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Abstract

Many graphs such as hypercubes, star graphs, pancake graphs, grids, tori etc are known to be
good interconnection network topologies. In any network topology, the vertices represent the
processors and the edges represent links between the processors. Two most important criteria -
efficiency and reliability of network models - can be studiedwith the help of graph theoretical
techniques. The lexicographic product is a well studied graph product. The distance notions such
as various diameters of a graph help to analyze the efficiencyof any interconnection network.
In this paper, we study some distance notions such as wide diameter, diameter variability and
diameter vulnerability of lexicographic products that could be used in the design of interconnection
networks.
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1. Introduction

The processors of a parallel and distributed system and the connections between the processors
can be represented as an interconnection network. The topological structure of an interconnection
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network can be modelled by a connected graph where the vertices and edges represent sites of the
network and the physical communication links respectively. Many graph theoretic parameters that
are useful to study the efficiency and reliability of an interconnection network are discussed in [6].

A simple graphG = (V,E) with |V | = n and |E| = m is denoted asG = (n,m). The
degreeof a vertexu in G, dG(u) or simply d(u), is the number of edges incident withu in G.
The minimum degree and the maximum degree of a graphG are denoted byδ(G) and∆(G)
respectively. Thedistancebetweenu andv in G, denoted bydG(u, v), is the length of a shortest
path joiningu andv in G. Thediameterof a graphG, diam(G), is the maximum distance between
any two vertices inG. The diameter often measures efficiency of a network with maximum time
- delay or signal degradation. Thediametral verticesof G are two verticesu, v ∈ V (G) such that
d(u, v) = diam(G). A subsetS ⊆ V (G) of vertices is anindependent setif no two vertices of
S are joined by an edge inG. The independent domination numberof a graphG, γi(G), is the
minimum cardinality of a maximal independent set inG. Thevertex connectivity,κ(G) of a graph
G is the minimum number of vertices whose removal fromG makes the graph either disconnected
orK1. Theedge connectivity,κ′(G) of a graphG is the minimum number of edges whose removal
makes the graph disconnected. The network fault tolerance capacity can be measured by studying
the connectivity of the corresponding graph. A good networkmust be hard to disrupt even if some
vertices or edges are being attacked and the transmissions between the processors must remain
connected. For all notions not given here, see [13].

The lexicographic productH1 ◦H2 of any two graphsH1 andH2 is the graph with the vertex-
setV (H1) × V (H2) and two vertices(ui, vx) and(uj, vy) of H1 ◦ H2 are adjacent if eitherui −
uj ∈ E(H1), or ui = uj andvx − vy ∈ E(H2). The necessary and sufficiency condition for the
lexicographic product of two graphsH1 ◦H2 to be connected is thatH1 is connected. IfH1 6= Kn,
then diam(H1 ◦ H2) = diam(H1) and diam(Kn ◦ H) = 2, [7]. In [14], Yang et al. studied the
connectivity of the lexicographic product of graphs and they have proved that ifH1 = (n1, m1) is
a connected simple graph andH2 = (n2, m2) is any simple graph then:

• κ(H1 ◦H2) = κ(H1) |n2|, if H1 is not complete,

• κ(Kn ◦H2) = (n− 1) |n2|+ κ(H2),

• κ′(H1 ◦H2) = min{κ′(H1)n
2
2, δ(H2) + δ(H1)n2}.

Let H1 ∗ H2 be any of the graph products. For any vertexu ∈ H1, the subgraph ofH1 ∗ H2

induced by{u} × V (H2) is theH2-layer atu and is denoted byuH2. For any vertexv ∈ H2, the
subgraph ofH1 ∗H2 induced byV (H1)× {v} is theH1-layer atv and is denoted byHv

