactly 14 graphs that can be found in [7] (see pages $218-224$).

In the sequel, we shall show that all graphs of \mathcal{H}, except those depicted in Figure 1, have a b-domatic number equal to 3 .

Figure 1. Four graphs of order 6 with b-domatic number 2
Recall that it was shown in [5] that $b d\left(H_{1}\right)=b d\left(H_{4}\right)=2$.
Proposition 3.4. The only graphs of \mathcal{H} with b-domatic number 2 are H_{1}, H_{2}, H_{3} and H_{4}.
Proof. Let $G \in \mathcal{H}$, and assume that $b d(G)=2$. Let $\mathcal{P}=\left\{U_{1}, U_{2}\right\}$ be a 2-domatic partition of G such that $\left|U_{1}\right| \leq\left|U_{2}\right|$. As G has order 6 and maximum degree at most $4,3 \leq\left|U_{2}\right| \leq 4$ and so $2 \leq\left|U_{1}\right| \leq 3$. Consider the following two cases.

Case 1. $\left|U_{1}\right|=2$ and $\left|U_{2}\right|=4$. Let $U_{1}=\{a, b\}$ and $U_{2}=\{x, y, z, t\}$. We distinguish between two subcases, depending on whether the edge $a b$ exists or not.

Case 1.1. $a b \notin E$. Since every vertex of G belongs to a triangle, every vertex in U_{2} is not isolated in $\left\langle U_{2}\right\rangle$. If $\left\langle U_{2}\right\rangle$ does not have two independent edges, then clearly $\left\langle U_{2}\right\rangle$ is a star $K_{1,3}$, centered, without loss of generality, at x. Note that $\left\langle U_{2}\right\rangle$ has no triangle. Using the fact that every vertex of G is contained in a triangle and y, z, t form an independent set in $\left\langle U_{2}\right\rangle$, we deduce that every triangle containing one of y, z and t also contains x. This implies that x is adjacent to both a and b, implying that $d_{G}(x)=5$, a contradiction. Hence, we can assume that $\left\langle U_{2}\right\rangle$ has two independent edges.

Now, let T_{a} and T_{b} be two triangles containing a and b, respectively. Since $a b \notin E(G), T_{a}$ and T_{b} has at most two common vertices. Suppose first that there is no common vertex between T_{a} and T_{b}. Without loss of generality, let $V\left(T_{a}\right)=\{a, x, y\}$ and $V\left(T_{b}\right)=\{b, z, t\}$. In this case, $\{\{a, b\},\{x, z\},\{y, t\}\}$ is a domatic partition of G, a contradiction. Suppose now that y is the unique common vertex between T_{a} and T_{b}. Without loss of generality, let $V\left(T_{a}\right)=\{a, x, y\}$ and $V\left(T_{b}\right)=\{b, y, z\}$. Since t is dominated by U_{1}, let $t b \in E$. If $t z \in E$, then $\{a, x, y\}$ and $\{b, z, t\}$ induces two independent triangles and as above we can get a domatic partition of order 3. So $t z \notin E$. Since t belongs to a triangle, we must have $y t \in E$ but then $d_{G}(y)=5$, a contradiction. Finally, we may assume that all triangles containing a and b have two common neighbors. Hence let $V\left(T_{a}\right)=\{a, x, y\}$ and $V\left(T_{b}\right)=\{b, x, y\}$. Note that since $\Delta \leq 4$, each of x and y has at most one neighbor in $\{z, t\}$. Also, since U_{1} dominates U_{2}, we may assume that $z b \in E$. Suppose that $z t \in E$. Then $b t \notin E$, for otherwise there are two independent triangles. Therefore at $\in E$ and so $a z \notin E$ (else there are two independent triangles). Since each of z and t belongs to a triangle, we have $x z, t y \in E$. But then $\{a, y, t\}$ and $\{b, x, z\}$ are two triangles with no common vertex, a contradiction. Hence $z t \notin E$. Since $\left\langle U_{2}\right\rangle$ has two independent edges, we can assume that $t y \in E$. Then at $\notin E$ for otherwise $\{a, y, t\}$ and $\{b, x, y\}$ are two triangles with one common vertex, a contradiction. Thus $b t \in E$ but then $\{a, x, y\}$ and $\{b, y, t\}$ are two triangles with one common neighbor, a contradiction.

