Electronic Journal of Graph Theory and Applications

On k-geodetic digraphs with excess one

Anita Abildgaard Sillasen
Department of Mathematical Sciences, Aalborg University, Denmark
anitasillasen@gmail.com

Abstract

A k-geodetic digraph G is a digraph in which, for every pair of vertices u and v (not necessarily distinct), there is at most one walk of length $\leq k$ from u to v. If the diameter of G is k, we say that G is strongly geodetic. Let $N(d, k)$ be the smallest possible order for a k-geodetic digraph of minimum out-degree d, then $N(d, k) \geq 1+d+d^{2}+\ldots+d^{k}=M(d, k)$, where $M(d, k)$ is the Moore bound obtained if and only if G is strongly geodetic. Thus, strongly geodetic digraphs only exist for $d=1$ or $k=1$, hence for $d, k \geq 2$ we wish to determine if $N(d, k)=M(d, k)+1$ is possible. A k-geodetic digraph with minimum out-degree d and order $M(d, k)+1$ is denoted as a $(d, k, 1)$-digraph or said to have excess 1 . In this paper, we will prove that a $(d, k, 1)$-digraph is always out-regular and that if it is not in-regular, then it must have 2 vertices of in-degree less than d, d vertices of in-degree $d+1$ and the remaining vertices will have in-degree d. Furthermore, we will prove there exist no (2,2,1)-digraphs and no diregular ($2, k, 1$)-digraphs for $k \geq 3$.

Keywords: k-geodetic digraph; Moore digraph; the degree/diameter problem; almost Moore digraph
Mathematics Subject Classification : 05C12, 05C20

1. Introduction

A digraph which satisfies that for any two vertices u, v in G, there is at most one walk of length at most k from u to v, is called a k-geodetic digraph. If the diameter of a k-geodetic digraph G is k, we say that G is strongly geodetic.

Let G be a k-geodetic digraph with minimum out-degree d. What is then the smallest possible order, $N(d, k)$, of such a G ? Letting n_{i} be the number of vertices in distance i from a vertex v for

Received: 27 December 2013, Revised: 13 September 2014, Accepted: 20 September 2014.
$i=0,1,2, \ldots$, and realizing that $n_{i} \geq d^{i}$, we see that a lower bound is given as

$$
\begin{equation*}
N(d, k) \geq \sum_{i=0}^{k} n_{i} \geq \sum_{i=0}^{k} d^{i}=M(d, k) . \tag{1}
\end{equation*}
$$

The right hand side of (1) is the so called Moore bound for digraphs. The Moore bound is an upper theoretical bound for the so called degree/diameter problem, which is the problem of finding the largest possible order of a digraph with maximum out-degree d and diameter k. A digraph with order $M(d, k)$, maximum out-degree d and diameter k is called a Moore digraph. If a k-geodetic digraph has $M(d, k)$ vertices, then it must be strongly geodetic, and therefore a Moore digraph. However, the only Moore digraphs are $(k+1)$-cycles $(d=1)$ and complete digraphs, $K_{d+1}(k=1)$, see [1] or [2], thus for $d \geq 2$ and $k \geq 2$ we are interested in knowing if the order for a k-geodetic digraph with minimum out-degree d could be $M(d, k)+1$. We say that a k-geodetic digraph G of minimum out-degree d and order $M(d, k)+1$ is a $(d, k, 1)$-digraph or that it has excess one.

Notice that $(k+2)$-cycles and $(k+1)$-cycles with a vertex having an arc to a vertex on the $(k+1)$-cycle are $(1, k, 1)$-digraphs and that complete digraphs K_{d+2} with at most one arc from each vertex deleted are ($d, 1,1$)-digraphs. In the remaining part of this paper, we will thus assume $d \geq 2$ and $k \geq 2$.

In this paper, we will specify some further properties of the $(d, k, 1)$-digraphs, especially we will show that they have diameter $k+1$, and that if a ($d, k, 1$) -digraph is not diregular, then it is out-regular and there will be exactly d vertices of in-degree $d+1$, two vertices of in-degree less than d and the remaining vertices will have in-degree d. In the last section, we will show that there exist no $(2,2,1)$-digraphs and no diregular ($2, k, 1$)-digraphs.