1 .
For every integerw, 1 ≤ w ≤ κ(G), any collection of ‘w’ internally vertex disjoint paths

between two verticesu andv of G is termed as thew-containerand it is denoted byCw(u, v). In
Cw(u, v), the parameterw is thewidthof the container. Thelengthof the container is the length of
the longest path inCw(u, v). Thew-wide diameterDw(G) of a graphG is the minimum numberl
such that there is aCw(u, v) of length at mostl between any pair of distinct verticesu andv in G.
Thewide diameterof a graph isDκ(G)(G). This concept was introduced by Hsu [6] to unify the
concepts of diameter and connectivity. The wide diameter ofsome networks are studied in [9] and
[5].
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Vulnerability measures maximum routing delay that can happen because of vertex or edge
faults. Diameter can be used to measure the maximum delay in routing. In this context, the vertex
fault diameter and the edge fault diameter are defined and studied by several authors. Thevertex
fault diameteris f(G) = max{diam(G − S)|S ⊆ V (G), |S| = κ(G) − 1} and theedge fault
diameteris f ′(G) = max{diam(G − F )|F ⊆ E(G), |F | = κ′(G) − 1}, [8]. Chung and Garey
[3] proposed the problem of determining the diameter vulnerability of a graph. In [15] Ye et al.
improves the result of Peyrat [10] and gave a bound as4

√
2t−6 < f ′(G) ≤ max{59, 5

√
2t+7} for

t ≥ 4. The concept of fault diameter was introduced by Krishnamoorthy and B. Krishnamurthy [8].
The problem of diameter vulnerability is proved to be NP-complete by Schoone et al. [11].

The diameter of a graph may change by the addition or the deletion of edges. The following
notations denote thediameter variabilityof a graphG. Let k ≥ 1 be any positive integer.D−k(G)
is the minimum number of edges to be added toG to decrease the diameter by (at least)k and
D0(G) is the maximum number of edges that can be deleted fromG so that the diameter is not
altered. In [1], [2], the diameter variability of the product graphs are discussed. In [12], Wang et
al. studied the diameter variability of cycles and tori. Graham and Harary studied the diameter
variability of hypercubes in [4].

In this paper, we study the wide diameter, the diameter vulnerability and the diameter vari-
ability of the lexicographic product of graphs. We considerboth H1 andH2 to be connected
graphs withV (H1) = {u1, u2, ... , un1

} andV (H2) = {v1, v2, ... , vn2
}. ThenG ∼= H1 ◦H2 has

V (G) = {(u1, v1), (u1, v2), ..., (u1, vn2
), ..., (un1

, v1), ..., (un1
, vn2

)}. SinceH1 ◦K1
∼= K1 ◦H1

∼=
H1, we assume that bothH1 andH2 are different fromK1.

2. Wide diameter of the lexicographic product of graphs

Lemma 2.1. LetG′ ∼= G ◦H. If there exists a container of widthw, 1 ≤ w ≤ κ(G), in G with the
lengthl then there exists a container of widthκ(G)× |V (H)| in G′ with the same lengthl.

Proof. The proof is divided into three cases.

Case 1: Consider(ui, vj) and(uk, vj) in G′ wherei 6= k andi, k ∈ {1, 2, ...n1}.
There exists a container of length at mostl between any two verticesui anduk in G, since there
exists a container of lengthl in G, If P1 = ui − ui+1 − ui+2 − ...− uk−1 − uk is a path in the con-
tainerCw(ui, uk) of G, then(ui, vj)− (ui+1, vj)− (ui+2, vj)− ...− (uk−1, vj)− (uk, vj) is a path
connecting(ui, vj) and(uk, vj) in G′ and(ui, vj) − (ui+1, va) − (ui+2, va)...(uk−1, va) − (uk, vj)
are also paths connecting(ui, vj) and (uk, vj) wherea 6= j anda ∈ {1, 2, ..., n2} in G′. Thus,
corresponding to thew internally vertex disjoint paths inCw(ui, uk) of G, there existw |V (H)|
internally vertex disjoint paths between(ui, vj) and(uk, vj) in G which are of length at mostl.
Since the length of the container inG is l, there exists a pair of verticesux anduy in G such that
the path joiningux anduy is of length exactly equal tol. ThenCw|V (H)|((ux, vj), (uy, vj)) in G′ is
of length exactly equal tol.

Case 2: Consider(ui, vj) and(ui, vk) in G′ wherej 6= k andj, k ∈ {1, 2, ...n2}.
If ui is adjacent toua in G, then both(ui, vj) and(ui, vk) will be adjacent to(ua, v1), (ua, v2), · · ·
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(ua, vn2
) in G′. Thus, there exists at leastd(ui) |V (H)| internally vertex disjoint paths between

(ui, vj) and(ui, vk) which are of length two. So we can say that for any vertexui in G, there exists
Cδ(G)|V (H)|((ui, vj), (ui, vk)) of length two inG′.

