Electronic Journal of Graph Theory and Applications

On the super edge-magic deficiency of join product and chain graphs

Anak Agung Gede Ngurah ${ }^{\text {a }}$, Rinovia Simanjuntak ${ }^{\text {b }}$
${ }^{a}$ Department of Civil Engineering, Universitas Merdeka Malang
Jalan Terusan Raya Dieng 62-64 Malang, Indonesia
${ }^{b}$ Combinatorial Mathematics Research Group,
Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung,
Jalan Ganesa 10 Bandung, Indonesia
aag.ngurah@unmer.ac.id, rino@math.itb.ac.id

Abstract

A graph G of order $|V(G)|=p$ and size $|E(G)|=q$ is called super edge-magic if there exists a bijection $f: V(G) \cup E(G) \rightarrow\{1,2,3, \cdots, p+q\}$ such that $f(x)+f(x y)+f(y)$ is a constant for every edge $x y \in E(G)$ and $f(V(G))=\{1,2,3, \cdots, p\}$. Furthermore, the super edge-magic deficiency of a graph $G, \mu_{s}(G)$, is either the minimum nonnegative integer n such that $G \cup n K_{1}$ is super edge-magic or $+\infty$ if there exists no such integer n. In this paper, we study the super edgemagic deficiency of join product of a graph which has certain properties with an isolated vertex and the super edge-magic deficiency of chain graphs.

Keywords: super edge-magic graph, super edge magic deficiency, join product graph, chain graph Mathematics Subject Classification : 05C78
DOI: 10.5614/ejgta.2019.7.1.12

1. Introduction

Let G be a finite and simple graph, where $V(G)$ and $E(G)$ are its vertex set and edge set, respectively. Let $p=|V(G)|$ and $q=|E(G)|$ be the number of the vertices and edges of G, respectively. Kotzig and Rosa [12] introduced the concepts of an edge-magic labeling and an edgemagic graph as follows: An edge-magic labeling of a graph G is a bijection $f: V(G) \cup E(G) \rightarrow$ $\{1,2,3, \cdots, p+q\}$ such that $f(x)+f(x y)+f(y)$ is a constant k, called the magic constant of

Received: 13 October 2017, Revised: 14 September 2018, Accepted: 29 January 2019.
f, for every edge $x y$ of G. A graph that admits an edge-magic labeling is called an edge-magic graph. Motivated by the concept of an edge-magic labeling, Enomoto et al. [6] introduced the concept of a super edge-magic labeling and a super edge-magic graph as follows: A super edgemagic labeling of a graph G is an edge-magic labeling f of G with the additional property that $f(V(G))=\{1,2,3, \cdots, p\}$. Thus, a super edge-magic graph is a graph that admits a super edgemagic labeling. The next lemma proved by Figueroa-Centeno et al. [7] provides necessary and sufficient conditions for a graph to be a super edge-magic graph.

Lemma 1.1. [7] A graph G is super edge-magic if and only if there exists a bijective function $f: V(G) \rightarrow\{1,2, \cdots, p\}$ such that the set $S=\{f(x)+f(y): x y \in E(G)\}$ consists of q consecutive integers. In this case, f can be extended to a super edge-magic labeling of G with the magic constant $p+q+\min (S)$.

The next lemma proved by Enomoto et al. [6] gives sufficient condition for non-existence of super edge-magic labeling of a graph.

Lemma 1.2. [6] If G is a super edge-magic graph, then $q \leq 2 p-3$.
In addition to these two lemmas, the notion of dual labeling will also appear frequently in the next sections. A dual labeling of a super edge-magic labeling f is defined as

$$
f^{\prime}(x)=p+1-f(x), \text { for all } x \in V(G),
$$

and

$$
f^{\prime}(x y)=2 p+q+1-f(x y), \text { for all } x y \in E(G) .
$$

It has been proved in [4] that the dual of a super edge-magic labeling is also a super edge-magic labeling.

Kotzig and Rosa [12] also proved that for every graph G there exists a nonnegative integer n such that $G \cup n K_{1}$ is an edge-magic graph. This fact motivated them to introduced the concept of edge-magic deficiency of a graph. The edge-magic deficiency of a graph $G, \mu(G)$, is defined as the minimum nonnegative integer n such that $G \cup n K_{1}$ is an edge-magic graph. Motivated by Kotzig and Rosa's concept of edge-magic deficiency, Figueroa-Centeno et al. [8] introduce the concept of super edge-magic deficiency of a graph. The super edge-magic deficiency of a graph $G, \mu_{s}(G)$, is defined as either the minimum nonnegative integer n such that $G \cup n K_{1}$ is a super edge-magic graph or $+\infty$ if there exists no such n.

There have been a number of papers dealing with super edge-magic deficiency of graphs. In [1], Ahmad et al. studied the super edge-magic deficiency of some families related to ladder graphs and In [2], Ahmad et al. studied the super edge-magic deficiency of unicyclic graphs. In [11], Ichishima and Oshima investigated the super edge-magic deficiency of complete bipartite graphs and disjoint union of complete bipartite graphs. Other results can be found in [8, 9] and the latest developments in these and other types of graph labelings can be found in the survey paper of graph labelings by Gallian [10]. In this paper, we study the super edge-magic deficiency of join product graphs as well as the super edge-magic deficiency of some classes of chain graphs.

2. Super edge-magic deficiency of join product graphs

Let G and H be vertex disjoint graphs. Join product of G and H, denoted by $G+H$, defined as a graph with $V(G+H)=V(G) \cup V(H)$ and $E(G+H)=E(G) \cup E(H) \cup\{x y: x \in$ $V(G), y \in E(H)\}$. Thus $G+H$ is a graph of order $p_{1}+p_{2}$ and size $q_{1}+q_{2}+p_{1} p_{2}$, where $p_{1}=|V(G)|, p_{2}=|V(H)|, q_{1}=|E(G)|$ and $q_{2}=|E(H)|$. In this section, we study the super edge-magic deficiency of join product of a graph G which has certain properties with isolated vertices. Our first result gives necessary conditions for $G+K_{1}$ to have zero super edge-magic deficiency.

