Electronic Journal of Graph Theory and Applications

Some structural graph properties of the noncommuting graph of a class of finite Moufang loops

Hamideh Hasanzadeh Bashir ${ }^{\text {a }}$, Karim Ahmadidelir ${ }^{1 \mathrm{~b}}$
${ }^{a}$ Department of Mathematics, Science and Research Branch, Islamic Azad University, P.O. Box 14515-1775, Tehran, Iran
${ }^{b}$ Department of Mathematics, Tabriz Branch, Islamic Azad University, Tabriz, Iran

hhb_68949@yahoo.com, k_ahmadi@iaut.ac.ir

Abstract

For any non-abelian group G, the non-commuting graph of $G, \Gamma=\Gamma_{G}$, is graph with vertex set $G \backslash Z(G)$, where $Z(G)$ is the set of elements of G that commute with every element of G and distinct non-central elements x and y of G are joined by an edge if and only if $x y \neq y x$. The non-commuting graph of a finite Moufang loop has been defined by Ahmadidelir. In this paper, we show that the multiple complete split-like graphs and the non-commuting graph of Chein loops of the form $M\left(D_{2 n}, 2\right)$ are perfect (but not chordal). Then, we show that the non-commuting graph of a non-abelian group G is split if and only if the non-commuting graph of the Moufang loop $M(G, 2)$ is 3 -split. Precisely, we show that the non-commuting graph of the Moufang loop $M(G, 2)$, is 3 -split if and only if G is isomorphic to a Frobenius group of order $2 n, n$ is odd, whose Frobenius kernel is abelian of order n. Finally, we calculate the energy of generalized and multiple splite-like graphs, and discuss about the energy and also the number of spanning trees in the case of the non-commuting graph of Chein loops of the form $M\left(D_{2 n}, 2\right)$.

Keywords: Moufang loops, non-commuting graph, perfect graphs, chordal graphs, split graphs. Mathematics Subject Classification : 20N05, 20D60, 05C17 DOI: 10.5614/ejgta.2020.8.2.9

[^0]
1. Introduction

Let Q be a set with one binary operation. Then it is a quasigroup if the equation $x y=z$ has a unique solution in Q whenever two of the three elements $x, y, z \in Q$ are specified. A quasigroup Q is a loop if Q possesses a neutral element e, i.e., if $e x=x e=x$ holds for every $x \in Q$. Moufang loops are loops in which any of the (equivalent) Moufang identities,

$$
\begin{array}{ll}
((x y) x) z=x(y(x z)), & (M 1) \\
x(y(z y))=((x y) z) y, & (M 2) \\
(x y)(z x)=x((y z) x), & (M 3) \\
(x y)(z x)=(x(y z)) x, & (M 4)
\end{array}
$$

holds for every $x, y, z \in Q$. Commutator of x, y and the associator of x, y and z are defined by $[x, y]=x^{-1} y^{-1} x y$ and $[x, y, z]=((x y) z)^{-1}(x(y z))$, respectively. We define the commutant (or Moufang center) $C(Q)$ of Q as $\{x \in Q \mid x y=y x, \quad \forall y \in Q\}$. The center $Z(Q)$ of a Moufang $\operatorname{loop} Q$ is the set of all elements of Q which commute and associate with all other elements of Q. A non-empty subset P of Q is called a subloop of Q if P is itself a loop under the binary operation of Q, in particular, if this operation is associative on P, then it is a subgroup of Q. A subloop N of a loop Q is said to be normal in Q if $x N=N x ; x(y N)=(x y) N ; N(x y)=(N x) y$; for every $x, y \in Q$. In Moufang loop Q, the subloops $Z(Q)$ and $C(Q)$ are normal subloops. For more details about the Moufang loops one may see [8, 16, 13]. In 1974, Chein introduced a class of non-associative Moufang loops $M(G, 2)$, so called Chein loops. For a group G and a new element $u,(u \notin G), M(G, 2)=G \cup G u$ such that the multiplication with the new binary operation \circ is defined as follows:

$$
\begin{cases}g \circ h=g h, & g, h \in G, \\ g \circ(h u)=(h g) u, & g \in G, h u \in G u \\ (g u) \circ h=\left(g h^{-1}\right) u, & g u \in G u, h \in G, \\ (g u) \circ(h u)=h^{-1} g, & g u, h u \in G u\end{cases}
$$

Clearly, the Moufang loop $M(G, 2)$ is non-associative if and only if G is non-abelian, see [8]. In [2], Ahmadidelir has investigated some probabilistic properties of $M(G, 2)$, such as its commutativity degree.