Case 3: Consider(ui, vj) and(ua, vb) in G′ wherei 6= a andj 6= b.
Consider the verticesui andua in H1. By the assumption there exists a container of length at most
l in betweenui andua in G. If P1 = ui − ui+1 − ui+2 − ...− ua−1 − ua is a path in the container
Cw(ui, ua), then(ui, vj)− (ui+1, vj)− (ui+2, vj)− ...− (ua−1, vj)− (ua, vb) is a path connecting
(ui, vj) and (ua, vb) in G′ which is of length same as that ofP1. Again, by the structure of the
lexicographic product, there existsw |V (H)| internally vertex disjoint paths between(ui, vj) and
(ua, vb) which is of length at mostl. Since the length of the container inG is l, there exists a pair
of verticesux anduy in G such that the path joiningux anduy is of length exactly equal tol. So
Cw|V (H)|((ux, vj), (uy, vb)) in G′ is of length exactly equal tol.

Since1 ≤ w ≤ κ(G′) andκ(G′) ≤ δ(G′), the result follows.

Theorem 2.1. If G is a connected non-complete graph andH is a connected graph, then
Dκ(G)×|V (H)|(G ◦H)Dκ(G)(G).

Proof. Suppose thatG′ ∼= G ◦H. Thenκ(G′) = κ(G)× |V (H)|.
Let Dκ(G)(G) = k. Then there exists a container of widthκ(G) between any two vertices ofG
which is of length at mostk. Then, by Lemma 2.1, there exists a container of widthκ(G)×|V (H)|
between any two vertices ofG′ which is of length at mostk.
Hence,Dκ(G)×|V (H)|(G ◦H) ≤ Dκ(G)(G).

Let Dκ(G)×|V (H)|(G ◦ H) = k. There exists a container of length at mostk joining (ui, v1)
and (uj, v1). More over there exists a container of width at leastκ(G) between(ui, v1) and
(uj, v1) where all the internal vertices are of the form(ua, v1), a ∈ {1, 2, ..., x, y, ..., n1}. If
(ui, v1), (ux, v1), (uy, v1), ..., (uj, v1) is a path in the container ofG′, thenui − ux − uy − ...− uj

is a path inG. Thus there exist a container of widthκ(G) which is of length at mostk joining ui

anduj in G. Hence,Dκ(G)(G) ≤ Dκ(G)×|V (H)|(G ◦H).

3. Diameter vulnerability of the lexicographic product of graphs

Theorem 3.1. Let G′ ∼= G ◦ H whereG andH are connected graphs withn1, n2 ≥ 3. Then,
f ′(G′) ≤ f ′(G) + diam(H).

Proof. Let G′ ∼= G ◦H. Thenκ′(G′) = min{κ′(G)n2
2, δ(H) + δ(G)n2}. Let ux, uy be a pair of

diametral vertices ofG, by a pathux − ux+1 − ux+2 − ... − uy−1 − uy. Let G′′ be the subgraph
obtained fromG′ after the deletion ofκ′(G′)−1 edges fromG′. Let us consider the following cases.

Case 1: κ′(G′) = δ(H) + n2δ(G).
Case 1a: Letκ′(G′)− 1 edges be deleted fromG-layer ofG′ at vk. Then, the deleted edges are of
the form(ui, vk)− (uj, vk) wherei, j ∈ {1, 2, ...n1}.
Consider any two vertices(ua, vk) and(ub, vk) in G′. If ua − ua1 − ua2 − ...uai − ub is a path
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joining ua and ub in H1 then (ua, vk) − (ua1, vx) −(ua2, vx)− ... - (uai, vx) − (ub, vk) where
k 6= x ∈ {1, 2, ...n2} is a path joining(ui, vk) and(uj, vk) in G′′. Clearly, this length is at most
diam(G).

Case 1b: Letκ′(G′)− 1 edges be deleted fromH-layer ofG′ atui. Then, the deleted edges are of
the form(ui, vj)− (ui, vk) wherej, k ∈ {1, 2, ..., n2}.
If ui+1 is a vertex adjacent toui in G then(ui, vj)− (ui+1, vj)− (ui, vk) is a path of length two in
G′′. Thus the diam(G′) is unaltered by this type of deletion.