Lemma 2.1. Let G be a graph with no cycle and minimum degree one. If $\mu_{s}\left(G+K_{1}\right)=0$ then G is a tree or a forest.

Proof. Let G be a graph of order p and size q. By Lemma 1.2, $p+q \leq 2(p+1)-3$ or $q \leq p-1$.
This lemma is attainable by stars, paths and friendship graphs. Chen [5] proved that $\mu_{s}\left(K_{1, n}+\right.$ $\left.K_{1}\right)=0$ for every $n \geq 1$, Figueroa-Centeno et al. [7] proved that $\mu_{s}\left(P_{n}+K_{1}\right)=0$ if and only if $1 \leq n \leq 6$, and Slamin et al. [19] proved that $\mu_{s}\left(n K_{2}+K_{1}\right)=0$ if and only if $n=3,4,5,7$.

We also able to prove that the join product of some classes of trees and forests with an isolated vertex has zero super edge-magic deficiency as stated in Theorem 2.1.

Theorem 2.1. a). $\mu_{s}\left(\left[P_{n} \cup P_{2}\right]+K_{1}\right)=0$ if and only if $3 \leq n \leq 5$.
b). $\mu_{s}\left(\left[K_{1, n} \cup K_{2}\right]+K_{1}\right)=0$ if and only if $n=2$.
c). $\mu_{s}\left(\left[n P_{2} \cup P_{3}\right]+K_{1}\right)=0$ for $1 \leq n \leq 6$.
d). $\mu_{s}\left(\left[n P_{2} \cup P_{4}\right]+K_{1}\right)=0$ for $1 \leq n \leq 5$.
e). For every $n \geq 1, \mu_{s}\left(\mathrm{DS}_{n}+K_{1}\right)=0$, where DS_{n} is a double star.
f). For every $n \geq 1$ and $m=1,2, \mu_{s}\left(G(n, m)+K_{1}\right)=0$, where $G(n, m)$ is a graph obtained from $K_{1, n}$ by attaching a path with m edges to a single leaf of $K_{1, n}$.

Proof. a). Let $G_{n}=\left[P_{n} \cup P_{2}\right]+K_{1}$ for every $n \geq 2$. Define G_{n} as a graph with $V\left(G_{n}\right)=$ $\left\{z, x_{1}, x_{2}, y_{i}: 1 \leq i \leq n\right\}$ and $E\left(G_{n}\right)=\left\{z x_{1}, z x_{2}, x_{1} x_{2}, z y_{i}: 1 \leq i \leq n\right\} \cup\left\{y_{i} y_{i+1}: 1 \leq i \leq\right.$ $n-1\}$. Hence, G_{n} is a graph of order $\mathrm{n}+3$ and of size $2 n+2$. First, we show that, for $n=3,4,5$, $\mu_{s}\left(G_{n}\right)=0$. For $n=3,4,5$, label $\left(z,\left\{x_{1}, x_{2}\right\},\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)$ as follows: $(2,\{1,3\},(6,4,5))$, $(2,\{1,3\},(6,4,7,5))$ and $(2,\{1,3\},(4,7,5,8,6))$, respectively. These vertex labelings can be extended to a super edge-magic labeling of G_{n} for $n=3,4,5$. Next, we show that $\mu_{s}\left(G_{n}\right)>0$ for each $n \notin\{3,4,5\}$. If $n=2$ then $G_{2}=2 K_{2}+K_{1}$ which is not super edge-magic. Suppose that $\mu_{s}\left(G_{n}\right)=0$ for each $n \geq 6$. Then there exists a bijection $f: V\left(G_{n}\right) \cup E\left(G_{n}\right) \rightarrow\{1,2, \ldots, 2 n+3\}$ such that set $S=\{f(u)+f(v): u v \in E(H))\}$ is a set of $2 n+2$ consecutive integers. Since G_{n} is a graph of order $n+3$ and size $2 n+2$, so there are two possibilities of S, namely $S_{1}=$ $\{3,4, \ldots, 2 n+4\}$ and $S_{2}=\{4,5, \ldots, 2 n+5\}$. Since S_{1} and S_{2} are dual to each other, it suffices to consider one of them. Let us consider $S=\{3,4, \ldots, 2 n+4\}$. The sum of all elements in S contains $n+2$ time of label z and three time of label $y_{i}, 2 \leq i \leq n-1$, and two time of label of the remaining vertices. Hence,

$$
(n+2) f(z)+3 \sum_{i=2}^{n-1} y_{i}+2\left[f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(y_{1}\right)+f\left(y_{2}\right)\right]=\sum_{s \in S} s=2 n^{2}+9 n+7
$$

or

$$
n f(z)+\sum_{i=2}^{n-1} y_{i}=n^{2}+2 n-5
$$

On the other hand, to get sum 3,4 and 5 in S the only possibilities are $3=1+2,4=1+3$ and $5=2+3$ or $1+4$. Then, the vertices of labels 1,2 and 3 must form a triangle or the vertex of label 1 is adjacent to the vertices of labels 2,3 and 4 . By this fact and the fact that every triangle in G_{n} share a common vertex z, hence, we have four following cases:

Case 1. $f(z)=1$.
Then $\sum_{i=2}^{n-1} y_{i}=n^{2}+n-5$. It is not possible, since $n^{2}+n-5>\sum_{i=5}^{n+3} i=\frac{1}{2}\left(n^{2}+7 n-8\right)$ for every $n \geq 6$.

Case 2. $f(z)=2$.
Then $\sum_{i=2}^{n-1} y_{i}=n^{2}-5$ and $n^{2}-5 \leq \frac{1}{2}\left(n^{2}+7 n-8\right)$ is possible only for $n=6$ and $n=7$. One can check that the condition $f(z)=2$, for $n \in\{6,7\}$, do not lead to a super edge-magic labeling of G_{6} and G_{7}, respectively.

