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Abstract

A graph G of order |V (G)| = p and size |E(G)| = q is called super edge-magic if there exists a
bijection f : V (G) ∪ E(G) → {1, 2, 3, · · · , p + q} such that f(x) + f(xy) + f(y) is a constant
for every edge xy ∈ E(G) and f(V (G)) = {1, 2, 3, · · · , p}. Furthermore, the super edge-magic
deficiency of a graph G, µs(G), is either the minimum nonnegative integer n such that G ∪ nK1 is
super edge-magic or +∞ if there exists no such integer n. In this paper, we study the super edge-
magic deficiency of join product of a graph which has certain properties with an isolated vertex
and the super edge-magic deficiency of chain graphs.
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1. Introduction

Let G be a finite and simple graph, where V (G) and E(G) are its vertex set and edge set,
respectively. Let p = |V (G)| and q = |E(G)| be the number of the vertices and edges of G,
respectively. Kotzig and Rosa [12] introduced the concepts of an edge-magic labeling and an edge-
magic graph as follows: An edge-magic labeling of a graph G is a bijection f : V (G) ∪ E(G)→
{1, 2, 3, · · · , p + q} such that f(x) + f(xy) + f(y) is a constant k, called the magic constant of
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f , for every edge xy of G. A graph that admits an edge-magic labeling is called an edge-magic
graph. Motivated by the concept of an edge-magic labeling, Enomoto et al. [6] introduced the
concept of a super edge-magic labeling and a super edge-magic graph as follows: A super edge-
magic labeling of a graph G is an edge-magic labeling f of G with the additional property that
f(V (G)) = {1, 2, 3, · · · , p}. Thus, a super edge-magic graph is a graph that admits a super edge-
magic labeling. The next lemma proved by Figueroa-Centeno et al. [7] provides necessary and
sufficient conditions for a graph to be a super edge-magic graph.

Lemma 1.1. [7] A graph G is super edge-magic if and only if there exists a bijective function
f : V (G) → {1, 2, · · · , p} such that the set S = {f(x) + f(y) : xy ∈ E(G)} consists of q
consecutive integers. In this case, f can be extended to a super edge-magic labeling of G with the
magic constant p+ q +min(S).

The next lemma proved by Enomoto et al. [6] gives sufficient condition for non-existence of
super edge-magic labeling of a graph.

Lemma 1.2. [6] If G is a super edge-magic graph, then q ≤ 2p− 3.

In addition to these two lemmas, the notion of dual labeling will also appear frequently in the
next sections. A dual labeling of a super edge-magic labeling f is defined as

f ′(x) = p+ 1− f(x), for all x ∈ V (G),

and
f ′(xy) = 2p+ q + 1− f(xy), for all xy ∈ E(G).

It has been proved in [4] that the dual of a super edge-magic labeling is also a super edge-magic
labeling.

Kotzig and Rosa [12] also proved that for every graph G there exists a nonnegative integer n
such that G ∪ nK1 is an edge-magic graph. This fact motivated them to introduced the concept of
edge-magic deficiency of a graph. The edge-magic deficiency of a graph G, µ(G), is defined as the
minimum nonnegative integer n such that G ∪ nK1 is an edge-magic graph. Motivated by Kotzig
and Rosa’s concept of edge-magic deficiency, Figueroa-Centeno et al. [8] introduce the concept
of super edge-magic deficiency of a graph. The super edge-magic deficiency of a graph G, µs(G),
is defined as either the minimum nonnegative integer n such that G ∪ nK1 is a super edge-magic
graph or +∞ if there exists no such n.

There have been a number of papers dealing with super edge-magic deficiency of graphs. In [1],
Ahmad et al. studied the super edge-magic deficiency of some families related to ladder graphs
and In [2], Ahmad et al. studied the super edge-magic deficiency of unicyclic graphs. In [11],
Ichishima and Oshima investigated the super edge-magic deficiency of complete bipartite graphs
and disjoint union of complete bipartite graphs. Other results can be found in [8, 9] and the latest
developments in these and other types of graph labelings can be found in the survey paper of graph
labelings by Gallian [10]. In this paper, we study the super edge-magic deficiency of join product
graphs as well as the super edge-magic deficiency of some classes of chain graphs.
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2. Super edge-magic deficiency of join product graphs

Let G and H be vertex disjoint graphs. Join product of G and H , denoted by G +H , defined
as a graph with V (G + H) = V (G) ∪ V (H) and E(G + H) = E(G) ∪ E(H) ∪ {xy : x ∈
V (G), y ∈ E(H)}. Thus G + H is a graph of order p1 + p2 and size q1 + q2 + p1p2, where
p1 = |V (G)|, p2 = |V (H)|, q1 = |E(G)| and q2 = |E(H)|. In this section, we study the super
edge-magic deficiency of join product of a graph G which has certain properties with isolated
vertices. Our first result gives necessary conditions for G + K1 to have zero super edge-magic
deficiency.

