

Electronic Journal of Graph Theory and Applications

On k-geodetic digraphs with excess one

Anita Abildgaard Sillasen

Department of Mathematical Sciences, Aalborg University, Denmark

anitasillasen@gmail.com

Abstract

A k-geodetic digraph G is a digraph in which, for every pair of vertices u and v (not necessarily distinct), there is at most one walk of length $\leq k$ from u to v. If the diameter of G is k, we say that G is strongly geodetic. Let N(d, k) be the smallest possible order for a k-geodetic digraph of minimum out-degree d, then $N(d, k) \geq 1 + d + d^2 + \ldots + d^k = M(d, k)$, where M(d, k) is the Moore bound obtained if and only if G is strongly geodetic. Thus, strongly geodetic digraphs only exist for d = 1 or k = 1, hence for $d, k \geq 2$ we wish to determine if N(d, k) = M(d, k) + 1 is possible. A k-geodetic digraph with minimum out-degree d and order M(d, k) + 1 is denoted as a (d, k, 1)-digraph or said to have excess 1. In this paper, we will prove that a (d, k, 1)-digraph is always out-regular and that if it is not in-regular, then it must have 2 vertices of in-degree less than d, d vertices of in-degree d + 1 and the remaining vertices will have in-degree d. Furthermore, we will prove there exist no (2, 2, 1)-digraphs and no diregular (2, k, 1)-digraphs for $k \geq 3$.

Keywords: k-geodetic digraph; Moore digraph; the degree/diameter problem; almost Moore digraph Mathematics Subject Classification : 05C12, 05C20

1. Introduction

A digraph which satisfies that for any two vertices u, v in G, there is at most one walk of length at most k from u to v, is called a k-geodetic digraph. If the diameter of a k-geodetic digraph G is k, we say that G is strongly geodetic.

Let G be a k-geodetic digraph with minimum out-degree d. What is then the smallest possible order, N(d, k), of such a G? Letting n_i be the number of vertices in distance i from a vertex v for

Received: 27 December 2013, Revised: 13 September 2014, Accepted: 20 September 2014.

 $i = 0, 1, 2, \ldots$, and realizing that $n_i \ge d^i$, we see that a lower bound is given as

$$N(d,k) \ge \sum_{i=0}^{k} n_i \ge \sum_{i=0}^{k} d^i = M(d,k).$$
(1)

The right hand side of (1) is the so called *Moore bound* for digraphs. The Moore bound is an upper theoretical bound for the so called *degree/diameter problem*, which is the problem of finding the largest possible order of a digraph with maximum out-degree d and diameter k. A digraph with order M(d, k), maximum out-degree d and diameter k is called a *Moore digraph*. If a k-geodetic digraph has M(d, k) vertices, then it must be strongly geodetic, and therefore a Moore digraph. However, the only Moore digraphs are (k + 1)-cycles (d = 1) and complete digraphs, K_{d+1} (k = 1), see [1] or [2], thus for $d \ge 2$ and $k \ge 2$ we are interested in knowing if the order for a k-geodetic digraph with minimum out-degree d could be M(d, k) + 1. We say that a k-geodetic digraph G of minimum out-degree d and order M(d, k) + 1 is a (d, k, 1)-digraph or that it has excess one.

Notice that (k + 2)-cycles and (k + 1)-cycles with a vertex having an arc to a vertex on the (k + 1)-cycle are (1, k, 1)-digraphs and that complete digraphs K_{d+2} with at most one arc from each vertex deleted are (d, 1, 1)-digraphs. In the remaining part of this paper, we will thus assume $d \ge 2$ and $k \ge 2$.

In this paper, we will specify some further properties of the (d, k, 1)-digraphs, especially we will show that they have diameter k + 1, and that if a (d, k, 1)-digraph is not diregular, then it is out-regular and there will be exactly d vertices of in-degree d + 1, two vertices of in-degree less than d and the remaining vertices will have in-degree d. In the last section, we will show that there exist no (2, 2, 1)-digraphs and no diregular (2, k, 1)-digraphs.