Case 3. $f(z) \in\{3,4\}$.
In this case, the sums $f(z)+n+4, f(z)+n+5, \ldots, 2 n+3,2 n+4$ should be the sum of labels of two adjacent vertices in P_{n} or P_{2}. To obtain $2 n+4,2 n+3,2 n+2$ and $2 n+1$ we only have two possibilities: $(n-1)-(n+2)-n-(n+3)-(n+1)$ or $(n-2)-(n+3)-(n+1)-(n+2)-n$. These constructions fail to get sum $2 n$.

Hence, G_{n} is not super edge-magic for $n \notin\{3,4,5\}$. So, $\mu_{s}\left(G_{n}\right)>0$ for each $n \notin\{3,4,5\}$.
b). Let $H_{n}=\left[K_{1, n} \cup K_{2}\right]+K_{1}$ for every $n \geq 1$. H_{n} is a graph with $\left|V\left(H_{n}\right)\right|=n+4$ and $\left|E\left(H_{n}\right)\right|=2 n+4$. Let $V\left(H_{n}\right)=\left\{z, c, y_{1}, y_{2}, x_{i}: 1 \leq i \leq n\right\}$ and $E\left(H_{n}\right)=\left\{y_{1} y_{2}, z c, z y_{1}, z y_{2}\right.$, $\left.c x_{i}, z x_{i}: 1 \leq i \leq n\right\}$. Next, let $\mu_{s}\left(\left[K_{1, n} \cup P_{2}\right]+K_{1}\right)=0$. By Lemma 1.1, there exists a vertex labeling f such that $S=\{f(u)+f(v): u v \in E(H))\}$ is a set of $2 n+4$ consecutive integers. Then, there are two possibilities of S, namely $S_{1}=\{3,4, \ldots, 2 n+6\}$ or $S_{2}=\{4,5, \ldots, 2 n+7\}$ and they are dual to each other. If $S=S_{1}$ then

$$
(n+1) f(z)+(n-1) f(c)=n^{2}+4 n-2 .
$$

From this equation, n should be an even integer and both of $f(z)$ and $f(c)$ have the same variety.
By a similar argument as in the proof of part a), the vertices of labels 1,2 and 3 must form a triangle in H_{n} or the vertex of label 1 is adjacent to the vertices of labels 2, 3 and 4. By these facts and since all triangles in H_{n} have a common vertex z, then there are four following cases:

Case 1. $f(z)=1, f(c)=3$, and $f\left(x_{i_{0}}\right)=2$ for some $i_{0} \in\{1,2, \ldots, n\}$.
Then $n=1$. It is well known that $2 K_{2}+K_{1}$ is not a super edge-magic graph.
Case 2. $f(z)=2$ and $\left\{f\left(y_{1}\right), f\left(y_{2}\right)\right\} \in\{1,3\}$.
If $f(z)=2$ then $f(c)=(n+3)-\frac{1}{n-1}$. So, $n=2$ and $f(c)=4$. Next, set $f\left(\left\{x_{1}, x_{2}\right\}\right)=\{5,6\}$. This vertex labeling can be extended to a super edge-magic labeling of H_{2} with the magic constant 21.

Case 3. $f(z)=3, f(c)=1$, and $f\left(x_{i_{0}}\right)=2$ for some $i_{0} \in\{1,2, \ldots, n\}$.
If $f(z)=3$ and $f(c)=1$ then $n=2$. Next, label the remaining vertices in H_{2} as follows: $f\left(\left\{y_{1}, y_{2}\right\}\right)=\{4,6\}$ and $f\left(\left\{x_{1}, x_{2}\right\}\right)=\{2,5\}$. It can be checked that this vertex labeling can be extended to a super edge-magic labeling of H_{2} with the magic constant 21.