Lemma 2.1. Let G be a graph with no cycle and minimum degree one. If µs(G+K1) = 0 then G
is a tree or a forest.

Proof. LetG be a graph of order p and size q. By Lemma 1.2, p+q ≤ 2(p+1)−3 or q ≤ p−1.

This lemma is attainable by stars, paths and friendship graphs. Chen [5] proved that µs(K1,n +
K1) = 0 for every n ≥ 1, Figueroa-Centeno et al. [7] proved that µs(Pn +K1) = 0 if and only if
1 ≤ n ≤ 6, and Slamin et al. [19] proved that µs(nK2 +K1) = 0 if and only if n = 3, 4, 5, 7.

We also able to prove that the join product of some classes of trees and forests with an isolated
vertex has zero super edge-magic deficiency as stated in Theorem 2.1.

Theorem 2.1. a). µs([Pn ∪ P2] +K1) = 0 if and only if 3 ≤ n ≤ 5.
b). µs([K1,n ∪K2] +K1) = 0 if and only if n = 2.
c). µs([nP2 ∪ P3] +K1) = 0 for 1 ≤ n ≤ 6.
d). µs([nP2 ∪ P4] +K1) = 0 for 1 ≤ n ≤ 5.
e). For every n ≥ 1, µs(DSn +K1) = 0, where DSn is a double star.
f). For every n ≥ 1 and m = 1, 2, µs(G(n,m) + K1) = 0, where G(n,m) is a graph obtained
from K1,n by attaching a path with m edges to a single leaf of K1,n.

Proof. a). Let Gn = [Pn ∪ P2] + K1 for every n ≥ 2. Define Gn as a graph with V (Gn) =
{z, x1, x2, yi : 1 ≤ i ≤ n} and E(Gn) = {zx1, zx2, x1x2, zyi : 1 ≤ i ≤ n} ∪ {yiyi+1 : 1 ≤ i ≤
n− 1}. Hence, Gn is a graph of order n+3 and of size 2n+ 2. First, we show that, for n = 3, 4, 5,
µs(Gn) = 0. For n = 3, 4, 5, label (z, {x1, x2}, (y1, y2, . . . , yn)) as follows: (2, {1, 3}, (6, 4, 5)),
(2, {1, 3}, (6, 4, 7, 5)) and (2, {1, 3}, (4, 7, 5, 8, 6)), respectively. These vertex labelings can be
extended to a super edge-magic labeling of Gn for n = 3, 4, 5. Next, we show that µs(Gn) > 0 for
each n /∈ {3, 4, 5}. If n = 2 then G2 = 2K2 +K1 which is not super edge-magic. Suppose that
µs(Gn) = 0 for each n ≥ 6. Then there exists a bijection f : V (Gn)∪E(Gn)→ {1, 2, . . . , 2n+3}
such that set S = {f(u) + f(v) : uv ∈ E(H))} is a set of 2n + 2 consecutive integers. Since
Gn is a graph of order n + 3 and size 2n + 2, so there are two possibilities of S, namely S1 =
{3, 4, . . . , 2n+ 4} and S2 = {4, 5, . . . , 2n+ 5}. Since S1 and S2 are dual to each other, it suffices
to consider one of them. Let us consider S = {3, 4, . . . , 2n + 4}. The sum of all elements in S
contains n + 2 time of label z and three time of label yi, 2 ≤ i ≤ n − 1, and two time of label of
the remaining vertices. Hence,

(n+ 2)f(z) + 3
n−1∑
i=2

yi + 2[f(x1) + f(x2) + f(y1) + f(y2)] =
∑
s∈S

s = 2n2 + 9n+ 7
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or

nf(z) +
n−1∑
i=2

yi = n2 + 2n− 5.