Case 1.2. $a b \in E(G)$. Clearly since $\Delta(G) \leq 4$, neither a nor b is adjacent to all U_{2}. Moreover, since $\left\{U_{1}, U_{2}\right\}$ is a 2-domatic partition of G, we assume without loss of generality, that at $\notin E$ and so $b t \in E$. Likewise $b x \notin E$ and so $a x \in E$. Note that x and t are not isolated in U_{2} since $\delta(G) \geq 2$. However, at most one of y, z is isolated in U_{2}, for otherwise x and t do not belong to any triangle.

Firstly, suppose, without loss of generality, that z is isolated in U_{2}. Then z must be adjacent to both a and b. As each of x and t lies on a triangle, $x y$ and $t y \in E$. Clearly, y has a neighbor in U_{1}. Assume that y is adjacent to both a, b. If $x t \notin E$, then $G=H_{1}$, otherwise $G=H_{2}$. Note that $b d\left(H_{1}\right)=2$ as proved in [5]. Likewise $b d\left(H_{2}\right)=2$ by Theorem 2.3 since z is isolated in U_{2} and each of a, b has a private neighbor with respect to U_{1}. Assume now that y is adjacent either to a or to b, but not to both of them. In this case, $t x \in E$ since t belongs to a triangle, whence, $G=H_{3}$. The above argument applied to z shows that $b d\left(H_{3}\right)=2$.

Suppose now that U_{2} contains no isolated vertex. Since x belongs to a triangle, x must be adjacent to at least one of y, z, say y. By the same argument, t has a neighbor in $\{y, z\}$. Observe that each of a and b has a neighbor in $\{y, z\}$ because each of them belongs to a triangle. Clearly, U_{1} dominates y and z. If $z t$ or $z x \in E$, then $\{\{a, b\},\{x, t\},\{y, z\}\}$ is a domatic partition of G, a contradiction. Hence $z t, z x \notin E$ implying that $z y \in E$ since z is not isolated in U_{2}. Therefore $t y \in E$ because t belongs to a triangle. As y has a neighbor in U_{1} and $\Delta \leq 4, y$ is adjacent to
exactly one of a, b. Up to symmetry, let $y b \in E$. Then $a y \notin E$, and thus $a z$ and $z b \in E$ since a belongs to a triangle. Since x lies on a triangle, $x t \in E$. In this case, $\{\{a, b\},\{x, y\},\{z, t\}\}$ is a domatic partition of G, a contradiction.

Case 2. $\left|U_{1}\right|=\left|U_{2}\right|=3$. Let $U_{1}=\{a, b, c\}$ and $U_{2}=\{x, y, z\}$. Here again, we distinguish between four subcases.

Case 2.1. U_{1} is an independent set. Clearly every vertex of U_{1} is adjacent to at least two vertices of U_{2}. Suppose that a vertex of U_{1}, say a is adjacent to all U_{2}. Since every triangle containing a vertex of U_{1} must contain two vertices of U_{2}, there is a vertex in U_{2} adjacent to every vertex of G, which leads to a contradiction since $\Delta \leq 4$. Therefore, every vertex of U_{1} has exactly two neighbors in U_{2}. Now, it is easy to see that U_{2} induces a K_{3} and so $G=H_{1}$.

Case 2.2. $\left\langle U_{1}\right\rangle$ contains exactly one edge. Thus assume that $b c \in E$, and a is isolated in $\left\langle U_{1}\right\rangle$. Then a is adjacent at least two adjacent vertices of U_{2}, say x and y. Suppose that $z b$ and $z c \notin E$. Then $z a \in E$ and each of b and c has a neighbor in $\{x, y\}$. Since each of b and c belongs to a triangle, we have $b y$ or $c x$, say $b y \in E$. Also one of x and y, say y, is adjacent to both b and c. Since z belongs to a triangle, $x z \in E(y z \notin E$ since $\Delta \leq 4)$. But then $\{\{a, c\},\{y, z\},\{b, x\}\}$ is a domatic partition of G, a contradiction. Hence $N(z) \cap\{b, c\} \neq \emptyset$. Without loss of generality, let $z b \in E$. Clearly $N(c) \cap U_{2} \neq \emptyset$. If $c z \in E$, then $\{\{a, b\},\{y, z\},\{c, x\}\}$ is a domatic partition of G, a contradiction. Then $c z \notin E$ and thus c must be adjacent to one of x, y. Up to symmetry, let $c y \in E$. If $z x \in E$, then $\{\{a, b\},\{y, z\},\{c, x\}\}$ is a domatic partition of G, a contradiction. Hence $z x \notin E$ and therefore $z y \in E$ since z belongs to a triangle. Then by $\notin E$ since $\Delta \leq$ 4, which means that $z a, b x, c x \in E$ since each of z, b belongs to a triangle. But then again, $\{\{a, b\},\{x, z\},\{c, y\}\}$ is domatic partition, a contradiction.