2. Results

Let an *i*-walk denote a walk of length *i* and $a \leq i$ -walk denote a walk of length at most *i*. Furthermore, let $N_i^+(u)$ denote the multiset of all vertices which are end vertices in an *i*-walk starting at the vertex *u*, notice that $N_0^+(u) = \{u\}$ and $N_1^+(u) = N^+(u)$. Also let $T_i^+(u) = \bigcup_{j=0}^i N_j^+(u)$, thus it is the multiset of all vertices which are end vertices in $a \leq i$ -walk starting at the vertex *u*. Notice that for *k*-geodetic digraphs $N_i^+(u)$ and $T_i^+(u)$ are sets when $i \leq k$. Looking at (d, k, 1)-digraphs, we will often depict all the $\leq (k + 1)$ -paths from some arbitrary vertex *u*, thus the vertices in the multiset $T_{k+1}^+(u)$.

The first important result is that a (d, k, 1)-digraph G is in fact out-regular, as if we assume the contrary, that there is a vertex $u \in V(G)$ with $d^+(u) \ge d + 1$, we get that

$$|V(G)| \ge |T_k^+(u)|$$

= 1 + (d + 1) + (d + 1)d + (d + 1)d^2 + ... + (d + 1)d^{k-1}
= M(d, k) + M(d, k - 1),

a contradiction as M(d, k-1) > 1 for $k \ge 2$.

An immediate consequence of a (d, k, 1)-digraph being out-regular, is that it has diameter k+1 which follows in the following lemma.

Lemma 2.1. Let G be a (d, k, 1)-digraph, then

- for each vertex u ∈ V(G) there exists exactly one vertex o(u) ∈ V(G) such that dist(u, o(u)) = k + 1,
- for any two vertices, $u, v \neq o(u)$ there is exactly one $\leq k$ -path from u to v.

Proof. As we know G is out-regular and the order is M(d, k) + 1, the second statement follows. Let $u \in V(G)$ be any vertex and let o(u) be the unique vertex not reachable with $a \leq k$ -path from u, then we just need to prove $d^{-}(o(u)) > 0$. Assume the contrary, that $d^{-}(o(u)) = 0$, then o(u) = o(v) for all $v \in V(G) \setminus \{o(u)\}$. But then $G \setminus \{o(u)\}$ will be a Moore digraph of degree $d \geq 2$ and diameter $k \geq 2$, a contradiction. Hence $d^{-}(o(u)) > 0$ for all $u \in V(G)$ and thus dist(u, o(u)) = k + 1.

The unique vertex o(u) with dist(u, o(u)) = k + 1 will be called the *outlier* of u. So a (d, k, 1)-digraph is out-regular of out-degree d and has diameter k + 1. Showing that a (d, k, 1)-digraph G is also in-regular is not as straightforward. We will prove that if it is not in-regular, then there are exactly two vertices of in-degree less than d, d vertices of in-degree d + 1 and the remaining vertices are of in-degree d. Let $S' = \{v \in V(G) | d^-(v) > d\}$ and $S = \{v \in V(G) | d^-(v) < d\}$, then we get the following lemmas and theorem.

Lemma 2.2. Let G be a (d, k, 1)-digraph, then

- $|S'| \leq d$ and $d^-(v) = d + 1$ for all $v \in S'$,
- $S' \subseteq N^+(o(u))$ for all $u \in V(G)$.

Proof. Assume $u \in V(G)$ and $v \notin N^+(o(u))$, then as u must reach all in-neighbors of v in $\leq k$ -paths, we must have $d^+(u) \geq d^-(v)$. If not, then there will exist an out-neighbor u' of u which has two $\leq k$ -paths to v, a contradiction. Now, if $v \in N^+(o(u))$, then u must reach all in-neighbors of v, except o(u), in a $\leq k$ -path. Thus with the same arguments as before, we must have $d^+(u) \geq d^-(v) - 1$. Thus all vertices in S' must have in-degree d + 1 and both statements follows, as $|N^+(o(u))| = d$.

Lemma 2.3. If $S' \neq \emptyset$, then |S'| = d.