Case 4. $n \geq 3, f(c)=1$ and $\left\{f\left(x_{i_{0}}\right), f\left(x_{j_{0}}\right), f\left(x_{k_{0}}\right)\right\} \in\{2,3,4\}$ for some $i_{0}, j_{0}, k_{0} \in$ $\{1,2, \ldots, n\}$. If $f(c)=1$ then $f(z)=(n+2)-\frac{3}{n+1}$. Hence, $n=2$ and $f(z)=3$, and it is a contradiction.
c). For $1 \leq n \leq 6$, tet $G_{n}=\left[n P_{2} \cup P_{3}\right]+K_{1}$ and let $V\left(G_{n}\right)=\left\{z, x_{i}, y_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i}\right.$: $1 \leq i \leq 3\}$ and $E\left(G_{n}\right)=\left\{x_{i} y_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{1} u_{2}, u_{2} u_{3}\right\} \cup\left\{z x_{i}, z y_{i}: 1 \leq i \leq n\right\} \cup\left\{z u_{i}: 1 \leq\right.$ $i \leq 3\}$. For $1 \leq n \leq 6$, label $\left(z, u_{1}, u_{2}, u_{3}\right)$ and $\left\{\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\}, \ldots,\left\{x_{n}, y_{n}\right\}\right\}$ by $(2,6,4,5)$ and $\{\{1,3\}\} ;(2,7,6,5)$ and $\{\{1,3\},\{4,8\}\} ;(2,7,9,6)$ and $\{\{1,3\},\{4,10\},\{5,8\}\} ;(4,5,12,8)$ and $\{\{1,3\},\{2,6\},\{7,11\},\{9,10\}\} ;(6,7,14,10)$ and $\{\{1,5\},\{2,3\},\{4,8\},\{9,13\},\{11,12\}\}$; $(8,13,15,10)$ and $\{\{1,5\},\{2,6\},\{3,4\},\{7,9\},\{11,16\},\{12,14\}\}$, respectively.
d). Let $H_{n}=\left[n P_{2} \cup P_{4}\right]+K_{1}$ for $1 \leq n \leq 5$. Let $V\left(H_{n}\right)=\left\{z, x_{i}, y_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i}: 1 \leq\right.$ $i \leq 4\}$ and $E\left(H_{n}\right)=\left\{x_{i} y_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{1} u_{2}, u_{2} u_{3}, u_{3} u_{4}\right\} \cup\left\{z x_{i}, z y_{i}: 1 \leq i \leq n\right\} \cup\left\{z u_{i}\right.$: $1 \leq i \leq 4\}$. For $1 \leq n \leq 5$, label $\left(z, u_{1}, u_{2}, u_{3}, u_{4}\right)$ and $\left\{\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\}, \ldots,\left\{x_{n}, y_{n}\right\}\right\}$ by $(2,6,4,7,5)$ and $\{\{1,3\}\} ;(2,7,6,9,5)$ and $\{\{1,3\},\{4,8\}\} ;(4,2,1,3,5)$ and $\{\{6,10\},\{7,11\}$, $\{8,9\}\} ;(6,3,1,4,2)$ and $\{\{5,7\},\{8,12\},\{9,13\},\{10,11\}\} ;(8,5,1,4,3)$ and $\{\{2,6\},\{7,9\}$, $\{10,14\},\{11,15\},\{12,13\}\}$, respectively.
e). First, Let $G_{n}=D S_{n}+K_{1}$ for every $n \geq 1$. Next, define vertex and edge sets of G_{n} as follows: $V\left(G_{n}\right)=\left\{z, x, y, x_{i}, y_{i}: 1 \leq i \leq n\right\}$ and $E\left(G_{n}\right)=\{x y, z x, z y\} \cup\left\{x x_{i}, y y_{i}, z x_{i}, z y_{i}\right.$: $1 \leq i \leq n\}$. Next, label $(z, x, y),\left\{x_{i}: 1 \leq i \leq n\right\}$ and $\left\{y_{i}: 1 \leq i \leq n\right\}$ with $(n+2,1,2 n+3)$, $\{2,3, \ldots, n+1\}$ and $\{n+3, n+4, \ldots, 2 n+2\}$, respectively. By Lemma 1.1, this labeling can be extended to a super edge-magic labeling of G_{n} with magic constant $6 n+9$.
f). Let $H=G(n, 2)+K_{1}$ for every $n \geq 1$. Define H as a graph with $V(H)=\left\{z, x, x_{i}: 1 \leq\right.$ $i \leq n+2\}$ and $E(H)=\left\{x x_{i}: 1 \leq i \leq n\right\} \cup\left\{x_{n} x_{n+1}, x_{+1} x_{n+2}\right\} \cup\left\{z x, z x_{i}: 1 \leq i \leq n+2\right\}$. Label $\left(z, x, x_{n+1}, x_{n+2}\right)$ with $(n+2,1, n+3, n+4)$ and label $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ with $\{2,3, \ldots, n+1\}$. This labeling can be extended to a super edge-magic labeling of H with magic constant $3 n+12$. If x_{n+2} is removed, we get $G(n, 1)+K_{1}$ and the remaining labeling can be extended to a super edge-magic labeling of $G(n, 1)+K_{1}$.

The open problems relating to these results are as follows:
Problem 1. Determine if the graphs $\left[n P_{2} \cup P_{3}\right]+K_{1}$ for $n \geq 7$ and $\left[n P_{2} \cup P_{4}\right]+K_{1}$ for $n \geq 6$ have zero super edge-magic deficiency.

As mentioned before, Figueroa-Centeno et al. [7] proved that $\mu_{s}\left(F_{n}\right)=0$ if and only if $1 \leq n \leq 6$. The natural question arise is what about the super edge-magic deficiency of join product of other trees of order at most six with an isolated vertex? In the next results, we study the super edge-magic deficiency of these graphs.

Lemma 2.2. For any tree G of order $p \leq 6$ excluding the tree in Figure $1(a), \mu_{s}(G)=0$.
Proof. All trees of order at most six are $P_{2}, P_{3}, P_{4}, K_{1,3}, P_{5}, K_{1,4}, G(3,1), P_{6}, K_{1,5}, G(3,2)$, $G(4,1)$ and DS_{2}. As a direct consequence of results of Chen [5], Figueroa-Centeno et al. [7], Theorem 2.1 e) and Theorem 2.1 f), the super edge-magic deficiency of join product of these graphs with an isolated vertex is zero.

Figure 1. Trees with 6 and 7 vertices

Let $H=G_{1}+K_{1}$, where G_{1} is the tree in Figure 1 (a). Let $V(H)=\left\{z, x_{i}: 1 \leq i \leq 6\right\}$ and $\left.E(H)=\left\{x_{i} x_{i+1}: 1 \leq i \leq 4\right\} \cup\left\{x_{3} x_{6}\right\} \cup\left\{z x_{i}: 1 \leq i \leq 6\right\}\right\}$. It is not hard to prove that H is not super edge-magic. Furthermore, if we label $z, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$ with $5,7,4,1,2,8$, 3 , respectively, then this labeling can be extended to a super edge-magic labeling of $H \cup K_{1}$. So, $\mu_{s}(H)=1$. The next result provides a sufficient condition of the join product of a tree of order $p \geq 7$ with an isolated vertex to have nonzero super edge-magic deficiency.

Theorem 2.2. Let G be a tree of order $p \geq 7$ and let $H=G+K_{1}$. If $\mu_{s}(H)=0$ then either $2 K_{1,3}$ or $K_{3} \cup K_{1,3}$ is a subgraph of H.

Proof. Let $\mu_{s}(H)=0$ with a super edge-magic labeling f. Since H is a graph of order $p+1$ and size $q=2 p-1=2(p+1)-3$, then $S=\{f(x)+f(y): x y \in E(H)\}=\{3,4, \ldots, 2 p+1\}$ and the vertices of labels 1,2 and 3 must form a triangle or the vertex of label 1 is adjacent to the vertices of labels 2,3 and 4 , respectively. Also, the vertices of labels $p+1, p$ and $p-1$ must form a triangle or the vertex of label $p+1$ is adjacent to the vertices of labels $p, p-1$ and $p-2$, respectively. Since H is a graph of order $p \geq 8$, the labels $1,2,3,4, p+1, p, p-1$ and $p-2$ are all distinct. By combining these facts, we obtain either $2 K_{3}, K_{3} \cup K_{1,3}$ or $2 K_{1,3}$ as a subgraph of H. However, $2 K_{3}$ cannot be a subgraph of H since every triangle in H share a common vertex. This completes the proof.