Case 2.3. $\left\langle U_{1}\right\rangle$ contains exactly two edges. Without loss of generality, let $b a, b c \in E$. Seeing the above situations, $\left\langle U_{2}\right\rangle=P_{3}$ or K_{3}.

Suppose first that $\left\langle U_{2}\right\rangle$ is a path P_{3} centered at y. Assume that by $\in E$. Since $\Delta \leq 4$, one of $b x$ and $b z \notin E$, say $b z \notin E$. Likewise, one of $y a$ and $y c \notin E$. Up to symmetry let $y c \notin E$. Since each of c and z belongs to a triangle, we have $c x, b x \in E$ and $a z, a y \in E$. In this case, $\pi=\{\{a, c\},\{x, z\},\{b, y\}\}$ is a domatic partition of G, a contradiction. Hence $b y \notin E$. Since each U_{i} is a dominating set of G, we assume, up to isomorphism, that $b x$ and $y a \in E$. If $a x \notin E$, then using the fact that each of a and x belongs to a triangle, we have $a z, x c \in E$. But π is a domatic partition of G, a contradiction. Hence $a x \in E$. If $c z \in E$, then π is a domatic partition of G. Hence $c z \notin E$. Therefore $a z \in E$ and $c x \in E$ since each of z and c belong to a triangle. Again π is a domatic partition of G, a contradiction.

Now suppose that $\left\langle U_{2}\right\rangle$ is a K_{3}. Since b is adjacent to at least one vertex of U_{2} and not to all U_{2} because of $\Delta \leq 4$, we may assume, without loss of generality, that $b y \in E$ and $b x \notin E$. Likewise, vertex y must be non-adjacent to at least one vertex in U_{1}. Up to isomorphism, let ya $\notin E$. Now since a lies on a triangle, we must have $a z \in E$ and either $a x$ or $b z \in E$. Assume first that $a x \in E$. If $c z \in E$, then $d(z)=4$, whence, $b z \notin E$ and therefore $c y \in E$ (so that b lies on a triangle). But then $\{\{a, c\},\{x, y\},\{b, z\}\}$ is a domatic partition of G, a contradiction. Then $c z \notin E$ and so $c y \in E$ since c belongs to a triangle. As above, we have a domatic partition of order 3 , a contradiction. Hence $a x \notin E$, implying that $c x \in E$ since x has at least one neighbor in U_{1}. Assume now that $b z \in E$. Then $d(z)=4$, which means that $c z \notin E$. Therefore $c y \in E$ since c lies on a triangle. But then $\{\{a, c\},\{x, z\},\{b, y\}\}$ would be a domatic partition of G, a contradiction.

Case 2.4. $\left\langle U_{1}\right\rangle$ contains exactly three edges, that is $\left\langle U_{1}\right\rangle=K_{3}$. Seeing the above situations, $\left\langle U_{2}\right\rangle=K_{3}$. Since $\left\{U_{1}, U_{2}\right\}$ is a 2-domatic partition of G and $\Delta \leq 4$, each vertex of U_{1} has either one or two neighbors in U_{2}. Suppose that $N(a)=\{x, y\}$. Then $z a \notin E$ since $\Delta \leq 4$ and therefore $N(z) \cap\{b, c\} \neq \emptyset$. Without loss of generality, assume that $z c \in E$. Suppose that $b z \in E$. Then $\{\{a, c\},\{x, z\},\{b, y\}\}$ is a domatic partition of G, a contradiction. Hence $b z \notin E$ and so $N(b) \cap\{x, y\} \neq \emptyset$. By symmetry, assume that $b y \in E$. Then $\{\{a, c\},\{y, z\},\{b, x\}\}$ is a domatic partition of G, a contradiction. Thus $\left|N(t) \cap U_{2}\right|=1$ for every $t \in\{a, b, c\}$. Therefore $G=H_{4}$. As proved in [5], $b d\left(H_{4}\right)=2$.

Corollary 3.1. If $G \in \mathcal{H} \backslash\left\{H_{1}, H_{2}, H_{3}, H_{4}\right\}$, then $b d(G)=3$.
Proof. Let $G \in \mathcal{H} \backslash\left\{H_{1}, H_{2}, H_{3}, H_{4}\right\}$. By Propositions 2.2 and $3.4, b d(G) \geq 3$. Since G has no universal vertex, the equality follows from Corollary 2.1.