There are many papers on assigning a graph to a ring or a group in order to investigation of their algebraic properties. For any non-abelian group G the non-commuting graph of $G, \Gamma=\Gamma_{G}$ is a graph with vertex set $G \backslash Z(G)$, where distinct non-central elements x and y of G are joined by an edge if and only if $x y \neq y x$. This graph is connected with diameter 2 and girth 3 for a non-abelian finite group and has received some attention in existing literature. For instance, one may see [1, 10, 15, 17]. Similarly, the non-commuting graph of a finite Moufang loop has been defined by Ahmadidelir in [3]. He has defined this graph as follows: Let M be a Moufang loop, then the vertex set is $M \backslash C(M)$ and two vertices x and y joined by an edge whenever $[x, y] \neq 1$. He has shown that this graph is connected (as for groups) and obtained some results related to the non-commuting graph of a finite non-commutative Moufang loop.

We will denote a complete graph with n vertices by K_{n}. All graphs considered in this paper are finite and simple. For a graph Γ, we denote its vertex and edge sets by $V(\Gamma)$ and $E(\Gamma)$, respectively.

The complement of Γ is denoted by $\bar{\Gamma}$. A graph $\Gamma=(V, E)$, is called k-partite where $k>1$, if it is possible to partition V into k subsets $V_{1}, V_{2}, \ldots, V_{k}$, such that every edge of E joins a vertex of V_{i} to a vertex of $V_{j}, i \neq j$. A clique in a graph Γ is an induced subgraph whose all vertices are pairwise adjacent. The maximum size of a clique in a graph Γ is called the clique number of Γ and denoted by $\omega(\Gamma)$. A subset X of the vertices of Γ is called an independent set (or stable) if the induced subgraph on X has no edges. The maximum size of an independent set in a graph Γ is called the independence number of Γ and denoted by $\alpha(\Gamma)$. The vertex chromatic number of a graph Γ is denoted by $\chi(\Gamma)$, and it is the minimum k for which k-vertex coloring of a graph Γ such that no two adjacent vertices have the same color. For a subset S of $V(\Gamma), N_{\Gamma}[S]$ is the set of vertices in Γ which are in S or adjacent to a vertex in S. If $N_{\Gamma}[S]=V(\Gamma)$ then S is said to be a dominating set of the vertices in Γ. The minimum size of a dominating set of the vertices in Γ is dominating number of Γ and denoted by $\gamma(\Gamma)$. A vertex cover of a graph Γ is a set $Q \subseteq V(\Gamma)$ such that contains at least one endpoint of every edge. The minimum size of a vertex cover is denoted by $\beta(\Gamma)$. Our other used notations about graphs are standard and for more details one may see $[6,7,11]$.

There is a relation between $\alpha(\Gamma)$ and $\beta(\Gamma)$ as follows:
Lemma 1.1. ([7], p. 296) Let Γ be a graph. Then $\alpha(\Gamma)+\beta(\Gamma)=n(\Gamma)$, where $n(\Gamma)$ is the number of vertices of Γ.

A perfect graph Γ, is a graph in which for every induced subgraph its clique number is equal to its chromatic number. A graph Γ is called weakly perfect graph if $\omega(\Gamma)=\chi(\Gamma)$. So, all perfect graphs are weakly perfect. A chordal graph is one in which all cycles of order four or more have a chord, which is an edge that is not part of cycle but connects two vertices of the cycle. The class of Chordal graphs is a subset of the class of perfect graphs. For more information about these types of graphs, one may see [12, 14]. We have the following Theorem about perfect graphs, called strongly perfect graph theorem, or Berg Theorem.

A graph is called k-regular, if the vertices of the graph are of the same degree k and a strongly regular graph S with parameters (n, k, λ, μ) is a k-regular graph of order n such that each pair of adjacent vertices has λ common neighbors and each pair of non-adjacent vertices has in which μ common neighbors. Let $\Gamma_{1}=\left(V_{1}, E_{1}\right)$ and $\Gamma_{2}=\left(V_{2}, E_{2}\right)$ be undirected simple graphs. The union $\Gamma_{1} \cup \Gamma_{2}$ of graphs Γ_{1} and Γ_{2} is a graph $\Gamma=(V, E)$ for which $V=V_{1} \cup V_{2}$ and $E=E_{1} \cup E_{2}$. The notation $n \Gamma$ is short for $\underbrace{\Gamma \cup \cdots \cup \Gamma}_{n-\text { times }}$.