Case 1c: Letκ′(G′)− 1 edges deleted fromG′ be any arbitrary collection of edges.
Consider a pair of diametral vertices(ux, vw) and(uy, vw) in G′. Let theκ′(G′)− 1 edges adjacent
to the vertex(ux, vw) except(ux, vw+1) be deleted fromG′ to getG′′. Then,dG′′((ux, vw), (uy, vw))
= diam(G′)+1 by a path(ux, vw)−(ux, vw+1)−(ux+1, vw)−(ux+2, vw)− ...−(uy , vw)−(uy , vw),
wheredG′′((ux, vw), (ux, vw+1)) = 1 anddG′′((ux, vw+1), (uy, vw)) = diam(G′) (see Figure 1).

Figure 1.κ′(G′)− 1 edges adjacent to the vertex(ux, vw) are deleted fromG′.

Consider a pair of diametral vertices(ux, vw) and(uy, vz) in G′. Since, we have already con-
sidered Cases 1a and 1b, there exist a path of length diam(G′) between(ux, vw) and(uy, vz) in
G′′, (ux, vw) − (ux+1, vp) − (ux+2, vq) − (ux+3, vr)... − (uy−1, vs) − (uy, vz), where the vertex
(ux, vw) in uxH-layer will be adjacent to at least one vertex (say)(ux+1, vp) in ux+1H-layer, the ver-
tex (ux+1, vp) in ux+1H-layer will be adjacent to at least one vertex (say)(ux+2, vq) in ux+2H-layer
and so on (see Figure 2).

Case 2: κ′(G′) = κ′(G)n2
2.

Let E ′ be the minimal edge cut ofG. Then corresponding to each edgeui − uj ∈ E ′, (ui, vr) −
(uj, vr), (ui, vp)− (uj, vq) wherer ∈ {1, 2, ... , n2 − 1}, q 6= p ∈ {1, 2, ... , n2} are deleted. Also,
κ′(G)−1 edges are deleted from theG - layer atvn2

in G′. Now,dG′′((ua, vn2
), (ub, vn2

)) ≤ f ′(G)
by a path(ua, vn2

)−(ua+1, vn2
)− ... −(ub−1, vn2

)−(ub, vn2
), since the deletion ofκ(G)−1 edges

from G increases the diam(G) to at mostf ′(G). If vw ∈ V (H) thendG′′((ua, vw), (ub, vw)) ≤
f ′(G) + diam(H) by a path(ua, vw)−(ua, vw+1)− ... −(ua, vn2

)−(ua+1, vn2
)− ... −(ub−1, vn2

)−
(ub, vw) wheredG′′((ua, vw), (ua, vn2

)) ≤ diam(H) anddG′′((ua, vn2
), (ub, vw)) ≤ f ′(G). Simi-

larly, the distance between any two vertices inG′ is at mostf ′(G) + diam(H).
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Figure 2. Arbitrary collection ofκ′(G′)− 1 edges are deleted fromG′.

Remark: ConsiderH ◦ P3 whereH is the graph obtained by taking two copies ofKn, n > 3
which is joined by an edge. For this graphf ′(H ◦ P3) = 5, sincef ′(H) = 3 and diam(P3) = 2.
Thus the above bound is strict for an infinite family of graphs.

Theorem 3.2. If G′ ∼= G ◦H is a connected graph, thenf(G′) ≤ max{f(G), f(H)}.

Proof. Let S be a collection ofκ(G′) − 1 vertices inG′. WhenS is deleted fromG′ the new
subgraph obtained is denoted asG′′. Let ux, uy be a pair of diametral vertices ofG, by a path
ux − ux+1 − ux+2 − ...− uy−1 − uy. Let us consider the following cases.

Case 1: G′ ∼= Kn1
◦H.

Then diam(G′) = 2 andκ(G′) = (n1−1)n2+κ(H). Let theκ(G′)−1 vertices adjacent to(ui, vj)
in theH-layer atui except(ui, vs), be deleted. Then,d((ui, vp), (ui, vq)) ≤ f(H), since the dele-
tion of κ(H)− 1 vertices fromH increases the diam(H) to at mostf(H). Thusf(G′) ≤ f(H).