Proposition 3.5. Let G be a graph of order $n \geq 4$. Then $b d(G)=n-3$ if and only if G is isomorphic to one of the following graphs.
i) H or $H \vee K_{n-4}$, where $H \in\left\{\bar{K}_{4}, K_{2} \cup \bar{K}_{2}, P_{3} \cup K_{1}, K_{3} \cup K_{1}\right\}$,
ii) H or $H \vee K_{n-5}$, where H or $\bar{H} \in\left\{C_{5}, P_{5}, K_{2,3}, P_{3} \cup K_{2}, F_{1}, F_{2}, F_{3}\right\} .\left(F_{1}, F_{2}, F_{3}\right.$ are given in Figure 2).
iii) H or $H \vee K_{n-6}$, where $H=2 K_{3}$ or $H \in \mathcal{H} \backslash\left\{H_{1}, H_{2}, H_{3}, H_{4}\right\}$.

Figure 2. Three graphs of order 5 with b-domatic number 2

Proof. If $n=4$, then $b d(G)=1$ and thus G has at least one isolated vertex. Therefore $G \in$ $\left\{\bar{K}_{4}, K_{2} \cup \bar{K}_{2}, P_{3} \cup K_{1}, K_{3} \cup K_{1}\right\}$. Hence we can assume that $n \geq 5$. Then $b d(G) \geq 2$ and thus G has no isolated vertices. Let $\mathcal{P}=\left\{U_{1}, U_{2}, \ldots, U_{n-3}\right\}$ be an $(n-3)$-domatic partition of G such that $\left|U_{1}\right| \geq\left|U_{2}\right| \geq \ldots \geq\left|U_{n-3}\right|$. We distinguish between three cases.

Case 1. $\left|U_{1}\right|=4$ and $\left|U_{i}\right|=1$ for each $i \neq 1$. It is clear that $G=H \vee K_{n-4}$, where $H=\left\langle U_{1}\right\rangle$. If H has a universal vertex, say x, then $\left\{U_{1} \backslash\{x\}, U_{2}, \ldots, U_{n-3},\{x\}\right\}$ is a domatic partition of G of cardinality $n-2$, a contradiction. Hence H has no universal vertices. If $H \in\left\{P_{4}, C_{4}, 2 K_{2}\right\}$, then according to Proposition 3.3, one can easily see that $b d(G)=n-2$, a contradiction. Consequently, $H \in\left\{\bar{K}_{4}, K_{2} \cup \bar{K}_{2}, P_{3} \cup K_{1}, K_{3} \cup K_{1}\right\}$.

Case 2. $\left|U_{1}\right|=3,\left|U_{2}\right|=2$. Let $H=\left\langle U_{1} \cup U_{2}\right\rangle$. Observe that if $n=5$, then $\mathcal{P}=\left\{U_{1}, U_{2}\right\}$ and thus $G=H$, while if $n \geq 6$, then $\left|U_{i}\right|=1$ for each $i \notin\{1,2\}$ and thus $G=H \vee K_{n-5}$. Since U_{1} dominates U_{2}, each vertex of U_{1} has a neighbor in U_{2}, and likewise each vertex of U_{2} has a neighbor in U_{1}. Hence $\delta(H) \geq 1$. Now, assume that $\Delta(H)=4$, and let x be a vertex of H
with $d_{H}(x)=4$. Then $\mathcal{P}^{\prime}=\left\{U_{1}^{\prime}, U_{2}^{\prime}, U_{3}, \ldots, U_{n-3}\right\}$ is an $(n-3)$-domatic partition of G, where $U_{1}^{\prime}=\left(U_{1} \cup U_{2}\right) \backslash\{x\}$ and $U_{2}^{\prime}=\{x\}$. But such a case has been already considered (see Case 1). Hence $\Delta(H) \leq 3$. By examining all graphs H of order five with $1 \leq \delta(H) \leq \Delta(H) \leq 3$ listed in [7] (see pages 216-217), we have H or $\bar{H} \in\left\{C_{5}, P_{5}, K_{2,3}, P_{3} \cup K_{2}, F_{1}, F_{2}, F_{3}\right\}$.