The converse of Theorem 2.2 is not true. To show this, let us consider the tree G_{2} in Figure 1 (b). Define vertex and edge sets of $G_{2}+K_{1}$ as follows: $V\left(G_{2}+K_{1}\right)=\left\{z, x_{i}: 1 \leq i \leq\right.$ $5\} \cup\left\{y_{1}, y_{2}\right\}, E\left(G_{2}+K_{1}\right)=\left\{x_{i} x_{i+1}: 1 \leq i \leq 4\right\} \cup\left\{x_{3} y_{1}, x_{3} y_{2}\right\} \cup\left\{z x_{i}: 1 \leq i \leq 5\right\} \cup\left\{z y_{1}, z y_{2}\right\}$. It can be checked that $K_{3} \cup K_{1,3}$ and $2 K_{1,3}$ are subgraphs of $G_{2}+K_{1}$. Assume that $\mu_{s}\left(G_{2}+K_{1}\right)=0$. Then there exists a vertex labeling f such that $5 f(z)+3 f\left(x_{3}\right)+f\left(x_{2}\right)+f\left(x_{4}\right)=45$. It is easy to check that any solutions of this equation do not lead to a super edge-magic labeling of $G_{2}+K_{1}$. So, $\mu_{s}\left(G_{2}+K_{1}\right) \geq 1$. If we label $z, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, y_{1}$ and y_{2} by $2,3,1,6,8,4,7$ and 9 , respectively, then this vertex labeling can be extended to a super edge-magic labeling of $\left[G_{2}+K_{1}\right] \cup K_{1}$. So, $\mu_{s}\left(G_{2}+K_{1}\right) \leq 1$. Hence, $\mu_{s}\left(G_{2}+K_{1}\right)=1$.

Next results provide the super edge-magic deficiency of join product of a tree with $m \geq 2$ isolated vertices.

Lemma 2.3. Let G a tree of order $p \geq 2$ and $m \geq 2$ be an integer. $\mu_{s}\left(G+m K_{1}\right)=0$ if and only if $G=P_{2}$.

Proof. Let $\mu_{s}\left(G+m K_{1}\right)=0$. Then by Lemma 1.2, $m p+p-1 \leq 2(p+m)-3$ or $(p-2)(m-1) \leq 0$ and the desired result. Next we show that $\mu_{s}\left(P_{2}+m K_{1}\right)=0$. Label the vertices in P_{2} with $\{1, m+2\}$ and $m K_{1}$ with $\{2,3, \ldots, m+1\}$. By Lemma 1.2 this labeling can be extended to a super edge-magic labeling of $P_{2}+m K_{1}$.

Lemma 2.3 show that $\mu_{s}\left(G+m K_{1}\right) \geq 1$ for all the trees $G \neq P_{2}$. Next lemma provides the lower bound of its super edge-magic deficiency.

Lemma 2.4. Let G be a tree of order $p \geq 3$. For every positive integer $m \geq 2$,

$$
\mu_{s}\left(G+m K_{1}\right) \geq\left\lfloor\frac{(m-1)(p-2)+1}{2}\right\rfloor .
$$

Proof. This result is a corollary of the result of Ngurah and Simanjuntak [16] (see Lemma 2.2).
Lemma 2.4 is attainable. It has been proved that $\mu_{s}\left(P_{4}+m K_{1}\right)=m-1, \mu_{s}\left(P_{6}+m K_{1}\right)=$ $2(m-1)$ [17] and $\mu_{s}\left(P_{n}+2 K_{1}\right)=\frac{n-2}{2}$ for any even integer $n \geq 2$ [18].

3. Super edge-magic deficiecy of chain graphs

Barrientos [3] defined a chain graph as a graph with blocks $B_{1}, B_{2}, \cdots, B_{k}$ such that for every i, B_{i} and B_{i+1} have a common vertex in such a way that the block-cut-vertex graph is a path. We denote the chain graph with k blocks $B_{1}, B_{2}, \cdots, B_{k}$ by $C\left[B_{1}, B_{2}, \cdots, B_{k}\right]$. If $B_{1}=\cdots=$ $B_{t}=B$, we write $C\left[B_{1}, B_{2}, \cdots, B_{k}\right]$ as $C\left[B^{(t)}, B_{t+1}, \cdots, B_{k}\right]$. If for every $i, B_{i}=H$ for a given graph H, then $C\left[B_{1}, B_{2}, \cdots, B_{k}\right]$ is denoted by $k H$-path. Suppose that $c_{1}, c_{2}, \ldots, c_{k-1}$ are the consecutive cut vertices of $C\left[B_{1}, B_{2}, \cdots, B_{k}\right]$. The string of $C\left[B_{1}, B_{2}, \cdots, B_{k}\right]$ is ($k-2$)-tuple $\left(d_{1}, d_{2}, \ldots, d_{k-2}\right)$ where d_{i} is the distance between c_{i} and $c_{i+1}, 1 \leq i \leq k-2$. We will write $\left(d_{1}, d_{2}, \ldots, d_{k-2}\right)$ as $\left(d^{(t)}, d_{t+1}, \ldots, d_{k-2}\right)$ if $d_{1}=\ldots=d_{t}=d$. Some authors have studied the super edge-magic deficiency of chain graphs. In 2003, Lee and Wang [13] proved that some classes of chain graphs whose blocks are complete graphs are super edge-magic. In other words, they showed that some classes of chain graphs whose blocks are complete graphs have zero super edge-magic deficiency. In [15], Ngurah et al. studied the super edge-magic deficiency of $k K_{3}{ }^{-}$ paths and $k K_{4}$-paths.

Let $L_{n}=P_{n} \times P_{2}$ be a ladder. Let TL_{n} be the graph obtained from the ladder L_{n} by adding a single diagonal in each rectangle of L_{n} and let DL_{m} be the graph obtained from the ladder L_{m} by adding two diagonals in each rectangle of L_{m}. It is clear that TL_{n} is graph of order $2 n$ and size $4 n-3$ meanwhile DL_{m} has $2 m$ vertices and $5 m-4$ edges. In this section, we study the super edge-magic deficiency of chain graphs where its blocks are combination of TL_{n} and DL_{m}.