On the other hand, to get sum 3, 4 and 5 in S the only possibilities are 3 = 1 + 2, 4 = 1 + 3
and 5 = 2+ 3 or 1+ 4. Then, the vertices of labels 1, 2 and 3 must form a triangle or the vertex of
label 1 is adjacent to the vertices of labels 2, 3 and 4. By this fact and the fact that every triangle
in Gn share a common vertex z, hence, we have four following cases:

Case 1. f(z) = 1.
Then

∑n−1
i=2 yi = n2 + n− 5. It is not possible, since n2 + n− 5 >

∑n+3
i=5 i =

1
2
(n2 + 7n− 8) for

every n ≥ 6.
Case 2. f(z) = 2.

Then
∑n−1

i=2 yi = n2 − 5 and n2 − 5 ≤ 1
2
(n2 + 7n− 8) is possible only for n = 6 and n = 7. One

can check that the condition f(z) = 2, for n ∈ {6, 7}, do not lead to a super edge-magic labeling
of G6 and G7, respectively.

Case 3. f(z) ∈ {3, 4}.
In this case, the sums f(z) + n+ 4, f(z) + n+ 5, . . . , 2n+ 3, 2n+ 4 should be the sum of labels
of two adjacent vertices in Pn or P2. To obtain 2n+4, 2n+3, 2n+2 and 2n+1 we only have two
possibilities: (n−1)− (n+2)−n− (n+3)− (n+1) or (n−2)− (n+3)− (n+1)− (n+2)−n.
These constructions fail to get sum 2n.

Hence, Gn is not super edge-magic for n /∈ {3, 4, 5}. So, µs(Gn) > 0 for each n /∈ {3, 4, 5}.
b). Let Hn = [K1,n ∪ K2] + K1 for every n ≥ 1. Hn is a graph with |V (Hn)| = n + 4 and

|E(Hn)| = 2n + 4. Let V (Hn) = {z, c, y1, y2, xi : 1 ≤ i ≤ n} and E(Hn) = {y1y2, zc, zy1, zy2,
cxi, zxi : 1 ≤ i ≤ n}. Next, let µs([K1,n ∪ P2] +K1) = 0. By Lemma 1.1, there exists a vertex
labeling f such that S = {f(u) + f(v) : uv ∈ E(H))} is a set of 2n + 4 consecutive integers.
Then, there are two possibilities of S, namely S1 = {3, 4, . . . , 2n+ 6} or S2 = {4, 5, . . . , 2n+ 7}
and they are dual to each other. If S = S1 then

(n+ 1)f(z) + (n− 1)f(c) = n2 + 4n− 2.

From this equation, n should be an even integer and both of f(z) and f(c) have the same variety.
By a similar argument as in the proof of part a), the vertices of labels 1, 2 and 3 must form a

triangle in Hn or the vertex of label 1 is adjacent to the vertices of labels 2, 3 and 4. By these facts
and since all triangles in Hn have a common vertex z, then there are four following cases:

Case 1. f(z) = 1, f(c) = 3, and f(xi0) = 2 for some i0 ∈ {1, 2, . . . , n}.
Then n = 1. It is well known that 2K2 +K1 is not a super edge-magic graph.

Case 2. f(z) = 2 and {f(y1), f(y2)} ∈ {1, 3}.
If f(z) = 2 then f(c) = (n + 3)− 1

n−1 . So, n = 2 and f(c) = 4. Next, set f({x1, x2}) = {5, 6}.
This vertex labeling can be extended to a super edge-magic labeling of H2 with the magic constant
21.

Case 3. f(z) = 3, f(c) = 1, and f(xi0) = 2 for some i0 ∈ {1, 2, . . . , n}.
If f(z) = 3 and f(c) = 1 then n = 2. Next, label the remaining vertices in H2 as follows:
f({y1, y2}) = {4, 6} and f({x1, x2}) = {2, 5}. It can be checked that this vertex labeling can be
extended to a super edge-magic labeling of H2 with the magic constant 21.
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Case 4. n ≥ 3, f(c) = 1 and {f(xi0), f(xj0), f(xk0)} ∈ {2, 3, 4} for some i0, j0, k0 ∈
{1, 2, . . . , n}. If f(c) = 1 then f(z) = (n + 2) − 3

n+1
. Hence, n = 2 and f(z) = 3, and it is a

contradiction.
c). For 1 ≤ n ≤ 6, tet Gn = [nP2 ∪ P3] +K1 and let V (Gn) = {z, xi, yi : 1 ≤ i ≤ n} ∪ {ui :