Case 2: G′ ∼= G ◦H whereκ(G) = 1 andG 6= K2.
Then diam(G′) = diam(G) andκ(G′) = κ(G) |V (H)| = n2. Now, let us consider the following
sub cases.

Case 2a: LetS = {(ux+1, vp)}, whereux+1 is a neighbour ofux andp ∈ {1, 2, 3, ..., n2}.
Consider a pair of diametral vertices(ux, va) and(uy, va) in G′. Let then2 − 1 vertices except
(ux+1, vn2

) from S be deleted. Then,dG′′((ux, va), (uy, va)) = diam(G′) by a path(ux, va) −
(ux+1, vn2

) − (ux+2, va) − (ux+3, va) − ... − (uy−1, va) − (uy, va). Thus, the diam(G′) remains
the same after removing vertices in S.

Case 2b: LetS = {(ui, vp)} wherep ∈ {1, 2, 3, ..., n1}.
Let n2 − 1 vertices fromS be deleted. Clearly the distance between any two vertices inG′ is not
affected by the removal of these vertices.
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Case 2c: Let S be any arbitrary collection of vertices.
Consider a pair of diametral vertices(ux, vp) and(uy, vq) inG. Let theκ(G′)−1 vertices fromG′ be
deleted. Then,dG′′((ux, vp), (uy, vq)) = diam(G) by a path(ux, vp)− (ux+1, va)− (ux+2, vb)− ...−
(uy, vq), since we have already considered the case of the deletion ofvertices of the form(ui, vp)
wherei ∈ {1, 2, 3, ..., n1}, there exist at least one vertex (say)(ui, vj) for eachj ∈ {1, 2, ... , n2}
and are adjacent to the vertices(ur, vp) wherep ∈ {1, 2, 3, ..., n2}. Thus the diam(G′) remains the
same.

Case 3: G′ ∼= G ◦H whereκ(G) > 1.
Thenκ(G′) ≥ 2n2. We shall prove the theorem by considering the following subcases.

Case 3a: LetS = {(ui, vp)} wherei ∈ {1, 2, 3, ..., n1}.
Then, the diam(G′′) = diam(G′).

Case 3b: LetS be any arbitrary collection of vertices.
Consider(up, vw) and(uq, vw) in G′. Let the vertices(ui, vp), where{ui} is a collection ofκ(G)
vertices which form a vertex cut ofG andp ∈ {1, 2, 3, ..., n2 − 1}, be deleted. Now, from theG
- layer atvn2

in G′, only κ(G) − 1 vertices can be deleted, otherwiseG′′ becomes disconnected.
Then,dG′′((up, vn2

), (uq, vn2
)) ≤ f(G) by a path(up, vn2

) − (up+1, vn2
) − (up+2, vn2

) − ... −
(uq−1, vn2

)− (uq, vn2
), since the deletion ofκ(G)− 1 vertices fromG increases the diameter to at

mostf(G). Now, d((up, vw), (uq, vw)) ≤ f(G) by a path(up, vw) − (up+1, vn2
) − (up+1, vn2

) −
...− (uq−1, vn2

)− (uq, vw) (see Figure 3). Thus,f(G′) ≤ f(G).

Figure 3. The vertices(ui, vp), where{ui} is a vertex cut ofG andp ∈ {1, 2, 3, ..., n2 − 1} are deleted.

Consider a pair of diametral vertices(ux, vw) and(uy, vz) in G′. Let theκ(G′)− 1 vertices be
deleted. Since, we have already considered Cases 3a, there exist a path of length diam(G′) between
(ux, vw) and(uy, vz) inG′′, (ux, vw)−(ux+1, vp)−(ux+2, vq)−(ux+3, vr)−...−(uy−1, vs)−(uy, vz),
where the vertex(ux, vw) in uxH-layer will be adjacent to at least one vertex (say)(ux+1, vp) in
ux+1H-layer, the vertex(ux+1, vp) in ux+1H-layer will be adjacent to at least one vertex (say)
(ux+2, vq) in ux+2H-layer and so on (see Figure 4). Thus, the diam(G′) remains the same after
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removing vertices in S.

Figure 4. Arbitrary collection ofκ(G′)− 1 vertices are deleted fromG′.