Proof. As a (d, k, 1)-digraph is out-regular, its average in-degree must be d and thus

$$\sum_{v \in S'} (d^-(v) - d) = \sum_{v \in S} (d - d^-(v)) = |S'|.$$

Now let $v \in S'$, then we know $|N^-(v)| = |N_1^-(v)| = d + 1$ and $|N_t^-(v)| \ge d|N_{t-1}^-(v)| - \epsilon_t$ for $1 < t \le k$, where $\epsilon_2 + \epsilon_3 + \ldots + \epsilon_k \le |S'|$. As all vertices in $T_k^-(v)$ are distinct, it implies that

$$|V(G)| \ge \sum_{i=0}^{k} |N_i^{-}(v)|.$$
(2)

www.ejgta.org

Estimating the above sum, we get a safe lower bound by letting $\epsilon_2 = |S'|$ and $\epsilon_t = 0$ for all $3 \le t \le k$, thus

$$\begin{split} |V(G)| &\geq 1 + |N^{-}(v)| + |N^{-}_{2}(v)| + |N^{-}_{3}(v)| + \ldots + |N^{-}_{k}(v)| \\ &\geq 1 + (d+1) + ((d+1)d - |S'|)(1 + d + \ldots + d^{k-2}) \\ &= 2 + d + d^{2} + \ldots + d^{k} + (d - |S'|)(1 + d + \ldots + d^{k-2}) \\ &= M(d,k) + 1 + (d - |S'|)M(d,k-2). \end{split}$$

But as G is a (d, k, 1)-digraph, we have |V(G)| = M(d, k) + 1, which together with the preceding inequality and Lemma 2.2 gives |S'| = d.

As a consequence of the above proof, we have that $S \subseteq N^-(v)$ for all $v \in S'$.

Theorem 2.1. Let G be a (d, k, 1)-digraph. If G is not diregular, then we have $S = \{z, z'\}$ where $o(u) \in S$ for all $u \in V(G)$.

Proof. Assume G is not diregular, thus we can assume $S' = \{u_1, u_2, \ldots, u_d\}$ where $d^-(u_i) = d + 1$ and $o(u) \in N^-(u_j)$ for all $u \in V(G)$ and $j = 1, 2, \ldots, d$ according to Lemmas 2.2 and 2.3. Moreover, from the proof of Lemma 2.3 we see that $dist(v, u_i) \leq k$ for all $v \in G$ and $i = 1, 2, \ldots, d$.

Now let $N^-(u_1) = \{z_1, z_2, \ldots, z_{d+1}\}$ where $z_1 = o(u_1)$. Then $S' \cap T^-_{k-1}(z_1) = \emptyset$, as otherwise (z_1, u_j, \ldots, z_1) will be a $\leq k$ -cycle for some $j = 1, 2, \ldots, d$. Also, no two vertices u_i and u_j can belong to the same $T^-_{k-1}(z_l)$ for $1 \leq l \leq d+1$, as if they did, (z_1, u_i, \ldots, z_l) and (z_1, u_j, \ldots, z_l) would be two distinct $\leq k$ -paths. Thus we can assume $S' \cap T^-_{k-1}(z_l) = \{u_l\}$ for $2 \leq l \leq d$ and $dist(u_l, z_l) = k - 1$, as otherwise there will be two $\leq k$ -walks $(z_1, u_l, \ldots, z_l, u_1)$ and (z_1, u_1) . As $(o(u), u_i)$ is an arc for all $u \in V(G)$ and $i = 1, 2, \ldots, d$ none of the vertices z_2, z_3, \ldots, z_d can be the outlier of any vertex in G, as otherwise $(o(u) = z_l, u_l, \ldots, z_l)$ will be a k-cycle. Thus $o(u) \in \{z_1, z_{d+1}\}$ for all $u \in V(G)$.

Finally we wish to show that $S = \{z_1, z_{d+1}\}$. Assume the contrary, thus for some $2 \le l \le d$ we have $d^-(z_l) < d$ and $o(u) \ne z_l$ for all $u \in V(G)$, as $S \subseteq N^-(u_1)$. But then

$$|V(G)| \le 1 + (d-1)(1+d+d^2+\ldots+d^{k-1}) + 1$$

= $M(d,k) - M(d,k-1) + 1$
< $M(d,k) + 1$

as $dist(u_l, z_l) = k - 1$ and $dist(u_j, z_l) \ge k$ for all $j \ne l$. Thus $S \subseteq \{z_1, z_{d+1}\}$ and as $\sum_{v \in S'} (d^-(v) - d) = d = \sum_{v \in S} (d - d^-(v))$ and $d^-(u) > 0$ for all $u \in V(G)$ the result follows.