The complete product $\Gamma_{1} \nabla \Gamma_{2}$ of graph Γ_{1} and Γ_{2} is a graph obtained from $\Gamma_{1} \cup \Gamma_{2}$ by joining every vertex of Γ_{1} to every vertex of Γ_{2}. For every $a, b, n \in N$, a complete split, or simply, a split graph, is the graph $\bar{K}_{a} \nabla K_{b}$ and denoted by $C S_{b}^{a}$. By a theorem of Földes and Hammer ([12], Theorem 6.3), a graph is (complete) split iff contains no induced subgraph isomorphic to $2 K 2, C_{4}$ or C_{5}. Also, an undirected graph is split if and only if its complement is split ([12], Theorem 6.1). Clearly, every split graph is chordal and so perfect, but the converses are not true. More generally, a multiple complete split-like graph is $\bar{K}_{a} \nabla\left(n K_{b}\right)$ and denoted by $M C S_{b, n}^{a}$. Specially, in this paper, for $n=3$ we call $M C S_{b, 3}^{a}$ as a 3 -split graph.

We generalize the above definitions as follows:

Definition 1.1. The generalized complete split-like graph is $G C S_{k}^{a}=\bar{K}_{a} \nabla S$ such that S is a strongly regular graph with parameters (n, k, λ, μ). The multiple generalized complete split-like graph is $G M C S_{k, m}^{a}=\bar{K}_{a} \nabla(m S)$.

The laplacian matrix of a simple graph Γ with n vertices, is defined as $L(\Gamma)=D(\Gamma)-A(\Gamma)$, where $A(\Gamma)$ is its adjacency matrix and $D(\Gamma)=\left(d_{1}, \ldots, d_{n}\right)$ is the diagonal matrix of the vertex degrees in Γ. For any graph Γ, the energy of Γ is defined as $\xi(\Gamma)=\sum_{i=1}^{n}\left|\lambda_{i}\right|$, where $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of the adjacency matrix of Γ. A spanning tree of a graph Γ is an induced subgraph of Γ, which is a tree and contains every vertex of Γ.

In this paper, we show that the multiple complete split-like graphs are perfect (but not chordal) and deduce that the non-commuting graph of Chein loops of the form $M\left(D_{2 n}, 2\right)$ is perfect but not chordal. Then, we show that the non-commuting graph of a non-abelian group G is split if and only if the non-commuting graph of the Moufang loop $M(G, 2)$ is 3 -split and then classify all Chein loops that their non-commuting graphs are $3-$ split. Precisely, we show that for a nonabelian group G, the non-commuting graph of the Moufang loop $M(G, 2)$, is 3 -split if and only if G is isomorphic to a Frobenius group of order $2 n, n$ is odd, whose Frobenius kernel is abelian of order n. Finally, we calculate the energy of generalized and multiple splite-like graphs, and discuss about the energy and also the number of spanning trees in the case of the non-commuting graph of Chein loops of the form $M\left(D_{2 n}, 2\right)$. We recall the following Proposition and Theorems in order to provide some tools to these purposes.

Theorem 1.1. ([5], p. 3: Schur complement) Let A be a $n \times n$ matrix partitioned as $A=$ $\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]$, where A_{11} and A_{22} are non-singular square matrices. Then the inverse of A, A^{-1} can be calculated by the following formula:

$$
A^{-1}=\left[\begin{array}{cc}
A_{11}^{-1}+A_{11}^{-1} A_{12}\left(A / A_{11}\right)^{-1} A_{21} A_{11}^{-1} & -A_{11}^{-1} A_{12}\left(A / A_{11}\right)^{-1} \\
-\left(A / A_{11}\right)^{-1} A_{21} A_{11} & \left(A / A_{11}\right)^{-1}
\end{array}\right],
$$