From the above cases, the result follows.

4. Diameter variability of the lexicographic product of graphs

Theorem 4.1. LetG′ ∼= G ◦H whereG andH are connected graphs. Then,D0(G′) ≥ n1m2.

Proof. Consider a pair of diametral vertices(ux, vw) and(uy, vz) in G′ whereux anduy in G are
joined by a pathux − ux+1 − ux+2...uy−1, uy. Let the edges(ui, vp) − (ui, vq) wherep, q ∈
{1, 2, ..., n2} and i ∈ {1, 2, ..., n1} in G be deleted to getG′′. Then, dG′′((ux, vw), (uy, vz))
= diam(G′) by a path(ux, vw) − (ux+1, vw) − (ux+2, vw) − ... − (uy−1, vw) − (uy, vz). Also,
dG′′((ui, vp), (ui, vq)) = 2 by a path(ui, vp)− (ui+1, vp)− (ui, vq). Thus, the distance between any
two vertices inG′′ is not affected by the removal of these edges.

Theorem 4.2. LetG′ ∼= G ◦H whereG andH are connected graphs with diam(H) < diam(G).
Then,D0(G′) ≥ n2

2m1 − (m1n2 + 2m1m2).

Proof. Letux, uy be a pair of diametral vertices ofG by a pathux−ux+1−ux+2− ...−uy−1−uy.

Suppose thatdH(vp, vq) = L by a pathvp − vp+1 − vp+2 − ... − vq−1 − vq. Consider a pair of
vertices(ux, vp) ,(uy, vq) in G′. By Theorem 4.1, even if then1m2 edges(ui, vp)− (ui, vq) where
p, q ∈ {1, 2, ...n2} andi ∈ {1, 2, ...n1} are deleted, the diam(G′) remains the same. Now, let the
n2
2m1 − (m1n2 + 2m1m2) edges(ui, vp) − (uj, vq) wherei, j ∈ {1, 2, ...n1}, p, q ∈ {1, 2, ...n2},

vp’s andvq’s are nonadjacent vertices inH, be deleted to getG′′. ThendG′′((ux, vp), (uy, vq)) =
diam(G′) by a path(ux, vp) − (ux+1, vp) − (ux+2, vp) ... (ui, vp) − (ui+1, vp+1) ... (uy−2, vq−2) −
(uy−1, vq−1)− (uy, vq) wheredG′′((ux, vp), (ui, vq)) = diam(G)− L, anddG′′((ui, vp), (uy, vq)) =
L. Also,dG′′((ui, vw), (ui, vz)) = diam(H) anddG′′((ui, vw), (ui, vz)) = diam(H)+ 1 according as
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dH(vw, vz) is even or odd respectively. Thus, diam(G′) = diam(G′′).
Hence,D0(G′) ≥ n1m2 + n2

2m1 − (n1m2 +m1n2 + 2m1m2) = n2
2m1 − (m1n2 + 2m1m2).

Theorem 4.3. If G′ ∼= G ◦H thenD−k(G′) ≤ γi(H)D−(k+2)(G).

Proof. Let dG(ux, uy) = diam(G) and letel edges are added toG to decrease the diameter ofG by
k+2. Consider a pair of diametral vertices(ux, vq) and(uy, vr) in G′. Let theel edgesuxva−ujva
wherea ∈ γi(H2), be added inG′. Then, clearlydG′((ux, va), (uy, va)) = diam(G′)−(k+2). Also,
dG′((ux, vq), (uy, vr)) = diam(G′)− k by a path(ux, vq)− (ux, va)− (uj, va)− ... − (uy−1, va)−
(uy, vr) wheredG′((ux, vq), (ux, va)) = dG′((uy−1, va), (uy, vr)) = 1 anddG′((ux, va), (uy−1, va))
= diam(G)− (k + 2). Thus,D−k(G′) ≤ γi(H)D−(k+2)(G).

Corollary 4.1. LetG′ ∼= G◦H. Then,D−k(G′) ≤ D−k(G) where the edges added are not incident
on the diametral vertices ofG.