Case 3. $\left|U_{1}\right|=\left|U_{2}\right|=\left|U_{3}\right|=2$. Let $H=\left\langle U_{1} \cup U_{2} \cup U_{3}\right\rangle$. Clearly, if $n=6$, then $G=H$, while if $n \geq 7$, then $\left|U_{i}\right|=1$ for each $i \notin\{1,2,3\}$, and thus $G=H \vee K_{n-6}$. Note that by Proposition 2.5, bd $(H)=3$, and thus every vertex of H is contained in a triangle (by Theorem 2.3). Therefore $\delta(H) \geq 2$. By a similar argument to that used in Case 2, we shall have $\Delta(H) \leq 4$. Observe that if $\Delta(H)=2$, then either $H=2 K_{3}$ or $H=C_{6}$. However, the case $H=C_{6}$ is excluded since $b d\left(C_{6}\right)=2$. For the next, we may assume that H is a graph of order 6 satisfying $\delta(H) \geq 2$ and $3 \leq \Delta(H) \leq 4$ and every vertex is contained in a triangle. Thus $H \in \mathcal{H}$. Using Propositions 2.5 and 3.4, one can see that $H \notin\left\{H_{1}, H_{2}, H_{3}, H_{4}\right\}$. Consequently, $H \in \mathcal{H} \backslash\left\{H_{1}, H_{2}, H_{3}, H_{4}\right\}$.

Conversely, if G is isomorphic to one of the graphs H given in the statement, then $b d(G)=$ $n-3$. Assume now that G is isomorphic to one of the join graphs described in items (i), (ii) or (iii). Let A be the set of universal vertices of G. According to Proposition 2.5, $b d(G)=b d(H)+|A|$. If G fulfills (i), then $b d(H)=1$ and $|A|=n-4$, implying that $b d(G)=n-3$. If G fulfills (ii), then $b d(H)=2$ (by Theorem 2.1, Proposition 2.3 and Theorem 2.2) and $|A|=n-5$, implying that $b d(G)=n-3$. Finally, if G fulfills (iii), then $b d(H)=3$ (by Corollary 3.1) and $|A|=n-6$, implying that $b d(G)=n-3$.

4. Graphs G of order n with $b d(G)=b d(\bar{G})=\frac{n}{2}$

Our aim in this section is to characterize the graphs G of order n such that $b d(G)=b d(\bar{G})=\frac{n}{2}$. To do this, we will use a result by Dunbar et al. [6] who characterized the graphs G of order n such that $d(G) d(\bar{G})=n^{2} / 4$. Let us first define the family \mathcal{G}_{k} of graphs given in [6] as follows. For each integer $k \geq 2$, let $I=\{1,2, \ldots k\}$. If $G \in \mathcal{G}_{k}$, then the vertices of the graph G can be labelled $u_{1}, u_{2}, \ldots, u_{k}, v_{1}, v_{2}, \ldots v_{k}$ so that each $i \in I$ satisfies one of the following conditions:
$\left(C_{1}\right):$ For all $l \in I-\{i\}$,
either $u_{i} u_{l}, v_{i} v_{l} \in E(G)$ and $u_{i} v_{l}, v_{i} u_{l} \in E(\bar{G})$ or
$u_{i} u_{l}, v_{i} v_{l} \in E(\bar{G})$ and $u_{i} v_{l}, v_{i} u_{l} \in E(G) ;$
$\left(C_{2}\right)$: There exists a $j \in I-\{i\}$, such that
(a) For all $l \in I-\{i, j\}$, either

$$
\begin{aligned}
& u_{i} u_{l}, v_{i} v_{l} \in E(G) \text { and } u_{i} v_{l}, v_{i} u_{l} \in E(\bar{G}) \text { or } \\
& u_{i} u_{l}, v_{i} v_{l} \in E(\bar{G}) \text { and } u_{i} v_{l}, v_{i} u_{l} \in E(G) ;
\end{aligned}
$$

(b) $u_{i} u_{j}, u_{i} v_{j}, v_{i} u_{j} \in E(G)$ and $u_{i} v_{i}, u_{j} v_{j}, v_{i} v_{j} \in E(\bar{G})$;
(c) in the graph G,
$N_{G}\left(u_{i}\right) \backslash V_{i j}=N_{G}\left(u_{j}\right) \backslash V_{i j}$ and $N_{G}\left(v_{i}\right) \backslash V_{i j}=N_{G}\left(v_{j}\right) \backslash V_{i j}$,
where $V_{i j}=\left\{u_{i}, u_{j}, v_{i}, v_{j}\right\}$.
Dunbar et al. [6] showed that for any graph G of order $n \geq 4, d(G) d(\bar{G}) \leq n^{2} / 4$, and characterized all graphs achieving this bound as follows.

Theorem 4.1 ([6]). For every graph G with order $n \geq 4, d(G) d(\bar{G})=\frac{n^{2}}{4}$ if and only if $G \cong K_{4}$ or $G \in \mathcal{G}_{k}$ for some integer $k \geq 2$.