First, we study the super edge-magic deficiency of a chain graph $G=C\left[B_{1}, B_{2}, \cdots, B_{k}\right]$ where $B_{i}=\mathrm{TL}_{n}, n \geq 2$, when i is odd and $B_{i}=\mathrm{DL}_{m}, m \geq 3$, when i is even. We define vertex and edge sets of $B_{i}, 1 \leq i \leq k$, as follows:
When i is odd, $V\left(B_{i}\right)=\left\{x_{i}^{j}, y_{i}^{j}: 1 \leq j \leq n\right\}$ and $E\left(B_{i}\right)=\left\{x_{i}^{j} y_{i}^{j}: 1 \leq j \leq n\right\} \cup$ $\left\{x_{i}^{j} x_{i}^{j+1}, y_{i}^{j} y_{i}^{j+1}: 1 \leq j \leq n-1\right\} \cup\left\{e_{i}^{j}\right.$: where e_{i}^{j} is either $x_{i}^{j} y_{i}^{j+1}$ or $\left.y_{i}^{j} x_{i}^{j+1}, 1 \leq j \leq n-1\right\}$.
When i is even, $V\left(B_{i}\right)=\left\{u_{i}^{t}, u_{i}^{t}: 1 \leq t \leq m\right\}$ and $E\left(B_{i}\right)=\left\{u_{i}^{t} u_{i}^{t}: 1 \leq t \leq m\right\} \cup$ $\left\{u_{i}^{t} u_{i}^{t+1}, v_{i}^{t} v_{i}^{t+1}, u_{i}^{t} v_{i}^{t+1}, v_{i}^{t} u_{i}^{t+1}: 1 \leq t \leq m-1\right\}$.
Vertex and edge sets of G are defined as follows: $V(G)=\cup_{i=1}^{k} V\left(B_{i}\right)$, where $x_{i}^{n}=v_{i+1}^{1}, 1 \leq i \leq$ $k-1$, and $E(G)=\cup_{i=1}^{k} E\left(B_{i}\right)$. Under these definitions, $x_{i}^{n}=v_{i+1}^{1}, 1 \leq i \leq k-1$, are the cut vertices of G. The string of G is $\left(m-1, d_{1}, m-1, d_{2}, m-1, \ldots, d_{(k-3) / 2}, m-1\right)$ when k is odd or $\left(m-1, d_{1}, m-1, d_{2}, m-1, \ldots, d_{(k-2) / 2}\right)$ when k is even, where $d_{1}, d_{2}, \ldots, d_{\lfloor(k-2) / 2\rfloor} \in\{n-1, n\}$. If $n=m, G$ is a $k \mathrm{DL}_{m}$-path. The super edge-magic deficiency of $k \mathrm{DL}_{m}$-path has been studied
by Ngurah and Adiwijaya [14]. Here, we study the super edge-magic deficiency of G when n not necessarily equal to m. We found that its super edge-magic deficiency is invariant under n, as we state in the next theorem.

Theorem 3.1. Let $k \geq 3$ be an integer. For any integers $n \geq 2$ and odd $m \geq 3$,

$$
\mu_{s}(G)= \begin{cases}\frac{1}{4} k(m-3)+1, & \text { if } k \text { is even }, \\ \frac{1}{4}(k-1)(m-3), & \text { if } k \text { is odd }\end{cases}
$$

Proof. It is clear that, if $k \geq 4$ is even then $|V(G)|=\frac{1}{2} k(2 n-1)+\frac{1}{2} k(2 m-1)+1$ and $|E(G)|=$ $\frac{1}{2} k(4 n-3)+\frac{1}{2} k(5 m-4)$. If $k \geq 3$ is odd then $|V(G)|=\frac{1}{2}(k+1)(2 n-1)+\frac{1}{2}(k-1)(2 m-1)+1$ and $|E(G)|=\frac{1}{2}(k+1)(4 n-3)+\frac{1}{2}(k-1)(5 m-4)$. By Lemma 1.2, if k is even then G is not super edge-magic for any integers $n \geq 2$ and $m \geq 3$, and if k is odd then G is not super edge-magic for any integers $n \geq 2$ and $m \geq 4$. As we can see later, if k is odd then G is super edge-magic for any $n \geq 2$ and $m=3$. Again, by Lemma 1.2, it is not hard to prove that $\mu_{s}(G) \geq \frac{1}{4} k(m-3)+1$ when k is even and $\mu_{s}(G) \geq \frac{1}{4}(k-1)(m-3)$ when k is odd. To show the upper bound of $\mu_{s}(G)$, define a vertex labeling f as follows:

$$
\begin{aligned}
& f\left(x_{1}^{j}\right)=2 j-1,1 \leq j \leq n . \\
& f\left(u_{2}^{t}\right)=\frac{1}{2}(4 n+5 t-3), t \text { is odd, } 1 \leq t \leq m . \\
& f\left(u_{2}^{t}\right)=\frac{1}{2}(4 n+5 t-4), t \text { is even, } 1 \leq t \leq m .
\end{aligned}
$$

For $1 \leq i \leq\left\lfloor\frac{1}{2}(k-1)\right\rfloor, f\left(x_{2 i-1}^{j}\right)=\frac{1}{2}(4 n+5 m-7) i+f\left(x_{1}^{j}\right), 1 \leq j \leq n$. For $1 \leq i \leq\left\lfloor\frac{1}{2}(k-2)\right\rfloor$, $f\left(u_{2 i+2}^{t}\right)=\frac{1}{2}(4 n+5 m-7) i+f\left(u_{2}^{t}\right), 1 \leq t \leq m$.