2. Results

Let an i-walk denote a walk of length i and a $\leq i$-walk denote a walk of length at most i. Furthermore, let $N_{i}^{+}(u)$ denote the multiset of all vertices which are end vertices in an i-walk starting at the vertex u, notice that $N_{0}^{+}(u)=\{u\}$ and $N_{1}^{+}(u)=N^{+}(u)$. Also let $T_{i}^{+}(u)=$ $\cup_{j=0}^{i} N_{j}^{+}(u)$, thus it is the multiset of all vertices which are end vertices in a $\leq i$-walk starting at the vertex u. Notice that for k-geodetic digraphs $N_{i}^{+}(u)$ and $T_{i}^{+}(u)$ are sets when $i \leq k$. Looking at ($d, k, 1$)-digraphs, we will often depict all the $\leq(k+1)$-paths from some arbitrary vertex u, thus the vertices in the multiset $T_{k+1}^{+}(u)$.

The first important result is that a $(d, k, 1)$-digraph G is in fact out-regular, as if we assume the contrary, that there is a vertex $u \in V(G)$ with $d^{+}(u) \geq d+1$, we get that

$$
\begin{aligned}
|V(G)| & \geq\left|T_{k}^{+}(u)\right| \\
& =1+(d+1)+(d+1) d+(d+1) d^{2}+\ldots+(d+1) d^{k-1} \\
& =M(d, k)+M(d, k-1),
\end{aligned}
$$

a contradiction as $M(d, k-1)>1$ for $k \geq 2$.
An immediate consequence of a $(d, k, 1)$-digraph being out-regular, is that it has diameter $k+1$ which follows in the following lemma.

Lemma 2.1. Let G be a $(d, k, 1)$-digraph, then

- for each vertex $u \in V(G)$ there exists exactly one vertex $o(u) \in V(G)$ such that $\operatorname{dist}(u, o(u))=k+1$,
- for any two vertices, $u, v \neq o(u)$ there is exactly one $\leq k$-path from u to v.

Proof. As we know G is out-regular and the order is $M(d, k)+1$, the second statement follows. Let $u \in V(G)$ be any vertex and let $o(u)$ be the unique vertex not reachable with a $\leq k$-path from u, then we just need to prove $d^{-}(o(u))>0$. Assume the contrary, that $d^{-}(o(u))=0$, then $o(u)=o(v)$ for all $v \in V(G) \backslash\{o(u)\}$. But then $G \backslash\{o(u)\}$ will be a Moore digraph of degree $d \geq 2$ and diameter $k \geq 2$, a contradiction. Hence $d^{-}(o(u))>0$ for all $u \in V(G)$ and thus $\operatorname{dist}(u, o(u))=k+1$.

The unique vertex $o(u)$ with $\operatorname{dist}(u, o(u))=k+1$ will be called the outlier of u. So a $(d, k, 1)$ digraph is out-regular of out-degree d and has diameter $k+1$. Showing that a ($d, k, 1$)-digraph G is also in-regular is not as straightforward. We will prove that if it is not in-regular, then there are exactly two vertices of in-degree less than d, d vertices of in-degree $d+1$ and the remaining vertices are of in-degree d. Let $S^{\prime}=\left\{v \in V(G) \mid d^{-}(v)>d\right\}$ and $S=\left\{v \in V(G) \mid d^{-}(v)<d\right\}$, then we get the following lemmas and theorem.

Lemma 2.2. Let G be a $(d, k, 1)$-digraph, then

- $\left|S^{\prime}\right| \leq d$ and $d^{-}(v)=d+1$ for all $v \in S^{\prime}$,
- $S^{\prime} \subseteq N^{+}(o(u))$ for all $u \in V(G)$.