If G is diregular, we get the following useful lemma.

Lemma 2.4. Let G be a diregular (d, k, 1)-digraph, then the mapping $o : V(G) \mapsto V(G)$ is an automorphism.

Proof. Let A be the adjacency matrix of G, then due to the properties of G we get

$$I + A + A^2 + \ldots + A^k = J - P,$$
(3)

where J is the matrix with all entries equal to 1 and P is a permutation matrix with entry $P_{ij} = 1$ if o(i) = j and $P_{ij} = 0$ otherwise.

Now, as we know G is diregular, we know that AJ = JA, and as the left hand side of (3) is a polynomial in A, we must also have PA = AP, thus o is an automorphism.

Notice that if G is diregular there will be exactly d paths of length k + 1 from a given vertex u to o(u), as all u's out-neighbors must reach o(u) in k-paths and if there were more than d paths of length k + 1, one of u's out-neighbors would have more than one $\leq k$ -path to o(u), a violation of the definition of (d, k, 1)-digraphs.

3. (2, k, 1)-digraphs

In this section we will assume d = 2 and prove the non-existence of (2, 2, 1)-digraphs and diregular (2, k, 1)-digraphs.

Theorem 3.1. There are no (2, 2, 1)-digraphs.

Proof. Assume G is a (2,2,1)-digraph, then it has 8 vertices and we can depict the relationship between the vertices in $T_3^+(1)$ as in Fig. 1, where we can see o(1) = 8.

Figure 1. $T_3^+(1)$.

Assume G is not diregular, then we know from Theorem 2.1 that $d^-(8) = 1$ and there exist another vertex $z \in V(G)$ with $d^-(z) = 1$ and o(3) = o(6) = z. Furthermore we know $N^+(8) = N^+(z) = \{u_1, u_2\}$ with $d^-(u_i) = 3$ for i = 1, 2. Notice that $6 \notin \{u_1, u_2\}$, as otherwise G would contain a 2-cycle, (6, 8, 6). As the diameter of G is 3, we must have dist(2, 6) = 2 for 2 to reach 8 and thus o(2) = 8. Assume without loss of generality that $6 \in N^+(4)$. Then for 5 to reach 8 we must have $3 \in N^+(5)$, as $N^-(6) = \{3, 4\}$ and $4 \notin N^+(5)$, as otherwise (2, 4) and (2, 5, 4) will be two distinct \leq 2-paths. The only vertices which 2 cannot reach are 1 and 7. If $7 \in N^+(5)$ we have (5, 7) and (5, 3, 7) as \leq 2-paths, which is a contradiction. If instead $1 \in N^+(5)$ then we have the \leq 2-paths (5, 1, 3) and (5, 3) another contradiction.

Now assume that G is diregular and recall that then o is an automorphism, thus we can assume $8 \in N^+(5)$ as $o(2) \neq 8$. Then, we see that $o(2) \neq 6$, as otherwise there would be a 2-cycle (6, 8, 6)

as o is an automorphism, a contradiction. So there will be a ≤ 2 -path from 2 to 6, but $6 \notin N^+(5)$ as otherwise there are two ≤ 2 -paths from 5 to 8, namely (5,8) and (5,6,8). Thus $6 \in N^+(4)$, and in the same manner we see that $5 \in N^+(7)$. Let u and v be the other out-neighbor of 4 and 5 respectively, and w and z the other out-neighbor of 6 and 7 respectively.

As 2 has to reach vertex 1,3 and 7 and at most one of them can be the outlier of 2, we must have $u \in \{1,7\}$ and $v \in \{1,3\}$, as if u = 3 there will exist two ≤ 2 -paths from 4 to 6, namely (4,6) and (4,3,6) and if v = 7 we will get a 2-cycle, (7,5,7). Similar we see $z \in \{1,4\}$ and $w \in \{1,2\}$.

Now assume o(2) = 1, hence $o(3) \neq 1$ and (o(1), o(2)) = (8, 1) is an arc. Then u = 7 and v = 3, and as o is an automorphism, we must have z = 1, as if w = 1 we will have the two ≤ 2 -paths, (6, 1) and (6, 8, 1). But then (7, 1, 3) and (7, 5, 3) are both 2-paths from 7 to 3, a contradiction.