For $1 \leq i \leq k$, label the remaining vertices as follows:

$$
\begin{aligned}
& f\left(y_{1}^{j}\right)=f\left(x_{1}^{j}\right)+1, i \text { is odd, } 1 \leq j \leq n . \\
& f\left(v_{i}^{t}\right)=f\left(u_{i}^{t}\right)-2, i \text { is even, } t \text { is odd, } 1 \leq t \leq m . \\
& f\left(v_{i}^{t}\right)=f\left(u_{i}^{t}\right)-1, i \text { is even, } t \text { is even, } 1 \leq t \leq m .
\end{aligned}
$$

Under the labeling f, one can verify that no labels are repeated, $f\left(x_{i}^{n}\right)=f\left(v_{i+1}^{1}\right), 1 \leq i \leq k-1$, and the largest vertex label used is $\frac{1}{4}(k-2)(4 n+5 m-7)+\frac{1}{2}(4 n+5 m-3)=\frac{1}{4} k(m-3)+1+|V(G)|$ when k is even or $\frac{1}{4}(k-1)(4 n+5 m-7)+2 n=\frac{1}{4}(k-1)(m-3)+|V(G)|$ when k is odd. Particularly, if k is odd and $m=3$ the largest vertex label used is $|V(G)|$. It means that f is a super edge-magic labeling of G when k is odd and $m=3$.

Next, let $\alpha=\frac{1}{4} k(m-3)+1$ when k is even or $\alpha=\frac{1}{4}(k-1)(m-3)$ when k is odd. Denote the isolated vertices with $\left\{z_{2 i}^{l}: 1 \leq i \leq\left\lfloor\frac{k}{2}\right\rfloor, 1 \leq l \leq \frac{1}{2}(m-3)\right\} \cup \mathcal{S}$, where $|\mathcal{S}|=1$ when k is even or $|\mathcal{S}|=0$ when k is odd. Set $f\left(z_{2 i}^{l}\right)=f\left(y_{2 i-1}^{l}\right)+5 l$ and $f(\mathcal{S})=f\left(u_{k}^{m}\right)-1$. It can be checked that f is a bijection from $V(G) \cup \alpha K_{1}$ to $\{1,2, \ldots,|V(G)|+\alpha\}$ and $\{f(x)+f(y): x y \in E(G)\}$ is a set of $|E(G)|$ consecutive integers. By Lemma 1.1, f can be extended to a super edge-magic labeling of $G \cup \alpha K_{1}$. Hence, $\mu_{s}(G) \leq \frac{1}{4} k(m-3)+1$ when k is even or $\mu_{s}(G) \leq \frac{1}{4}(k-1)(m-3)$ when k is odd. This completes the proof.

Problem 2. For $m \geq 3$ is even, determine $\mu_{s}(G)$.

Next, we study the super edge-magic deficiency of $H=C\left[B_{1}, B_{2}, \cdots, B_{k}\right]$ where $B_{i}=\mathrm{TL}_{n}$, $n \geq 2$, when i is even and $B_{i}=\mathrm{DL}_{m}, m \geq 3$, when i is odd. We define vertex and edge sets of H as follows: $V(H)=\cup_{i=1}^{k} V\left(B_{i}\right)$, where $u_{i}^{m}=y_{i+1}^{1}, 1 \leq i \leq k-1$, and $E(H)=\cup_{i=1}^{k} E\left(B_{i}\right)$, where $V\left(B_{i}\right)$ and $E\left(B_{i}\right)$ are defined as before. Under these definitions, $u_{i}^{m}=y_{i+1}^{1}, 1 \leq i \leq k-1$, are the cut vertices of H. The string of H is $\left(d_{1}, m-1, d_{2}, m-1, \ldots, m-1, d_{(k-1) / 2}\right)$ when k is odd or $\left(d_{1}, m-1, d_{2}, m-1, \ldots, d_{(k-2) / 2}, m-1\right)$ when k is even, where $d_{1}, d_{2}, \ldots, d_{\lfloor(k-2) / 2\rfloor} \in\{n-1, n\}$. Notice that, when k is even, the chain graph H is isomorphic to G, where G is the chain graph in Theorem 3.1. Hence, $\mu_{s}(H)=\mu_{s}(G)=\frac{1}{4} k(m-3)+1$ when k is even. Next theorem gives the upper and lower bounds of the super edge-magic deficiency of H when k is odd.

Theorem 3.2. Let $k \geq 3$ be an odd integer. For any integers $n \geq 2$ and odd $m \geq 3$, the super edge-magic deficiency of H satisfies

$$
\frac{1}{4}(k+1)(m-1)-\frac{1}{2}(k-1) \leq \mu_{s}(G) \leq \frac{1}{4}(k+1)(m-1)-\frac{1}{2}(k-3) .
$$

Proof. H is a graph of order $\frac{1}{2}(k+1)(2 m-1)+\frac{1}{2}(k-1)(2 n-1)+1$ and size $\frac{1}{2}(k+1)(5 m-4)+\frac{1}{2}(k-$ $1)(4 n-3)$. By Lemma 1.2, H is not super edge-magic and $\mu_{s}(H) \geq \frac{1}{4}(k+1)(m-1)-\frac{1}{2}(k-1)$. Next, define a vertex labeling f as follows:

$$
\begin{aligned}
f\left(u_{1}^{t}\right) & =\frac{1}{2}(5 t-3), t \text { is odd, } 1 \leq t \leq m-2 . \\
f\left(u_{1}^{t}\right) & =\frac{1}{2}(5 t-2), t \text { is even, } 2 \leq t \leq m-1 . \\
f\left(u_{1}^{m}\right) & =\frac{1}{2}(5 m+1) . \\
f\left(x_{2}^{j}\right) & =\frac{1}{2}(5 m+4 j-5), 1 \leq j \leq n . \\
f\left(u_{3}^{t}\right) & =\frac{1}{2}(5 m+4 n+5 t-6), t \text { is odd, } 1 \leq t \leq m-2 . \\
f\left(u_{3}^{t}\right) & =\frac{1}{2}(5 m+4 n+5 t-7), t \text { is even, } 2 \leq t \leq m-1 .
\end{aligned}
$$