Proof. Assume $u \in V(G)$ and $v \notin N^{+}(o(u))$, then as u must reach all in-neighbors of v in $\leq k$-paths, we must have $d^{+}(u) \geq d^{-}(v)$. If not, then there will exist an out-neighbor u^{\prime} of u which has two $\leq k$-paths to v, a contradiction. Now, if $v \in N^{+}(o(u))$, then u must reach all in-neighbors of v, except $o(u)$, in a $\leq k$-path. Thus with the same arguments as before, we must have $d^{+}(u) \geq d^{-}(v)-1$. Thus all vertices in S^{\prime} must have in-degree $d+1$ and both statements follows, as $\left|N^{+}(o(u))\right|=d$.

Lemma 2.3. If $S^{\prime} \neq \emptyset$, then $\left|S^{\prime}\right|=d$.
Proof. As a $(d, k, 1)$-digraph is out-regular, its average in-degree must be d and thus

$$
\sum_{v \in S^{\prime}}\left(d^{-}(v)-d\right)=\sum_{v \in S}\left(d-d^{-}(v)\right)=\left|S^{\prime}\right| .
$$

Now let $v \in S^{\prime}$, then we know $\left|N^{-}(v)\right|=\left|N_{1}^{-}(v)\right|=d+1$ and $\left|N_{t}^{-}(v)\right| \geq d\left|N_{t-1}^{-}(v)\right|-\epsilon_{t}$ for $1<t \leq k$, where $\epsilon_{2}+\epsilon_{3}+\ldots+\epsilon_{k} \leq\left|S^{\prime}\right|$. As all vertices in $T_{k}^{-}(v)$ are distinct, it implies that

$$
\begin{equation*}
|V(G)| \geq \sum_{i=0}^{k}\left|N_{i}^{-}(v)\right| \tag{2}
\end{equation*}
$$

Estimating the above sum, we get a safe lower bound by letting $\epsilon_{2}=\left|S^{\prime}\right|$ and $\epsilon_{t}=0$ for all $3 \leq t \leq k$, thus

$$
\begin{aligned}
|V(G)| & \geq 1+\left|N^{-}(v)\right|+\left|N_{2}^{-}(v)\right|+\left|N_{3}^{-}(v)\right|+\ldots+\left|N_{k}^{-}(v)\right| \\
& \geq 1+(d+1)+\left((d+1) d-\left|S^{\prime}\right|\right)\left(1+d+\ldots+d^{k-2}\right) \\
& =2+d+d^{2}+\ldots+d^{k}+\left(d-\left|S^{\prime}\right|\right)\left(1+d+\ldots d^{k-2}\right) \\
& =M(d, k)+1+\left(d-\left|S^{\prime}\right|\right) M(d, k-2) .
\end{aligned}
$$

But as G is a $(d, k, 1)$-digraph, we have $|V(G)|=M(d, k)+1$, which together with the preceding inequality and Lemma 2.2 gives $\left|S^{\prime}\right|=d$.

As a consequence of the above proof, we have that $S \subseteq N^{-}(v)$ for all $v \in S^{\prime}$.
Theorem 2.1. Let G be a $(d, k, 1)$-digraph. If G is not diregular, then we have $S=\left\{z, z^{\prime}\right\}$ where $o(u) \in S$ for all $u \in V(G)$.

Proof. Assume G is not diregular, thus we can assume $S^{\prime}=\left\{u_{1}, u_{2}, \ldots, u_{d}\right\}$ where $d^{-}\left(u_{i}\right)=$ $d+1$ and $o(u) \in N^{-}\left(u_{j}\right)$ for all $u \in V(G)$ and $j=1,2, \ldots, d$ according to Lemmas 2.2 and 2.3. Moreover, from the proof of Lemma 2.3 we see that $\operatorname{dist}\left(v, u_{i}\right) \leq k$ for all $v \in G$ and $i=1,2, \ldots, d$.