where

$$
A / A_{11}=A_{22}-A_{21} A_{11}^{-1} A_{12}
$$

and

$$
\operatorname{det} A=\operatorname{det} A_{1} \times \operatorname{det}\left(A_{22}-A_{21} A_{11}^{-1} A_{12}\right)
$$

such that $\operatorname{det} A$ is the determinant of A.
Theorem 1.2. ([14], Theorem 1) For $i=1,2$, let Γ_{i} be r_{i}-regular graphs with n_{i} vertices. Then the characteristic polynomial of the complete product of these two graphs is as follows:

$$
P_{\Gamma_{1} \nabla \Gamma_{2}}(\lambda)=\frac{P_{\Gamma_{1}}(\lambda) P_{\Gamma_{2}}(\lambda)}{\left(\lambda-r_{1}\right)\left(\lambda-r_{2}\right)}\left[\left(\lambda-r_{1}\right)\left(\lambda-r_{2}\right)-n_{1} n_{2}\right] .
$$

2. Some basic graph properties of the Moufang loop $M\left(D_{2 n}, 2\right)$

Let $D_{2 n}$ denote the dihedral group of order $2 n$, which has the following presentation:

$$
D_{2 n}=\left\langle a, b \mid \quad a^{n}=b^{2}=(a b)^{2}=1\right\rangle .
$$

In this section, we want to study the non-commuting graph of the Moufang loops $M\left(D_{2 n}, 2\right)$, simply denoted by Γ. We will use the following Lemma in next sections.

The following Lemma determines the structure of the non-commuting graph of the Moufang loop $M=M\left(D_{2 n}, 2\right)$.

Lemma 2.1. Let $M=M\left(D_{2 n}, 2\right)$ and $\Gamma=\Gamma_{M}$ be its non-commuting graph.
(a) If n is odd then $\Gamma_{M} \cong \bar{K}_{n-1} \nabla S$, such that S is a strongly regular graph with parameters (3n,n-1,n-2,0).
(b) If n is even then $\Gamma_{M} \cong \bar{K}_{n-2} \nabla 3 S$, such that S is a strongly regular graph with parameters $(n, n-2, n-3, n-2)$.

Proof. a) By Lemma ([3], Lemma 4.4) and the definition of the non-commuting graph, for every odd integer n, we can partition the vertices of Γ into four sets, as follows:

$$
\begin{array}{rlrl}
t_{1} & =\left\{a, a^{2}, \ldots, a^{n-1}\right\}, & t_{2} & =\left\{b, a b, \ldots, a^{n-1} b\right\}, \\
t_{3} & =\left\{u, a u, \ldots, a^{n-1} u\right\}, & t_{4}=\left\{b u, a b u, \ldots, a^{n-1} b u\right\} .
\end{array}
$$

For every $0 \leq i, j \leq n-1$, since $a^{i} a^{j}=a^{j} a^{i}, t_{1}$ is an independent set and from the relations $a^{i} \circ\left(a^{j} b\right) \neq\left(a^{j} b\right) \circ a^{i}, a^{i} \circ\left(a^{j} u\right) \neq\left(a^{j} u\right) \circ a^{i}$ and $a^{i} \circ\left(a^{j} b u\right) \neq\left(a^{j} b u\right) \circ a^{i}$, we find that all vertices of t_{1} are adjacent to all vertices of each of the sets t_{2}, t_{3} and t_{4}. Also, by the relations $\left(a^{i} b\right) \circ\left(a^{j} b\right) \neq\left(a^{j} b\right) \circ\left(a^{i} b\right)$, the induced subgraph $\left[t_{2}\right]$ of Γ, is a clique. Similarly, we can show that the induced subgraph $\left[t_{3}\right]$ and $\left[t_{4}\right]$ of Γ, are cliques. Hence, $\Gamma \cong \bar{K}_{n-1} \nabla 3 K_{n}$ and the graph Γ is 3 -split and $3 K_{n} \cong S$, where S is a strongly regular graph with parameters $(3 n, n-1, n-2,0)$.
b) Let n be an even integer. Again, we can partition the vertices of Γ into four sets, as follows:

$$
\begin{array}{ll}
t_{1}=\left\{a, a^{2}, \ldots, a^{\frac{n}{2}-1}, a^{\frac{n}{2}+1}, \ldots, a^{n-1}\right\}, & t_{2}=\left\{b, a b, \ldots, a^{n-1} b\right\}, \\
t_{3}=\left\{u, a u, \ldots, a^{n-1} u\right\}, & t_{4}=\left\{b u, a b u, \ldots, a^{n-1} b u\right\} .
\end{array}
$$