For $1 \leq i \leq \frac{1}{2}(k-3), 1 \leq j \leq n$ and $1 \leq t \leq m$, label the remaining vertices as follows:

$$
\begin{aligned}
& f\left(x_{2 i+2}^{j}\right)=\frac{1}{2}(5 m+4 n-7) i+f\left(x_{2}^{j}\right) . \\
& f\left(u_{2 i+3}^{t}\right)=\frac{1}{2}(5 m+4 n-7) i+f\left(u_{3}^{t}\right) .
\end{aligned}
$$

For $1 \leq i \leq k, 1 \leq j \leq n$ and $1 \leq t \leq m$, label the remaining vertices as follows:

$$
\begin{aligned}
f\left(v_{i}^{t}\right) & =f\left(u_{i}^{t}\right)+2, i \text { and } t \text { are odd, } t \neq m . \\
f\left(v_{i}^{t}\right) & =f\left(u_{i}^{t}\right)+1, i \text { is odd, } t \text { is even. } \\
f\left(v_{i}^{m}\right) & =f\left(u_{i}^{m}\right)-2, i \text { is odd. } \\
f\left(y_{i}^{j}\right) & =f\left(x_{i}^{j}\right)+1, i \text { is even. }
\end{aligned}
$$

It can be checked that the vertex labeling f constitute a set $\{f(x)+f(y): x y \in E(H)\}$ of $|E(H)|$ consecutive integers, no labels are repeated and the largest vertex label used is $f\left(u_{k}^{m}\right)=$ $\frac{1}{4}(k+1)(m-1)-\frac{1}{2}(k-3)+|V(H)|$. Hence, there exist $\frac{1}{4}(k+1)(m-1)-\frac{1}{2}(k-3)$ labels that are not utilized. Thus, for each the number from 1 to $|V(G)|$ that has not been used as a label, we introduce a new vertex with that number as its label which gives $\frac{1}{4}(k+1)(m-1)-\frac{1}{2}(k-3)$ new isolated vertices. By Lemma 1.1, this yields a super edge-magic labeling of $H \cup\left[\frac{1}{4}(k+1)(m-\right.$ $\left.1)-\frac{1}{2}(k-3)\right] K_{1}$. So, $\mu_{s}(H) \leq \frac{1}{4}(k+1)(m-1)-\frac{1}{2}(k-3)$.

Problem 3. Determine the exact value of the $\mu_{s}(H)$ when $k, m \geq 3$ are odd.

On the super edge-magic deficiency of join product and chain graphs
A.A.G. Ngurah and R. Simanjuntak

Acknowledgement

The first author has been supported by "Hibah Kompetensi 2017", 020/SP2H/K2/KM/2017, from the Directorate General of Higher Education, Indonesia.

References

[1] A. Ahmad, M.F. Nadeem, M. Javaid, and R. Hasni, On the super edge-magic deficiency of some families related to ladder graphs, Australas. J. Combin. 51 (2011), 201-208.
[2] A. Ahmad, I. Javaid and M.F. Nadeem, Further results on super edge-magic deficiency of unicyclic graphs, Ars Combin. 99 (2011), 129-138.
[3] C. Barrientos, Graceful labeling of chain and corona graphs, Bull. Inst. Combin. Appl. 34 (2002), 17-26.
[4] E.T. Baskoro, I.W. Sudarsana, and Y.M. Cholily, How to construct new super edge-magic graphs from some old ones, J. Indones. Math. Soc. 2 (2005), 155-162.
[5] Z. Chen, On super edge-magic graphs, J. Combin, Math. Combin. Comput. 38 (2001), 55-64.
[6] H. Enomoto, A. Llado, T. Nakamigawa, and G. Ringel, Super edge magic graphs, SUT J. Math. 34 (1998), 105-109.
[7] R.M. Figueroa-Centeno, R. Ichishima, and F.A. Muntaner-Batle, The place of super edgemagic labelings among other classes of labelings, Discrete Math. 231 (2001), 153-168.
[8] R.M. Figueroa-Centeno, R. Ichishima, and F.A. Muntaner-Batle, On the super edge-magic deficiency of graphs, Ars Combin. 78 (2006), 33-45.
[9] R.M. Figueroa-Centeno, R. Ichishima, and F.A. Muntaner-Batle, Some new results on the super edge-magic deficiency of graphs, J. Combin. Math. Combin. Comput., 55 (2005), 1731.
[10] J.A. Gallian, A dinamic survey of graph labelings, Electron. J. Combin. 16 (2017) \# DS6.
[11] R. Ichishima and A. Oshima, On the super edge-magic deficiency and α-valuation of graphs, J. Indones. Math. Soc., Special Edition (2011), 59-69.
[12] A. Kotzig and A. Rosa, Magic valuation of finite graphs, Canad. Math. Bull. 13 (4) (1970), 451-461.
[13] S.M. Lee and J. Wang, On super edge-magicness of chain graphs whose blocks are complete graphs, Cong. Numer. 162 (2003), 147-160.
[14] A.A.G. Ngurah and Adiwijaya, New results on the (super) edge-magic deficiency of chain graphs, International Journal of Mathematics and Mathematical Sciences, Vol. 2017, Article ID 5156974, 6 pages, https://doi.org/10.1155/2017/5156974.
[15] A.A.G. Ngurah, E.T. Baskoro, and R. Simanjuntak, On super edge-magic deficiency of graphs, Australas. J. Combin. 40 (2008), 3-14.
[16] A.A.G. Ngurah and R. Simanjuntak, Super edge-magic labelings: deficiency and maximality, Electron. J. Graph Theory Appl. 5 (2) (2017), 212-220.
[17] A.A.G. Ngurah and R. Simanjuntak, Super edge-magic deficiency of join-product graphs, Util. Math. 105 (2017), 279-289.
[18] A.A.G. Ngurah, R. Simanjuntak, E.T. Baskoro, and S. Uttunggadewa, On super edge-magic strength and deficiency of graphs, Computational Geometry and Graph Theory, LNCS 4535 (2008), 144-154.
[19] Slamin, M. Baca, Y. Lin, M. Miller and R. Simanjuntak Edge-magic total labelings of wheels, fans and friendship graphs, Bull. Inst. Combin. Appl. 35 (2002), 89-98.