Now let $N^{-}\left(u_{1}\right)=\left\{z_{1}, z_{2}, \ldots, z_{d+1}\right\}$ where $z_{1}=o\left(u_{1}\right)$. Then $S^{\prime} \cap T_{k-1}^{-}\left(z_{1}\right)=\emptyset$, as otherwise $\left(z_{1}, u_{j}, \ldots, z_{1}\right)$ will be a $\leq k$-cycle for some $j=1,2, \ldots, d$. Also, no two vertices u_{i} and u_{j} can belong to the same $T_{k-1}^{-}\left(z_{l}\right)$ for $1 \leq l \leq d+1$, as if they did, $\left(z_{1}, u_{i}, \ldots, z_{l}\right)$ and $\left(z_{1}, u_{j}, \ldots, z_{l}\right)$ would be two distinct $\leq k$-paths. Thus we can assume $S^{\prime} \cap T_{k-1}^{-}\left(z_{l}\right)=\left\{u_{l}\right\}$ for $2 \leq l \leq d$ and $\operatorname{dist}\left(u_{l}, z_{l}\right)=k-1$, as otherwise there will be two $\leq k$-walks $\left(z_{1}, u_{l}, \ldots, z_{l}, u_{1}\right)$ and $\left(z_{1}, u_{1}\right)$. As $\left(o(u), u_{i}\right)$ is an arc for all $u \in V(G)$ and $i=1,2, \ldots, d$ none of the vertices $z_{2}, z_{3}, \ldots, z_{d}$ can be the outlier of any vertex in G, as otherwise $\left(o(u)=z_{l}, u_{l}, \ldots, z_{l}\right)$ will be a k-cycle. Thus $o(u) \in\left\{z_{1}, z_{d+1}\right\}$ for all $u \in V(G)$.

Finally we wish to show that $S=\left\{z_{1}, z_{d+1}\right\}$. Assume the contrary, thus for some $2 \leq l \leq d$ we have $d^{-}\left(z_{l}\right)<d$ and $o(u) \neq z_{l}$ for all $u \in V(G)$, as $S \subseteq N^{-}\left(u_{1}\right)$. But then

$$
\begin{aligned}
|V(G)| & \leq 1+(d-1)\left(1+d+d^{2}+\ldots+d^{k-1}\right)+1 \\
& =M(d, k)-M(d, k-1)+1 \\
& <M(d, k)+1
\end{aligned}
$$

as $\operatorname{dist}\left(u_{l}, z_{l}\right)=k-1$ and $\operatorname{dist}\left(u_{j}, z_{l}\right) \geq k$ for all $j \neq l$. Thus $S \subseteq\left\{z_{1}, z_{d+1}\right\}$ and as $\sum_{v \in S^{\prime}}\left(d^{-}(v)-d\right)=d=\sum_{v \in S}\left(d-d^{-}(v)\right)$ and $d^{-}(u)>0$ for all $u \in V(G)$ the result follows.

If G is diregular, we get the following useful lemma.
Lemma 2.4. Let G be a diregular $(d, k, 1)$-digraph, then the mapping $o: V(G) \mapsto V(G)$ is an automorphism.

Proof. Let A be the adjacency matrix of G, then due to the properties of G we get

$$
\begin{equation*}
I+A+A^{2}+\ldots+A^{k}=J-P \tag{3}
\end{equation*}
$$

where J is the matrix with all entries equal to 1 and P is a permutation matrix with entry $P_{i j}=1$ if $o(i)=j$ and $P_{i j}=0$ otherwise.

Now, as we know G is diregular, we know that $A J=J A$, and as the left hand side of (3) is a polynomial in A, we must also have $P A=A P$, thus o is an automorphism.

Notice that if G is diregular there will be exactly d paths of length $k+1$ from a given vertex u to $o(u)$, as all u 's out-neighbors must reach $o(u)$ in k-paths and if there were more than d paths of length $k+1$, one of u 's out-neighbors would have more than one $\leq k$-path to $o(u)$, a violation of the definition of ($d, k, 1$)-digraphs.

3. $(2, k, 1)$-digraphs

In this section we will assume $d=2$ and prove the non-existence of $(2,2,1)$-digraphs and diregular ($2, k, 1$)-digraphs.

Theorem 3.1. There are no ($2,2,1$)-digraphs.
Proof. Assume G is a $(2,2,1)$-digraph, then it has 8 vertices and we can depict the relationship between the vertices in $T_{3}^{+}(1)$ as in Fig. 1, where we can see $o(1)=8$.