The proof of Theorem 4.1 was based on some facts which are summarized in the following result.
Proposition 4.1 ([6]). Let G be a graph of order $n \geq 4$ satisfying $d(G) d(\bar{G})=\frac{n^{2}}{4}$. Let $k=\frac{n}{2}$ and $\mathcal{P}=\left\{U_{1}, U_{2}, \ldots, U_{k}\right\}$ be a domatic partition of G of cardinality k such that $\sum_{i=1}^{k}\left|E\left(\left\langle U_{i}\right\rangle\right)\right|$ is a maximum. Then,
(i) $k-1 \leq \delta(G) \leq \Delta(G) \leq k$ and $k-1 \leq \delta(\bar{G}) \leq \Delta(\bar{G}) \leq k$.
(ii) If U_{i} is a dominating set of \bar{G}, then i satisfies Condition $\left(C_{1}\right)$.
(iii) If U_{i} is not a dominating set of \bar{G}, then i satisfies Condition $\left(C_{2}\right)$.

According to Proposition 4.1, every graph $G \in \mathcal{G}_{k}$ is either regular or semi-regular of minimum degree either $n / 2-1$ or $n / 2$.

Theorem 4.2. For every graph G with order $n \geq 4$,

$$
b d(G)=b d(\bar{G})=\frac{n}{2}
$$

if and only if $G \in\left\{2 K_{2}, C_{4}, P_{4}\right\}$.
Proof. It is easy to show that if $G \in\left\{2 K_{2}, C_{4}, P_{4}\right\}$, then $b d(G)=b d(\bar{G})=n / 2$. To prove the necessity, let G be a graph of order $n \geq 4$ with $k=b d(G)=b d(\bar{G})=\frac{n}{2}$ and let $\mathcal{P}=$ $\left\{U_{1}, U_{2}, \ldots, U_{k}\right\}$ be a b-maximal partition of G of cardinality k. Note that G has no universal vertex for otherwise \bar{G} has an isolated vertex and so $b d(\bar{G})=1<n / 2$, a contradiction. Likewise \bar{G} has no universal vertex. Hence $\gamma(G) \geq 2$ and $\gamma(\bar{G}) \geq 2$. It follows that $\left|U_{i}\right|=2$ for all i since $k=\frac{n}{2}$. Moreover, $d(G) \leq \frac{n}{2}$ and $d(\bar{G}) \leq \frac{n}{2}$ by Proposition 2.1. Let $I=\{1, \ldots, k\}$ and $U_{i}=\left\{u_{i}, v_{i}\right\}$ for each $i \in I$. Since $b d(G) \leq d(G)$ and $b d(\bar{G}) \leq d(\bar{G})$, we obtain $d(G)=d(\bar{G})=\frac{n}{2}$ and thus $d(G) d(\bar{G})=\frac{n^{2}}{4}$. Clearly $G \neq K_{4}$ which means, by Theorem 4.1, that $G \in \mathcal{G}_{k}$. Since $d(G)=b d(G)$, each $d(G)$-domatic partiton of G is a $b d(G)$-domatic partition of G. Therefore, we can assume that \mathcal{P} is chosen among all $d(G)$-domatic partitons of G so that $\sum_{i=1}^{k}\left|E\left(\left\langle U_{i}\right\rangle\right)\right|$ is a maximum. Now, by Proposition 4.1-(i), we have $\frac{n}{2}-1 \leq \delta(G) \leq \Delta(G) \leq \frac{n}{2}$. It is a routine matter to check that if $n=4$, then $G \in\left\{2 K_{2}, C_{4}, P_{4}\right\}$. Hence we can assume that $n \geq 5$, and thus $k=\frac{n}{2} \geq 3$. We distinguish between two cases.

Case 1. U_{i} is a dominating set of \bar{G} for all $i \in I$.
By Proposition 4.1-(ii), Condition $\left(C_{1}\right)$ is satisfied for all $i \in I$. As U_{i} is a dominating set of both G and \bar{G}, each vertex of any U_{j}, with $j \neq i$, is adjacent to exactly one vertex of U_{i} in G. Therefore,

$$
\begin{equation*}
\forall x \in U_{i},\left|p n\left[x, U_{i}\right]\right|=k-1 \tag{1}
\end{equation*}
$$

Moreover, we claim that

$$
\text { for all } i \in I, N_{G}\left(u_{i}\right) \backslash\left\{v_{i}\right\} \text { induces a complete graph. }
$$