1 ≤ i ≤ 3} and E(Gn) = {xiyi : 1 ≤ i ≤ n}∪{u1u2, u2u3}∪{zxi, zyi : 1 ≤ i ≤ n}∪{zui : 1 ≤
i ≤ 3}. For 1 ≤ n ≤ 6, label (z, u1, u2, u3) and {{x1, y1}, {x2, y2}, . . . , {xn, yn}} by (2, 6, 4, 5)
and {{1, 3}}; (2, 7, 6, 5) and {{1, 3}, {4, 8}}; (2, 7, 9, 6) and {{1, 3}, {4, 10}, {5, 8}}; (4, 5, 12, 8)
and {{1, 3}, {2, 6}, {7, 11}, {9, 10}}; (6, 7, 14, 10) and {{1, 5}, {2, 3}, {4, 8}, {9, 13}, {11, 12}};
(8, 13, 15, 10) and {{1, 5}, {2, 6}, {3, 4}, {7, 9}, {11, 16}, {12, 14}}, respectively.

d). Let Hn = [nP2∪P4]+K1 for 1 ≤ n ≤ 5. Let V (Hn) = {z, xi, yi : 1 ≤ i ≤ n}∪{ui : 1 ≤
i ≤ 4} and E(Hn) = {xiyi : 1 ≤ i ≤ n} ∪ {u1u2, u2u3, u3u4} ∪ {zxi, zyi : 1 ≤ i ≤ n} ∪ {zui :
1 ≤ i ≤ 4}. For 1 ≤ n ≤ 5, label (z, u1, u2, u3, u4) and {{x1, y1}, {x2, y2}, . . . , {xn, yn}} by
(2, 6, 4, 7, 5) and {{1, 3}}; (2, 7, 6, 9, 5) and {{1, 3}, {4, 8}}; (4, 2, 1, 3, 5) and {{6, 10}, {7, 11},
{8, 9}}; (6, 3, 1, 4, 2) and {{5, 7}, {8, 12}, {9, 13}, {10, 11}}; (8, 5, 1, 4, 3) and {{2, 6}, {7, 9},
{10, 14}, {11, 15}, {12, 13}}, respectively.

e). First, Let Gn = DSn + K1 for every n ≥ 1. Next, define vertex and edge sets of Gn as
follows: V (Gn) = {z, x, y, xi, yi : 1 ≤ i ≤ n} and E(Gn) = {xy, zx, zy} ∪ {xxi, yyi, zxi, zyi :
1 ≤ i ≤ n}. Next, label (z, x, y), {xi : 1 ≤ i ≤ n} and {yi : 1 ≤ i ≤ n} with (n + 2, 1, 2n + 3),
{2, 3, . . . , n + 1} and {n + 3, n + 4, . . . , 2n + 2}, respectively. By Lemma 1.1, this labeling can
be extended to a super edge-magic labeling of Gn with magic constant 6n+ 9.

f). Let H = G(n, 2) +K1 for every n ≥ 1. Define H as a graph with V (H) = {z, x, xi : 1 ≤
i ≤ n+2} andE(H) = {xxi : 1 ≤ i ≤ n}∪{xnxn+1, x+1xn+2}∪{zx, zxi : 1 ≤ i ≤ n+2}. Label
(z, x, xn+1, xn+2) with (n + 2, 1, n + 3, n + 4) and label {x1, x2, . . . , xn} with {2, 3, . . . , n + 1}.
This labeling can be extended to a super edge-magic labeling of H with magic constant 3n + 12.
If xn+2 is removed, we get G(n, 1) + K1 and the remaining labeling can be extended to a super
edge-magic labeling of G(n, 1) +K1.

The open problems relating to these results are as follows:

Problem 1. Determine if the graphs [nP2 ∪ P3] +K1 for n ≥ 7 and [nP2 ∪ P4] +K1 for n ≥ 6
have zero super edge-magic deficiency.

As mentioned before, Figueroa-Centeno et al. [7] proved that µs(Fn) = 0 if and only if
1 ≤ n ≤ 6. The natural question arise is what about the super edge-magic deficiency of join
product of other trees of order at most six with an isolated vertex? In the next results, we study the
super edge-magic deficiency of these graphs.