Figure 1. $T_{3}^{+}(1)$.
Assume G is not diregular, then we know from Theorem 2.1 that $d^{-}(8)=1$ and there exist another vertex $z \in V(G)$ with $d^{-}(z)=1$ and $o(3)=o(6)=z$. Furthermore we know $N^{+}(8)=$ $N^{+}(z)=\left\{u_{1}, u_{2}\right\}$ with $d^{-}\left(u_{i}\right)=3$ for $i=1,2$. Notice that $6 \notin\left\{u_{1}, u_{2}\right\}$, as otherwise G would contain a 2 -cycle, $(6,8,6)$. As the diameter of G is 3 , we must have $\operatorname{dist}(2,6)=2$ for 2 to reach 8 and thus $o(2)=8$. Assume without loss of generality that $6 \in N^{+}(4)$. Then for 5 to reach 8 we must have $3 \in N^{+}(5)$, as $N^{-}(6)=\{3,4\}$ and $4 \notin N^{+}(5)$, as otherwise $(2,4)$ and $(2,5,4)$ will be two distinct ≤ 2-paths. The only vertices which 2 cannot reach are 1 and 7 . If $7 \in N^{+}(5)$ we have $(5,7)$ and $(5,3,7)$ as ≤ 2-paths, which is a contradiction. If instead $1 \in N^{+}(5)$ then we have the ≤ 2-paths $(5,1,3)$ and $(5,3)$ another contradiction.

Now assume that G is diregular and recall that then o is an automorphism, thus we can assume $8 \in N^{+}(5)$ as $o(2) \neq 8$. Then, we see that $o(2) \neq 6$, as otherwise there would be a 2 -cycle $(6,8,6)$
as o is an automorphism, a contradiction. So there will be a ≤ 2-path from 2 to 6 , but $6 \notin N^{+}(5)$ as otherwise there are two ≤ 2-paths from 5 to 8 , namely $(5,8)$ and $(5,6,8)$. Thus $6 \in N^{+}(4)$, and in the same manner we see that $5 \in N^{+}(7)$. Let u and v be the other out-neighbor of 4 and 5 respectively, and w and z the other out-neighbor of 6 and 7 respectively.

As 2 has to reach vertex 1,3 and 7 and at most one of them can be the outlier of 2 , we must have $u \in\{1,7\}$ and $v \in\{1,3\}$, as if $u=3$ there will exist two ≤ 2-paths from 4 to 6 , namely $(4,6)$ and $(4,3,6)$ and if $v=7$ we will get a 2 -cycle, $(7,5,7)$. Similar we see $z \in\{1,4\}$ and $w \in\{1,2\}$.

Now assume $o(2)=1$, hence $o(3) \neq 1$ and $(o(1), o(2))=(8,1)$ is an arc. Then $u=7$ and $v=3$, and as o is an automorphism, we must have $z=1$, as if $w=1$ we will have the two ≤ 2-paths, $(6,1)$ and $(6,8,1)$. But then $(7,1,3)$ and $(7,5,3)$ are both 2-paths from 7 to 3 , a contradiction.

Instead assume $o(2)=3$, thus $u=7$ and $v=1$ and $(o(1), o(2))=(8,3)$ is an arc. But then $(5,1,3)$ and $(5,8,3)$ are both 2-paths from 5 to 1 . So we can safely assume $o(2)=7$, thus $u=1$ and $v=3$, but then $(5,3,7)$ and $(5,8,7)$ are both 2-paths from 5 to 7 , another contradiction.

Theorem 3.2. No diregular ($2, k, 1$)-digraph exists for $k \geq 2$.
Proof. Due to Theorem 3.1 we can assume $k>2$ and we label the vertices in $T_{k+1}^{+}(1)$ as in Fig. 2. First of all, notice that for all $u \in V(G)$ we obviously have $o(u) \notin T_{k}^{+}(u)$, so we must have $o(2) \in T_{k-1}^{+}(3) \cup\{1\}$. We also see that $o(2) \notin T_{k-2}^{+}(6)$, as otherwise there will be two $\leq k$-paths from 6 to $o(2)$, the one in $T_{k-2}^{+}(6)$ and $\left(6,12, \ldots, 3 \cdot 2^{k-1}, 2^{k+1}=o(1), o(2)\right)$, a contradiction.