Indeed, suppose to the contrary that for a some $p \in I$, there is a vertex $u_{p} \in U_{p}$ such that $N_{G}\left(u_{p}\right) \backslash\left\{v_{p}\right\}$ contains two non-adjacent vertices. Without loss of generality, let u_{q} and u_{r} be the two non-adjacent vertices in $N_{G}\left(u_{p}\right) \backslash\left\{v_{p}\right\}$. By Condition $\left(C_{1}\right)$, vertices v_{q} and v_{r} are not adjacent in $N_{G}\left(v_{p}\right) \backslash\left\{u_{q}\right\}$. Let $U_{q}^{\prime}=\left\{u_{q}, u_{r}, v_{p}\right\}, U_{r}^{\prime}=\left\{v_{q}, v_{r}, u_{p}\right\}$ and $\mathcal{P}^{\prime}=\left(\mathcal{P} \backslash\left\{U_{p}, U_{q}, U_{r}\right\}\right) \cup$ $\left\{U_{q}^{\prime}, U_{r}^{\prime}\right\}$. Observe that

$$
\begin{equation*}
U_{q}^{\prime} \text { and } U_{r}^{\prime} \text { are independent sets in } G . \tag{2}
\end{equation*}
$$

Hence by (1) and (2), \mathcal{P}^{\prime} satisfies the following: each vertex of G is either isolated in its class or has a private neighbor with respect to its class. Therefore, by Theorem 2.3, \mathcal{P}^{\prime} is a b-maximal domatic partition of G of cardinality $\frac{n}{2}-1$, a contradiction, which completes the proof of the claim.

Thus for every $i \in I$, the vertices of $N_{G}\left(u_{i}\right) \backslash\left\{v_{i}\right\}$ are pairwise adjacent. Then G is a graph consisting of two disjoint complete graphs each of order $\frac{n}{2}$ to which $s\left(0 \leq s \leq \frac{n}{2}\right)$ independent edges may be added such that each edge joins a vertex of one $K_{\frac{n}{2}}$ to a one vertex of the other $K_{\frac{n}{2}}$. But then by Theorem 2.2, $b d(\bar{G})=2<b d(G)$, a contradiction.

Case 2. U_{i} is not a dominating set of \bar{G} for some $i \in I$.
By Proposition 4.1-(iii), i satisfies Condition $\left(C_{2}\right)$. Let $j \in I-\{i\}$ such that items (a), (b) and (c) of Condition $\left(C_{2}\right)$ are fulfilled. Observe that $u_{i}, v_{i}, u_{j}, v_{j}$ induce a path $P_{4}: v_{i}-u_{j}-u_{i}-v_{j}$ (by item (b)). Also by item (c), each of the pair u_{i}, u_{j} and v_{i}, v_{j} have the same neighborhood in $V(G) \backslash\left\{u_{i}, u_{j}, v_{i}, v_{j}\right\}$. Since $k \geq 3$, let $l \in I-\{i, j\}$ and $\mathcal{P}^{\prime}=\mathcal{P} \backslash\left\{U_{i}, U_{j}, U_{l}\right\}$. Now, by item (c), either ($u_{i} u_{l}, u_{j} u_{l} \in E$ and $\left.v_{i} v_{l}, v_{j} v_{l} \in E\right)$ or ($u_{i} v_{l}, u_{j} v_{l} \in E$ and $\left.v_{i} u_{l}, v_{j} u_{l} \in E\right)$. In the former, let $\mathcal{P}_{1}=\mathcal{P}^{\prime} \cup\left\{\left\{u_{i}, u_{j}, v_{l}\right\},\left\{v_{i}, v_{j}, u_{l}\right\}\right\}$ and in the later let $\mathcal{P}_{2}=\mathcal{P}^{\prime} \cup\left\{\left\{u_{i}, u_{j}, u_{l}\right\},\left\{v_{i}, v_{j}, v_{l}\right\}\right\}$. Whatever, the partition we shall have, \mathcal{P}_{1} and \mathcal{P}_{2} are domatic partitions of G. For the next, we may assume, without loss of generality, that \mathcal{P}_{1} occurs. To show that \mathcal{P}_{1} is b-maximal, it suffices to consider Theorem 2.3 on vertex v_{l} and using the fact that G is regular or semi-regular of (minimum) degree either $n / 2-1$ or $n / 2$. Indeed, v_{l} is isolated in its class $\left\{u_{i}, u_{j}, v_{l}\right\}$ and for any $x \in N_{G}\left(v_{l}\right)$, vertex x is either isolated in its class (when $d_{G}(x)=n / 2-1$) or has a private neighbor with respect to its class (when $d_{G}(x)=n / 2$). Therefore \mathcal{P}_{1} is a b-maximal domatic partition of G of order $\left|\mathcal{P}^{\prime}\right|+2=\left(\frac{n}{2}-3\right)+2<\frac{n}{2}$, a contradiction.