Proof. Let dG(ux, uy) = diam(G) and letel edges are added toG to decrease the diameter of
G by k, where added edges are not incident on the diametral vertices of G. Consider a pair
of diametral vertices(ux, vq) and (uy, vr) in G′. Let the el edges whose end vertices are of
the form (ui, v1), (uj, v1), be added inG′. Then,dG′((ux, v1), (uy, v1)) = diam(G′) − k. Also,
dG′((ux, vq), (uy, vr)) = diam(G′)− k by a path(ux, vq)− (ux+1, v1)− ... − (uy−1, v1)− (uy, vq)
wheredG′((ux, vq), (ux+1, v1)) = dG′((uy−1, v1), (uy, vq)) = 1 anddG′((ux+1, v1), (uy−1, v1)) =
diam(H)− 2− k. Thus, the distance between any two vertices is at most diam(G′)− k.

Corollary 4.2. If G ∼= Pn1
◦ Pn2

thenD−k(G) = 1 wherek 6= n1/2.

Corollary 4.3. If G ∼= Cn1
◦Cn2

thenD−k(G) = 2 whenn1 ≥ 8 and1 ≤ k ≤ ⌊n1/2⌋−D∗(Cn1
).

Proof. In [12], Wang et al. proved thatD−k(Cm) = 2 for all m ≥ 8 and1 ≤ k ≤ ⌊m/2⌋ −
D∗(Cm), whereD∗(Cm) denote the minimum diameter among those graphs obtained by adding
two edges [e1 = (0, ⌊m/2⌋) ande2 = (⌊m/4⌋ , ⌈3m/4⌉) for m ≡ 2 mod 4 ore1 = (0, ⌊m/2⌋) and
e2 = (⌊m/4⌋ , ⌊3m/4⌋) for m ≡ 0,1,3 mod 4] toCm. Note that, in this case,

D∗(Cm) =

{

⌊m/4⌋ + 1 m ≡ 0, 1, 2 mod 4,
⌊m/4⌋ + 2 m ≡ 3 mod 4.

Then, the corollary follows from the above result.

5. Concluding Remarks and Further Scope

Two main interconnection network models - grids and tori- motivated us to study the graph
product structures from the view point of interconnection models. We have seen several papers
in which the distance notions have been studied and the graphproduct considered mainly in those
papers was the Cartesian product. In [14], connectivity of Lexicographic product is studied and this
motivated us to think the Lexicographic product as a networkmodel. In this paper, we have studied
wide diameter, diameter variability and fault diameter of the lexicographic product of graphs since
it is important in the design of interconnection networks and we established some bounds for
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these parameters. We have noted thatH1 ◦H2 has better wide diameter, diameter variability, fault
diameter as compared to that ofH1. HenceH1 ◦ H2 can be a better network model as compared
to that ofH1. One can extend this work by characterizing the graphs for which the equality of the
bounds is attained. We have discussed the diameter notions based on connectivity. One may think
of these notions based on some other graph parameter which may be helpful to study the reliability
and efficiency of the model.
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[7] W. Imrich, S. Klavžar, R. Hammack,Handbook of Product Graphs, CRC Press, 2011.

[8] M.S. Krishnamoorthy, B. Krishnamurthy, Fault diameterof interconnection networks,Com-
put. Math. Appl.13 (1987), 577–582.

[9] B. Liu, X. Zhang, Wide diameter and diameter of networks,Ars Combin.89 (2008).

[10] C. Peyrat, Diameter vulnerability of graphs,Discrete Appl. Math.9 (1984) 245–250.

[11] A.A. Schoone, H.L. Bodlaeder, J. van Leeuwen, Diameterincrease caused by edge deletion,
J. Graph Theory11 (3) (1987), 409–427.

267



www.ejgta.org

Some diameter notions in lexicographic product of graphs| Chithra M R et al.

[12] J.J. Wang, T.Y. Ho, D. Ferrero, T.Y. Sung, Diameter variability of cycles and tori.,Inform.
Sci.17 (2008), 2960–2967.

[13] D.B. West,Introduction to Graph Theory, Prentice Hall of India, 2003.

[14] C. Yang, J.M. Xu, Connectivity of lexicographic product and direct product of graphs,Ars
Combin.111 (2013), 3–12.

[15] H.-X. Ye, C.Yang, J.-M. Xu, Diameter vulnerability of graphs by edge deletion,Discrete
Math.309 (4) (2009), 1001–1006.

268