Lemma 2.2. For any tree G of order p ≤ 6 excluding the tree in Figure 1 (a), µs(G) = 0.

Proof. All trees of order at most six are P2, P3, P4, K1,3, P5, K1,4, G(3, 1), P6, K1,5, G(3, 2),
G(4, 1) and DS2. As a direct consequence of results of Chen [5], Figueroa-Centeno et al. [7],
Theorem 2.1 e) and Theorem 2.1 f), the super edge-magic deficiency of join product of these
graphs with an isolated vertex is zero.

161



www.ejgta.org

On the super edge-magic deficiency of join product and chain graphs | A.A.G. Ngurah and R.
Simanjuntak

Figure 1. Trees with 6 and 7 vertices

Let H = G1 + K1, where G1 is the tree in Figure 1(a). Let V (H) = {z, xi : 1 ≤ i ≤ 6}
and E(H) = {xixi+1 : 1 ≤ i ≤ 4} ∪ {x3x6} ∪ {zxi : 1 ≤ i ≤ 6}}. It is not hard to prove that
H is not super edge-magic. Furthermore, if we label z, x1, x2, x3, x4, x5, x6 with 5, 7, 4, 1, 2, 8,
3, respectively, then this labeling can be extended to a super edge-magic labeling of H ∪K1. So,
µs(H) = 1. The next result provides a sufficient condition of the join product of a tree of order
p ≥ 7 with an isolated vertex to have nonzero super edge-magic deficiency.

Theorem 2.2. Let G be a tree of order p ≥ 7 and let H = G+K1. If µs(H) = 0 then either 2K1,3

or K3 ∪K1,3 is a subgraph of H .

Proof. Let µs(H) = 0 with a super edge-magic labeling f . Since H is a graph of order p+ 1 and
size q = 2p − 1 = 2(p + 1) − 3, then S = {f(x) + f(y) : xy ∈ E(H)} = {3, 4, . . . , 2p + 1}
and the vertices of labels 1, 2 and 3 must form a triangle or the vertex of label 1 is adjacent to
the vertices of labels 2, 3 and 4, respectively. Also, the vertices of labels p + 1, p and p − 1 must
form a triangle or the vertex of label p + 1 is adjacent to the vertices of labels p, p − 1 and p − 2,
respectively. Since H is a graph of order p ≥ 8, the labels 1, 2, 3, 4, p + 1, p, p− 1 and p− 2 are
all distinct. By combining these facts, we obtain either 2K3, K3 ∪K1,3 or 2K1,3 as a subgraph of
H . However, 2K3 cannot be a subgraph of H since every triangle in H share a common vertex.
This completes the proof.

The converse of Theorem 2.2 is not true. To show this, let us consider the tree G2 in Figure
1 (b). Define vertex and edge sets of G2 + K1 as follows: V (G2 + K1) = {z, xi : 1 ≤ i ≤
5}∪{y1, y2}, E(G2+K1) = {xixi+1 : 1 ≤ i ≤ 4}∪{x3y1, x3y2}∪{zxi : 1 ≤ i ≤ 5}∪{zy1, zy2}.
It can be checked thatK3∪K1,3 and 2K1,3 are subgraphs ofG2+K1. Assume that µs(G2+K1) = 0.
Then there exists a vertex labeling f such that 5f(z) + 3f(x3) + f(x2) + f(x4) = 45. It is easy to
check that any solutions of this equation do not lead to a super edge-magic labeling ofG2+K1. So,
µs(G2+K1) ≥ 1. If we label z, x1, x2, x3, x4, x5, y1 and y2 by 2, 3, 1, 6, 8, 4, 7 and 9, respectively,
then this vertex labeling can be extended to a super edge-magic labeling of [G2 +K1] ∪K1. So,
µs(G2 +K1) ≤ 1. Hence, µs(G2 +K1) = 1.

Next results provide the super edge-magic deficiency of join product of a tree with m ≥ 2
isolated vertices.

Lemma 2.3. Let G a tree of order p ≥ 2 and m ≥ 2 be an integer. µs(G+mK1) = 0 if and only
if G = P2.