5. Nordhaus-Gaddum results

In this section, we present a Nordhaus-Gaddum bound for $b d(G)+b d(\bar{G})$ in terms of the order of the graph G, and we characterize extremal graphs attaining this bound.

Theorem 5.1. For any graph G of order n, $b d(G)+b d(\bar{G}) \leq n+1$, with equality if and only if $G \cong K_{n}$ or \bar{K}_{n}.

Proof. By Proposition 2.1, we have

$$
\begin{equation*}
b d(G)+b d(\bar{G}) \leq \delta(G)+\delta(\bar{G})+2 \tag{3}
\end{equation*}
$$

Moreover, since $\delta(\bar{G})=n-\Delta(G)-1$, we obtain that

$$
\begin{equation*}
b d(G)+b d(\bar{G}) \leq n+1+\delta(G)-\Delta(G) \tag{4}
\end{equation*}
$$

and the bound follows since $\delta(G)-\Delta(G) \leq 0$.
Now assume that $b d(G)+b d(\bar{G})=n+1$. Then by (4), we have $\delta(G)=\Delta(G)$, that is G is a regular graph. Observe that if neither G nor \bar{G} has universal vertices, then $\gamma(G) \geq 2$ and $\gamma(\bar{G}) \geq 2$. Therefore by Corollary 2.1, $b d(G) \leq n / 2$ and $b d(\bar{G}) \leq n / 2$, implying that $b d(G)+b d(\bar{G}) \leq n$ which leads to a contradiction. Hence at least one of G and \bar{G} has a universal vertex. Now, if G has a universal vertex, then $b d(\bar{G})=1$ and $b d(G)=n$, implying that $G=K_{n}$. While if \bar{G} has a universal vertex, then $b d(G)=1$ and $b d(\bar{G})=n$ implying that $\bar{G}=K_{n}$.

The converse is obvious.
Theorem 5.2. Let G be a graph of order n. If neither G nor \bar{G} is a complete graph, then

$$
b d(G)+b d(\bar{G}) \leq n,
$$

with equality if and only if $G \in\left\{K_{n}-e, 2 K_{2}, C_{4}, P_{4}\right\}$.
Proof. The bound follows from Theorem 5.1 since neither G nor \bar{G} is a complete graph.
Assume that $b d(G)+b d(\bar{G})=n$. If G has a universal vertex, then $b d(\bar{G})=1$ and $b d(G)=$ $n-1$. By Proposition 3.2, $G=K_{n}-e$, where e is an arbitrary edge of K_{n}. By symmetry if \bar{G} has a universal vertex, then $\bar{G}=K_{n}-e$, where e is an arbitrary edge of K_{n}. Hence we can assume that neither G nor \bar{G} has a universal vertex. It follows that $\gamma(G) \geq 2$ and $\gamma(\bar{G}) \geq 2$, and so $n \geq 4$. Now since $b d(G)+b d(\bar{G})=n$, Corollary 2.1 implies that $b d(G)=b d(\bar{G})=\frac{n}{2}$, and by Theorem 4.2, $G \in\left\{2 K_{2}, C_{4}, P_{4}\right\}$.

The converse is obvious.

References

[1] J. Amjadi, S. Nazari-Moghaddam, and S.M. Sheikholeslami, Total Roman domatic number of a graph, Asian-Eur. J. Math. 13 (2020) Article ID: 2050110.
[2] G.J. Chang, The domatic number problem, Discrete Math. 125 (1994), 115-122.
[3] E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, Networks 7 (1977), 247-261.
[4] O. Favaron, The b-domatic number of a graph. Discuss. Math. Graph Theory 33 (2013), 747757.
[5] M. Benatallah, N. Ikhlef Eschouf, and M. Mihoubi, On the b-domatic number of graphs. Discuss. Math. Graph Theory 39 (2019), 313-324.
[6] J.E. Dunbar, T.W. Haynes, and M.A. Henning, Nordhaus-Gaddum type results for the domatic number of a graph. In Combinatorics, Graph Theory, and Algorithms, vols. I, II, New Issues Press, Kalamazoo (1999), 303-312.
[7] F. Harary, Graph Theory, Addison-Wesley Publishing Company, 1969.
[8] S.M. Sheikholeslami and L. Volkmann, The signed Roman domatic number of a digraph, Electron. J. Graph Theory Appl. 3 (1) (2015), 85-93.
[9] L. Volkmann, The Roman \{2\}-domatic number of graphs. Discrete Appl. Math. 258 (2019), 235-241.