Figure 2. $T_{k+1}^{+}(1)$.
Now, let $A=N_{k-1}^{+}(4)$ and $B=N_{k-1}^{+}(5) \backslash\left\{2^{k+1}\right\}$, so $|A|=2^{k-1}$ and $|B|=2^{k-1}-1$. Then we will look at how $\left(\{1\} \cup T_{k-1}^{+}(3)\right) \backslash o(2)$ is distributed on A and B. For any arc (u, v) in G, we must have that u and v will not both be in A and not both in B, as otherwise there would be two $\leq k$-paths from either 4 or 5 to v. We observe that $3 \cdot 2^{k-1} \notin B$, as otherwise there would be two $\leq k$-paths from 5 to 2^{k+1}, namely $\left(5,11, \ldots 3 \cdot 2^{k-1}-1,2^{k+1}\right)$ and $\left(5, \ldots, 3 \cdot 2^{k-1}, 2^{k+1}\right)$. So we
must have $3 \cdot 2^{k-1} \in A, 3 \cdot 2^{k-2} \in B, 3 \cdot 2^{k-3} \in A$, and so on, until we reach vertex 6 . This implies that $N_{k-2}^{+}(6) \in A, N_{k-3}^{+}(6) \in B, N_{k-4}^{+}(6) \in A$ and so on, until we get either $6 \in A$ if k is even or $6 \in B$ if k is odd.

Let $a=\left|A \cap T_{k-2}^{+}(6)\right|$ and $b=\left|B \cap T_{k-2}^{+}(6)\right|$, so $a+b=2^{k-1}-1$. Now, if k is even we let

$$
a_{e}=a=\sum_{i=0}^{\frac{k}{2}-1} 2^{2 i}=-\frac{1}{3}+\frac{2}{3} \cdot 2^{k-1}
$$

and

$$
b_{e}=b=\sum_{i=0}^{\frac{k}{2}-2} 2^{2 i+1}=-\frac{2}{3}+\frac{1}{3} \cdot 2^{k-1}
$$

Similarly, if k is odd we let

$$
a_{o}=a=\sum_{i=0}^{\frac{k-3}{2}} 2^{2 i+1}=-\frac{2}{3}+\frac{2}{3} \cdot 2^{k-1}
$$

and

$$
b_{o}=b=\sum_{i=0}^{\frac{k-3}{2}} 2^{2 i}=-\frac{1}{3}+\frac{1}{3} \cdot 2^{k-1}=\frac{1}{2} a_{o} .
$$

We start by assuming that $o(2)=1$, then if k is even we see that vertex 3 must be in B, so $7 \in A,\{14,15\} \subseteq B, \ldots, N_{k-2}^{+}(7) \subseteq A$. Thus

$$
|A|=2 \cdot a_{e}=2\left(-\frac{1}{3}+\frac{2}{3} \cdot 2^{k-1}\right)>2^{k-1}
$$

as $k>2$, a contradiction. If k is odd, we see that vertex 3 must be in A, so $7 \in B,\{14,15\} \subseteq A, \ldots$, $N_{k-2}^{+}(7) \subseteq A$, thus

$$
|A|=2 a_{o}+1=2\left(-\frac{2}{3}+\frac{2}{3} \cdot 2^{k-1}\right)+1>2^{k-1}
$$

as $k>2$, yet a contradiction. So, we know due to symmetry that $1 \notin\{o(2), o(3)\}$.
Now, assume that $o(2) \neq 3$. Then, we know the distribution of all the vertices in $T_{k-1}^{+}(3) \cup\{1\}$ except for those in $T_{i}^{+}(o(2))$, where i is given by $\operatorname{dist}(3, o(2))=k-1-i$. Assume $i=0$, thus $o(2) \in N_{k-2}^{+}(7)$, or that $N^{+}(o(2))$ is in the same set $(A$ or $B)$ as $N_{k-1-i}^{+}(6)$, then we see that $|A| \geq 2 a>2^{k-1}$, a contradiction. So, we can assume there exist vertices u and v, such that $N^{+}(o(2))=\{u, v\} \subseteq T_{k-2}^{+}(7)$ and that not both u and v are in the same set $(A$ or $B)$ as $N_{k-1-i}^{+}(6)$.