Proof. Let µs(G+mK1) = 0. Then by Lemma 1.2,mp+p−1 ≤ 2(p+m)−3 or (p−2)(m−1) ≤ 0
and the desired result. Next we show that µs(P2 + mK1) = 0. Label the vertices in P2 with
{1,m + 2} and mK1 with {2, 3, . . . ,m + 1}. By Lemma 1.2 this labeling can be extended to a
super edge-magic labeling of P2 +mK1.
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Lemma 2.3 show that µs(G +mK1) ≥ 1 for all the trees G 6= P2. Next lemma provides the
lower bound of its super edge-magic deficiency.

Lemma 2.4. Let G be a tree of order p ≥ 3. For every positive integer m ≥ 2,

µs(G+mK1) ≥ b
(m− 1)(p− 2) + 1

2
c.

Proof. This result is a corollary of the result of Ngurah and Simanjuntak [16] (see Lemma 2.2).

Lemma 2.4 is attainable. It has been proved that µs(P4 +mK1) = m − 1, µs(P6 +mK1) =
2(m− 1) [17] and µs(Pn + 2K1) =

n−2
2

for any even integer n ≥ 2 [18].

3. Super edge-magic deficiecy of chain graphs

Barrientos [3] defined a chain graph as a graph with blocks B1, B2, · · · , Bk such that for every
i, Bi and Bi+1 have a common vertex in such a way that the block-cut-vertex graph is a path.
We denote the chain graph with k blocks B1, B2, · · · , Bk by C[B1, B2, · · · , Bk]. If B1 = · · · =
Bt = B, we write C[B1, B2, · · · , Bk] as C[B(t), Bt+1, · · · , Bk]. If for every i, Bi = H for a given
graph H , then C[B1, B2, · · · , Bk] is denoted by kH-path. Suppose that c1, c2, . . . , ck−1 are the
consecutive cut vertices of C[B1, B2, · · · , Bk]. The string of C[B1, B2, · · · , Bk] is (k − 2)-tuple
(d1, d2, . . . , dk−2) where di is the distance between ci and ci+1, 1 ≤ i ≤ k − 2. We will write
(d1, d2, . . . , dk−2) as (d(t), dt+1, . . . , dk−2) if d1 = . . . = dt = d. Some authors have studied
the super edge-magic deficiency of chain graphs. In 2003, Lee and Wang [13] proved that some
classes of chain graphs whose blocks are complete graphs are super edge-magic. In other words,
they showed that some classes of chain graphs whose blocks are complete graphs have zero super
edge-magic deficiency. In [15], Ngurah et al. studied the super edge-magic deficiency of kK3-
paths and kK4-paths.

Let Ln = Pn × P2 be a ladder. Let TLn be the graph obtained from the ladder Ln by adding
a single diagonal in each rectangle of Ln and let DLm be the graph obtained from the ladder Lm

by adding two diagonals in each rectangle of Lm. It is clear that TLn is graph of order 2n and size
4n − 3 meanwhile DLm has 2m vertices and 5m − 4 edges. In this section, we study the super
edge-magic deficiency of chain graphs where its blocks are combination of TLn and DLm.

First, we study the super edge-magic deficiency of a chain graph G = C[B1, B2, · · · , Bk]
where Bi = TLn, n ≥ 2, when i is odd and Bi = DLm, m ≥ 3, when i is even. We define vertex
and edge sets of Bi, 1 ≤ i ≤ k, as follows:
When i is odd, V (Bi) = {xji , y

j
i : 1 ≤ j ≤ n} and E(Bi) = {xjiy

j
i : 1 ≤ j ≤ n} ∪

{xjix
j+1
i , yji y

j+1
i : 1 ≤ j ≤ n− 1} ∪ {eji : where eji is either xjiy

j+1
i or yjix

j+1
i , 1 ≤ j ≤ n− 1}.

When i is even, V (Bi) = {uti, uti : 1 ≤ t ≤ m} and E(Bi) = {utiuti : 1 ≤ t ≤ m} ∪
{utiut+1

i , vtiv
t+1
i , utiv

t+1
i , vtiu

t+1
i : 1 ≤ t ≤ m− 1}.