Instead assume o(2) = 3, thus u = 7 and v = 1 and (o(1), o(2)) = (8, 3) is an arc. But then (5, 1, 3) and (5, 8, 3) are both 2-paths from 5 to 1. So we can safely assume o(2) = 7, thus u = 1 and v = 3, but then (5, 3, 7) and (5, 8, 7) are both 2-paths from 5 to 7, another contradiction.

Theorem 3.2. No diregular (2, k, 1)-digraph exists for $k \ge 2$.

Proof. Due to Theorem 3.1 we can assume k > 2 and we label the vertices in $T_{k+1}^+(1)$ as in Fig. 2. First of all, notice that for all $u \in V(G)$ we obviously have $o(u) \notin T_k^+(u)$, so we must have $o(2) \in T_{k-1}^+(3) \cup \{1\}$. We also see that $o(2) \notin T_{k-2}^+(6)$, as otherwise there will be two $\leq k$ -paths from 6 to o(2), the one in $T_{k-2}^+(6)$ and $(6, 12, \ldots, 3 \cdot 2^{k-1}, 2^{k+1} = o(1), o(2))$, a contradiction.

Figure 2. $T_{k+1}^+(1)$.

Now, let $A = N_{k-1}^+(4)$ and $B = N_{k-1}^+(5) \setminus \{2^{k+1}\}$, so $|A| = 2^{k-1}$ and $|B| = 2^{k-1} - 1$. Then we will look at how $(\{1\} \cup T_{k-1}^+(3)) \setminus o(2)$ is distributed on A and B. For any arc (u, v) in G, we must have that u and v will not both be in A and not both in B, as otherwise there would be two $\leq k$ -paths from either 4 or 5 to v. We observe that $3 \cdot 2^{k-1} \notin B$, as otherwise there would be two $\leq k$ -paths from 5 to 2^{k+1} , namely $(5, 11, \ldots 3 \cdot 2^{k-1} - 1, 2^{k+1})$ and $(5, \ldots, 3 \cdot 2^{k-1}, 2^{k+1})$. So we

must have $3 \cdot 2^{k-1} \in A$, $3 \cdot 2^{k-2} \in B$, $3 \cdot 2^{k-3} \in A$, and so on, until we reach vertex 6. This implies that $N_{k-2}^+(6) \in A$, $N_{k-3}^+(6) \in B$, $N_{k-4}^+(6) \in A$ and so on, until we get either $6 \in A$ if k is even or $6 \in B$ if k is odd.

Let $a = |A \cap T_{k-2}^+(6)|$ and $b = |B \cap T_{k-2}^+(6)|$, so $a + b = 2^{k-1} - 1$. Now, if k is even we let

$$a_e = a = \sum_{i=0}^{\frac{k}{2}-1} 2^{2i} = -\frac{1}{3} + \frac{2}{3} \cdot 2^{k-1}$$

and

$$b_e = b = \sum_{i=0}^{\frac{k}{2}-2} 2^{2i+1} = -\frac{2}{3} + \frac{1}{3} \cdot 2^{k-1}$$

Similarly, if k is odd we let

$$a_o = a = \sum_{i=0}^{\frac{k-3}{2}} 2^{2i+1} = -\frac{2}{3} + \frac{2}{3} \cdot 2^{k-1}$$

and

$$b_o = b = \sum_{i=0}^{\frac{k-3}{2}} 2^{2i} = -\frac{1}{3} + \frac{1}{3} \cdot 2^{k-1} = \frac{1}{2}a_o.$$

We start by assuming that o(2) = 1, then if k is even we see that vertex 3 must be in B, so $7 \in A$, $\{14, 15\} \subseteq B, \ldots, N_{k-2}^+(7) \subseteq A$. Thus

$$|A| = 2 \cdot a_e = 2\left(-\frac{1}{3} + \frac{2}{3} \cdot 2^{k-1}\right) > 2^{k-1}$$

as k > 2, a contradiction. If k is odd, we see that vertex 3 must be in A, so $7 \in B$, $\{14, 15\} \subseteq A, \ldots, N_{k-2}^+(7) \subseteq A$, thus

$$|A| = 2a_o + 1 = 2\left(-\frac{2}{3} + \frac{2}{3} \cdot 2^{k-1}\right) + 1 > 2^{k-1}$$

as k > 2, yet a contradiction. So, we know due to symmetry that $1 \notin \{o(2), o(3)\}$.