For even i, let c_{e} denote the number of vertices in every second layer of $T_{i}^{+}(o(2))$ such that $N_{i}^{+}(o(2))$ is not one of those layers, then

$$
c_{e}=\sum_{j=0}^{\frac{i}{2}-1}\left|N_{2 j+1}^{+}(o(2))\right|=2\left(1+2^{2}+\ldots+2^{i-2}\right)=\frac{2}{3} \cdot 2^{i}-\frac{2}{3} .
$$

Let d_{e} denote the number of vertices in the remaining layers, thus

$$
d_{e}=\sum_{j=0}^{\frac{i}{2}-1}\left|N_{2 j+2}^{+}(o(2))\right|=2 c_{e} .
$$

For odd i, let c_{o} denote the number of vertices in every second layer, where $N_{i}^{+}(o(2))$ is not one of those layers, thus

$$
c_{o}=\sum_{j=0}^{\frac{i-3}{2}}\left|N_{2 j+2}^{+}(o(2))\right|=\frac{1}{3}\left(2^{i+1}-1\right)-1=\frac{1}{3} \cdot 2^{i+1}-\frac{4}{3}
$$

and the number of vertices in the remaining layers is then

$$
d_{o}=\sum_{j=0}^{\frac{i-1}{2}}\left|N_{2 j+1}^{+}(o(2))\right|=2 c_{o}+2 .
$$

We will now count the number of vertices in A depending on whether k and i are even or odd, and which set $(A$ or $B) u$ and v are in, a total of 8 different scenarios. Notice that exactly one of 1 and 3 will be in A. We will obtain contradictions in some of the scenarios and in the remaining we will obtain that $o(2)=7$. Thus, we have proved that $o(2) \in\{3,7\}$.

If k is even, we get following scenarios:

- i even:
- $u, v \in A$: Then,

$$
\begin{aligned}
|A| & =2 a_{e}+1+c_{e}-d_{e}-1 \\
& =2\left(-\frac{1}{3}+\frac{2}{3} \cdot 2^{k-1}\right)-c_{e} \\
& =\frac{2}{3} \cdot 2^{k}-\frac{2}{3} \cdot 2^{i} .
\end{aligned}
$$

Now, as we already know $|A|=2^{k-1}$, we must have $i=k-2$, and thus $o(2)=7$.

- $u \in A, v \in B$: Then, half of the vertices in $T_{i}^{+}(o(2)) \backslash\{o(2)\}$, namely $2^{i}-1$ vertices, will be in A and the other in B, hence

$$
\begin{aligned}
|A| & =2 a_{e}+1-d_{e}-1+2^{i}-1 \\
& =2\left(-\frac{1}{3}+\frac{2}{3} \cdot 2^{k-1}\right)-\frac{4}{3}\left(2^{i}-1\right)+2^{i}-1 \\
& =-\frac{1}{3}+\frac{2}{3} \cdot 2^{k}-\frac{1}{3} \cdot 2^{i}
\end{aligned}
$$

a contradiction with $|A|=2^{k-1}$.

- i odd:
- $u, v \in B$: Similar to the above argument, we see that

$$
\begin{aligned}
|A| & =2 a_{e}+1+c_{o}-d_{o} \\
& =2\left(-\frac{1}{3}+\frac{2}{3} \cdot 2^{k-1}\right)+1+c_{o}-2 c_{o}-2 \\
& =-\frac{2}{3}+\frac{4}{3} \cdot 2^{k-1}-\left(\frac{1}{3} \cdot 2^{i+1}-\frac{4}{3}\right)-1 \\
& =-\frac{1}{3}+\frac{4}{3} \cdot 2^{k-1}-\frac{1}{3} \cdot 2^{i+1},
\end{aligned}
$$

again a contradiction to the fact that $|A|=2^{k-1}$.