Vertex and edge sets of G are defined as follows: V (G) = ∪ki=1V (Bi), where xni = v1i+1, 1 ≤ i ≤
k − 1, and E(G) = ∪k

i=1E(Bi). Under these definitions, xni = v1i+1, 1 ≤ i ≤ k − 1, are the cut
vertices ofG. The string ofG is (m−1, d1,m−1, d2,m−1, . . . , d(k−3)/2,m−1) when k is odd or
(m−1, d1,m−1, d2,m−1, . . . , d(k−2)/2) when k is even, where d1, d2, . . . , db(k−2)/2c ∈ {n−1, n}.
If n = m, G is a kDLm-path. The super edge-magic deficiency of kDLm-path has been studied
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by Ngurah and Adiwijaya [14]. Here, we study the super edge-magic deficiency of G when n not
necessarily equal to m. We found that its super edge-magic deficiency is invariant under n, as we
state in the next theorem.

Theorem 3.1. Let k ≥ 3 be an integer. For any integers n ≥ 2 and odd m ≥ 3,

µs(G) =

{
1
4
k(m− 3) + 1, if k is even,

1
4
(k − 1)(m− 3), if k is odd.

Proof. It is clear that, if k ≥ 4 is even then |V (G)| = 1
2
k(2n− 1)+ 1

2
k(2m− 1)+1 and |E(G)| =

1
2
k(4n−3)+ 1

2
k(5m−4). If k ≥ 3 is odd then |V (G)| = 1

2
(k+1)(2n−1)+ 1

2
(k−1)(2m−1)+1

and |E(G)| = 1
2
(k+1)(4n−3)+ 1

2
(k−1)(5m−4). By Lemma 1.2, if k is even thenG is not super

edge-magic for any integers n ≥ 2 and m ≥ 3, and if k is odd then G is not super edge-magic for
any integers n ≥ 2 and m ≥ 4. As we can see later, if k is odd then G is super edge-magic for any
n ≥ 2 and m = 3. Again, by Lemma 1.2, it is not hard to prove that µs(G) ≥ 1

4
k(m−3)+1 when

k is even and µs(G) ≥ 1
4
(k− 1)(m− 3) when k is odd. To show the upper bound of µs(G), define

a vertex labeling f as follows:

f(xj1) = 2j − 1, 1 ≤ j ≤ n.
f(ut2) = 1

2
(4n+ 5t− 3), t is odd, 1 ≤ t ≤ m.

f(ut2) = 1
2
(4n+ 5t− 4), t is even, 1 ≤ t ≤ m.

For 1 ≤ i ≤ b1
2
(k−1)c, f(xj2i−1) = 1

2
(4n+5m−7)i+f(xj1), 1 ≤ j ≤ n. For 1 ≤ i ≤ b1

2
(k−2)c,

f(ut2i+2) =
1
2
(4n+ 5m− 7)i+ f(ut2), 1 ≤ t ≤ m.

For 1 ≤ i ≤ k, label the remaining vertices as follows:

f(yj1) = f(xj1) + 1, i is odd, 1 ≤ j ≤ n.
f(vti) = f(uti)− 2, i is even, t is odd, 1 ≤ t ≤ m.
f(vti) = f(uti)− 1, i is even, t is even, 1 ≤ t ≤ m.

Under the labeling f , one can verify that no labels are repeated, f(xni ) = f(v1i+1), 1 ≤ i ≤ k − 1,
and the largest vertex label used is 1

4
(k−2)(4n+5m−7)+ 1

2
(4n+5m−3) = 1

4
k(m−3)+1+|V (G)|

when k is even or 1
4
(k − 1)(4n + 5m − 7) + 2n = 1

4
(k − 1)(m − 3) + |V (G)| when k is odd.

Particularly, if k is odd and m = 3 the largest vertex label used is |V (G)|. It means that f is a
super edge-magic labeling of G when k is odd and m = 3.

Next, let α = 1
4
k(m−3)+1 when k is even or α = 1

4
(k−1)(m−3) when k is odd. Denote the

isolated vertices with {zl2i : 1 ≤ i ≤ bk
2
c, 1 ≤ l ≤ 1

2
(m− 3)} ∪ S , where |S| = 1 when k is even

or |S| = 0 when k is odd. Set f(zl2i) = f(yl2i−1) + 5l and f(S) = f(umk ) − 1. It can be checked
that f is a bijection from V (G)∪ αK1 to {1, 2, . . . , |V (G)|+ α} and {f(x) + f(y) : xy ∈ E(G)}
is a set of |E(G)| consecutive integers. By Lemma 1.1, f can be extended to a super edge-magic
labeling of G∪αK1. Hence, µs(G) ≤ 1

4
k(m−3)+1 when k is even or µs(G) ≤ 1

4
(k−1)(m−3)

when k is odd. This completes the proof.