Now, assume that $o(2) \neq 3$. Then, we know the distribution of all the vertices in $T_{k-1}^+(3) \cup \{1\}$ except for those in $T_i^+(o(2))$, where *i* is given by dist(3, o(2)) = k - 1 - i. Assume i = 0, thus $o(2) \in N_{k-2}^+(7)$, or that $N^+(o(2))$ is in the same set (*A* or *B*) as $N_{k-1-i}^+(6)$, then we see that $|A| \geq 2a > 2^{k-1}$, a contradiction. So, we can assume there exist vertices *u* and *v*, such that $N^+(o(2)) = \{u, v\} \subseteq T_{k-2}^+(7)$ and that not both *u* and *v* are in the same set (*A* or *B*) as $N_{k-1-i}^+(6)$.

For even *i*, let c_e denote the number of vertices in every second layer of $T_i^+(o(2))$ such that $N_i^+(o(2))$ is not one of those layers, then

$$c_e = \sum_{j=0}^{\frac{i}{2}-1} |N_{2j+1}^+(o(2))| = 2(1+2^2+\ldots+2^{i-2}) = \frac{2}{3} \cdot 2^i - \frac{2}{3}.$$

Let d_e denote the number of vertices in the remaining layers, thus

$$d_e = \sum_{j=0}^{\frac{i}{2}-1} |N_{2j+2}^+(o(2))| = 2c_e$$

For odd *i*, let c_o denote the number of vertices in every second layer, where $N_i^+(o(2))$ is not one of those layers, thus

$$c_o = \sum_{j=0}^{\frac{i-3}{2}} |N_{2j+2}^+(o(2))| = \frac{1}{3}(2^{i+1}-1) - 1 = \frac{1}{3} \cdot 2^{i+1} - \frac{4}{3}$$

and the number of vertices in the remaining layers is then

$$d_o = \sum_{j=0}^{\frac{i-1}{2}} |N_{2j+1}^+(o(2))| = 2c_o + 2.$$

We will now count the number of vertices in A depending on whether k and i are even or odd, and which set (A or B) u and v are in, a total of 8 different scenarios. Notice that exactly one of 1 and 3 will be in A. We will obtain contradictions in some of the scenarios and in the remaining we will obtain that o(2) = 7. Thus, we have proved that $o(2) \in \{3, 7\}$.

If k is even, we get following scenarios:

• *i* even:

-
$$u, v \in A$$
: Then,

$$|A| = 2a_e + 1 + c_e - d_e - 1$$

= $2\left(-\frac{1}{3} + \frac{2}{3} \cdot 2^{k-1}\right) - c_e$
= $\frac{2}{3} \cdot 2^k - \frac{2}{3} \cdot 2^i$.

Now, as we already know $|A| = 2^{k-1}$, we must have i = k - 2, and thus o(2) = 7.

- $u \in A$, $v \in B$: Then, half of the vertices in $T_i^+(o(2)) \setminus \{o(2)\}$, namely $2^i - 1$ vertices, will be in A and the other in B, hence

$$\begin{split} |A| &= 2a_e + 1 - d_e - 1 + 2^i - 1\\ &= 2\left(-\frac{1}{3} + \frac{2}{3} \cdot 2^{k-1}\right) - \frac{4}{3}(2^i - 1) + 2^i - 1\\ &= -\frac{1}{3} + \frac{2}{3} \cdot 2^k - \frac{1}{3} \cdot 2^i \end{split}$$

a contradiction with $|A| = 2^{k-1}$.

www.ejgta.org

• *i* odd:

– $u, v \in B$: Similar to the above argument, we see that

$$\begin{split} |A| &= 2a_e + 1 + c_o - d_o \\ &= 2\left(-\frac{1}{3} + \frac{2}{3} \cdot 2^{k-1}\right) + 1 + c_o - 2c_o - 2 \\ &= -\frac{2}{3} + \frac{4}{3} \cdot 2^{k-1} - \left(\frac{1}{3} \cdot 2^{i+1} - \frac{4}{3}\right) - 1 \\ &= -\frac{1}{3} + \frac{4}{3} \cdot 2^{k-1} - \frac{1}{3} \cdot 2^{i+1}, \end{split}$$

again a contradiction to the fact that $|A| = 2^{k-1}$.