- $u \in A, v \in B$: We see

$$
\begin{aligned}
|A| & =2 a_{e}+1+2^{i}-1-d_{o} \\
& =2\left(-\frac{1}{3}+\frac{2}{3} \cdot 2^{k-1}\right)+1+2^{i}-1-\frac{2}{3}\left(2^{i+1}-1\right) \\
& =\frac{2}{3} \cdot 2^{k}-\frac{1}{3} \cdot 2^{i} .
\end{aligned}
$$

As $|A|=2^{k-1}$, this implies $i=k-1$, but then $o(2)=3$, a contradiction to our assumption.

If k is odd we have:

- i even:
- $u, v \in A$: Then,

$$
\begin{aligned}
|A| & =2 a_{o}+1+c_{e}-d_{e}-1 \\
& =2\left(-\frac{2}{3}+\frac{2}{3} \cdot 2^{k-1}\right)-c_{e} \\
& =-\frac{2}{3}+\frac{2}{3} \cdot 2^{k}-\frac{2}{3} \cdot 2^{i},
\end{aligned}
$$

yet a contradiction to $|A|=2^{k-1}$.

- $u \in A, v \in B$: We see

$$
\begin{aligned}
|A| & =2 a_{o}+1-d_{e}-1+2^{i}-1 \\
& =2\left(-\frac{2}{3}+\frac{2}{3} \cdot 2^{k-1}\right)-\frac{4}{3}\left(2^{i}-1\right)+2^{i}-1 \\
& =-1+\frac{2}{3} \cdot 2^{k}-\frac{1}{3} \cdot 2^{i}
\end{aligned}
$$

a contradiction to $|A|=2^{k-1}$ and $i \neq 0$.

- i odd:
- $u, v \in B$: Similarly, we see that

$$
\begin{aligned}
|A| & =2 a_{o}+1+c_{o}-d_{o} \\
& =2\left(-\frac{2}{3}+\frac{2}{3} \cdot 2^{k-1}\right)+1+c_{o}-2 c_{o}-2 \\
& =-\frac{4}{3}+\frac{4}{3} \cdot 2^{k-1}-\left(\frac{1}{3} \cdot 2^{i+1}-\frac{4}{3}\right)-1 \\
& =-1+\frac{4}{3} \cdot 2^{k-1}-\frac{1}{3} \cdot 2^{i+1},
\end{aligned}
$$

yet another contradiction to the fact that $|A|=2^{k-1}$.

- $u \in A, v \in B:$ We see

$$
\begin{aligned}
|A| & =2 a_{o}+1+2^{i}-1-d_{o} \\
& =2\left(-\frac{2}{3}+\frac{2}{3} \cdot 2^{k-1}\right)+2^{i}-\frac{2}{3}\left(2^{i+1}-1\right) \\
& =-\frac{2}{3}+\frac{2}{3} \cdot 2^{k}-\frac{1}{3} \cdot 2^{i} .
\end{aligned}
$$

Then, we must have $k=3$ and $i=1$, thus $o(2)=7$.
To summarize the above, we have $o(2) \in\{3,7\}$ and $o(3) \in\{2,4\}$. Using similar arguments we observe $o(4) \in\{5,10\}$, as $\left(11, \ldots, 2^{k+1}=o(1), o(2), o(4)\right)$ is a k-path. Now, if $o(2)=3$ we get $o(4) \in N^{+}(o(2))=\{6,7\}$, but this is a contradiction to our observation. On the other hand, if $o(2)=7$ we must have $o(4) \in\{14,15\}$ again a contradiction.

Acknowledgements

The work was funded by Prof. Carsten Thomassen's Grants 0602-01488B from The Danish Council for Independent Research | Natural Sciences.

References

[1] W. G. Bridges and Sam Toueg, On the Impossibility of Directed Moore Graphs, Journal of Combinatorial Theory, Series B, 29(3) (1980), 339-341.
[2] J. Plesník and Š. Znám, Strongly geodetic directed graphs. Acta Fac. Rerum Natur. Univ. Comenian., Math. Publ. 23 (1974), 29-34.