Problem 2. For m ≥ 3 is even, determine µs(G).
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Next, we study the super edge-magic deficiency of H = C[B1, B2, · · · , Bk] where Bi = TLn,
n ≥ 2, when i is even and Bi = DLm, m ≥ 3, when i is odd. We define vertex and edge sets of H
as follows: V (H) = ∪ki=1V (Bi), where umi = y1i+1, 1 ≤ i ≤ k−1, andE(H) = ∪ki=1E(Bi), where
V (Bi) and E(Bi) are defined as before. Under these definitions, umi = y1i+1, 1 ≤ i ≤ k−1, are the
cut vertices of H . The string of H is (d1,m− 1, d2,m− 1, . . . ,m− 1, d(k−1)/2) when k is odd or
(d1,m−1, d2,m−1, . . . , d(k−2)/2,m−1) when k is even, where d1, d2, . . . , db(k−2)/2c ∈ {n−1, n}.
Notice that, when k is even, the chain graph H is isomorphic to G, where G is the chain graph in
Theorem 3.1. Hence, µs(H) = µs(G) =

1
4
k(m − 3) + 1 when k is even. Next theorem gives the

upper and lower bounds of the super edge-magic deficiency of H when k is odd.

Theorem 3.2. Let k ≥ 3 be an odd integer. For any integers n ≥ 2 and odd m ≥ 3, the super
edge-magic deficiency of H satisfies

1

4
(k + 1)(m− 1)− 1

2
(k − 1) ≤ µs(G) ≤

1

4
(k + 1)(m− 1)− 1

2
(k − 3).

Proof. H is a graph of order 1
2
(k+1)(2m−1)+1

2
(k−1)(2n−1)+1 and size 1

2
(k+1)(5m−4)+1

2
(k−

1)(4n− 3). By Lemma 1.2, H is not super edge-magic and µs(H) ≥ 1
4
(k+1)(m− 1)− 1

2
(k− 1).

Next, define a vertex labeling f as follows:

f(ut1) = 1
2
(5t− 3), t is odd, 1 ≤ t ≤ m− 2.

f(ut1) = 1
2
(5t− 2), t is even, 2 ≤ t ≤ m− 1.

f(um1 ) = 1
2
(5m+ 1).

f(xj2) = 1
2
(5m+ 4j − 5), 1 ≤ j ≤ n.

f(ut3) = 1
2
(5m+ 4n+ 5t− 6), t is odd, 1 ≤ t ≤ m− 2.

f(ut3) = 1
2
(5m+ 4n+ 5t− 7), t is even, 2 ≤ t ≤ m− 1.

For 1 ≤ i ≤ 1
2
(k − 3), 1 ≤ j ≤ n and 1 ≤ t ≤ m, label the remaining vertices as follows:

f(xj2i+2) = 1
2
(5m+ 4n− 7)i+ f(xj2).

f(ut2i+3) = 1
2
(5m+ 4n− 7)i+ f(ut3).

For 1 ≤ i ≤ k, 1 ≤ j ≤ n and 1 ≤ t ≤ m, label the remaining vertices as follows:

f(vti) = f(uti) + 2, i and t are odd, t 6= m.
f(vti) = f(uti) + 1, i is odd, t is even.
f(vmi ) = f(umi )− 2, i is odd.
f(yji ) = f(xji ) + 1, i is even.

It can be checked that the vertex labeling f constitute a set {f(x) + f(y) : xy ∈ E(H)} of
|E(H)| consecutive integers, no labels are repeated and the largest vertex label used is f(umk ) =
1
4
(k+1)(m− 1)− 1

2
(k− 3) + |V (H)|. Hence, there exist 1

4
(k+1)(m− 1)− 1

2
(k− 3) labels that

are not utilized. Thus, for each the number from 1 to |V (G)| that has not been used as a label, we
introduce a new vertex with that number as its label which gives 1

4
(k+ 1)(m− 1)− 1

2
(k− 3) new

isolated vertices. By Lemma 1.1, this yields a super edge-magic labeling of H ∪ [1
4
(k + 1)(m −

1)− 1
2
(k − 3)]K1. So, µs(H) ≤ 1

4
(k + 1)(m− 1)− 1

2
(k − 3).

Problem 3. Determine the exact value of the µs(H) when k,m ≥ 3 are odd.
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