- $u \in A, v \in B$: We see

$$|A| = 2a_e + 1 + 2^i - 1 - d_o$$

= $2\left(-\frac{1}{3} + \frac{2}{3} \cdot 2^{k-1}\right) + 1 + 2^i - 1 - \frac{2}{3}(2^{i+1} - 1)$
= $\frac{2}{3} \cdot 2^k - \frac{1}{3} \cdot 2^i$.

As $|A| = 2^{k-1}$, this implies i = k - 1, but then o(2) = 3, a contradiction to our assumption.

If k is odd we have:

• *i* even:

- $u, v \in A$: Then,

$$|A| = 2a_o + 1 + c_e - d_e - 1$$

= $2\left(-\frac{2}{3} + \frac{2}{3} \cdot 2^{k-1}\right) - c_e$
= $-\frac{2}{3} + \frac{2}{3} \cdot 2^k - \frac{2}{3} \cdot 2^i$,

yet a contradiction to $|A| = 2^{k-1}$.

- $u \in A, v \in B$: We see

$$\begin{aligned} |A| &= 2a_o + 1 - d_e - 1 + 2^i - 1 \\ &= 2\left(-\frac{2}{3} + \frac{2}{3} \cdot 2^{k-1}\right) - \frac{4}{3}(2^i - 1) + 2^i - 1 \\ &= -1 + \frac{2}{3} \cdot 2^k - \frac{1}{3} \cdot 2^i, \end{aligned}$$

a contradiction to $|A| = 2^{k-1}$ and $i \neq 0$.

www.ejgta.org

• *i* odd:

- $u, v \in B$: Similarly, we see that

$$\begin{split} |A| &= 2a_o + 1 + c_o - d_o \\ &= 2\left(-\frac{2}{3} + \frac{2}{3} \cdot 2^{k-1}\right) + 1 + c_o - 2c_o - 2 \\ &= -\frac{4}{3} + \frac{4}{3} \cdot 2^{k-1} - \left(\frac{1}{3} \cdot 2^{i+1} - \frac{4}{3}\right) - 1 \\ &= -1 + \frac{4}{3} \cdot 2^{k-1} - \frac{1}{3} \cdot 2^{i+1}, \end{split}$$

yet another contradiction to the fact that $|A| = 2^{k-1}$.

- $u \in A$, $v \in B$: We see

$$\begin{aligned} |A| &= 2a_o + 1 + 2^i - 1 - d_o \\ &= 2\left(-\frac{2}{3} + \frac{2}{3} \cdot 2^{k-1}\right) + 2^i - \frac{2}{3}(2^{i+1} - 1) \\ &= -\frac{2}{3} + \frac{2}{3} \cdot 2^k - \frac{1}{3} \cdot 2^i. \end{aligned}$$

Then, we must have k = 3 and i = 1, thus o(2) = 7.

To summarize the above, we have $o(2) \in \{3,7\}$ and $o(3) \in \{2,4\}$. Using similar arguments we observe $o(4) \in \{5,10\}$, as $(11, \ldots, 2^{k+1} = o(1), o(2), o(4))$ is a k-path. Now, if o(2) = 3 we get $o(4) \in N^+(o(2)) = \{6,7\}$, but this is a contradiction to our observation. On the other hand, if o(2) = 7 we must have $o(4) \in \{14, 15\}$ again a contradiction.

Acknowledgements

The work was funded by Prof. Carsten Thomassen's Grants 0602-01488B from The Danish Council for Independent Research | Natural Sciences.

References

- [1] W. G. Bridges and Sam Toueg, On the Impossibility of Directed Moore Graphs, *Journal of Combinatorial Theory, Series B*, **29(3)** (1980), 339–341.
- [2] J. Plesník and Š. Znám, Strongly geodetic directed graphs. *Acta Fac. Rerum Natur. Univ. Comenian.*, Math. Publ. **23** (1974), 29–34.