Since each pair of elements of t_{1} commute, so the induced subgraph $\left[t_{1}\right]$ is an independent set, that means $\left[t_{1}\right] \cong \bar{K}_{n-2}$. Also, every element in M commutes with its inverse and since, $\forall x \in t_{i},(i=$ $2,3,4)$, its inverse x^{-1} belongs to t_{i}. Therefore, every element of $t_{i},(i=2,3,4)$ is adjacent to each vertex in $t_{i}, i=2,3,4$, except its inverse. Also any two elements x, y in $t_{i},(i=2,3,4)$ commute if and only if $|i-j|=\frac{n}{2}$, where $x=a^{i} u$ or $a^{i} b, a^{i} b u$ and $y=a^{j} u$ or $a^{j} b, a^{j} b u$. Then $\left[t_{i}\right] \cong S$, where S is a strongly regular graph with parameters $(n, n-2, n-3, n-2)$. Finally, for every $2 \leq i, j \leq 4$ there is no edge of Γ such that joins a vertex of t_{i} to a vertex of $t_{j}, i \neq j$, but each vertex in t_{1} joins to each vertex in $t_{i},(i=2,3,4)$. Therefore, $\Gamma_{M} \cong \bar{K}_{n-2} \nabla 3 S$.

In the following Theorem, we derive some important graph properties of $\Gamma_{M\left(D_{2 n}, 2\right)}$.

Theorem 2.1. Let $M=M\left(D_{2 n}, 2\right)$ and $\Gamma=\Gamma_{M}$ be its non-commuting graph.
(a) If n is odd then:

$$
\begin{array}{lll}
\omega(\Gamma)=n+1, & & \chi(\Gamma)=n+1, \\
\alpha(\Gamma)=n-1, & \beta(\Gamma)=3 n, & \gamma(\Gamma)=2 .
\end{array}
$$

(b) If n is even then:

$$
\begin{gathered}
\omega(\Gamma)=\frac{n}{2}+1, \quad \chi(\Gamma)=\frac{n}{2}+1 \\
\alpha(\Gamma)=\left\{\begin{array}{ll}
6, & (n=6) \\
n-2, & (n \geq 8)
\end{array}, \quad \beta(\Gamma)=\left\{\begin{array}{ll}
16, & (n=6) \\
3 n, & (n \geq 8)
\end{array}, \quad \gamma(\Gamma)=2\right.\right.
\end{gathered}
$$

Proof. a) By Lemma 2.1, the non-commuting graph of $M\left(D_{2 n}, 2\right)$ is a generalized complete splitlike graph for any odd integer n. Then $\Gamma=\bar{K}_{n-1} \nabla S$ in which S is a strongly regular graph with parameters $(3 n, n-1, n-2,0)$, where $V\left(\bar{K}_{n-1}\right)=\left\{a, a^{2}, \ldots, a^{n-1}\right\}$ and $S \cong 3 K_{n}$. So this graph is 3 -split. By the structure of Γ, since every vertex of each copy of K_{n} is joined to every vertex of \bar{K}_{n-1}, so we have the complete product $K_{n} \nabla\left[a^{i}\right]$, where $a^{i} \in \bar{K}_{n-1}, 1 \leq i \leq n-1$. Also, $K_{n} \nabla\left[a^{i}\right]$ is the largest clique in Γ. So, $\omega(\Gamma)=n+1$. We need n distinct colors for coloring any K_{n} and only one color for coloring \bar{K}_{n-1} which is distinct with the previous ones. So, $\chi(\Gamma)=n+1$. The set of vertices of \bar{K}_{n-1} is the largest independent set, so $\alpha(\Gamma)=n-1$. By Lemma 1.1, we have $\beta(\Gamma)=4 n-1-(n-1)=3 n$. Clearly, the set of vertices of $3 K_{n}$ has the minimum size of a vertex cover. Any vertex of \bar{K}_{n-1} is dominating all vertices of S, and any vertex of S is dominating all vertices in \bar{K}_{n-1}. Thus $\gamma(\Gamma)=2$.
b) By Lemma 2.1, the non-commuting graph of $M\left(D_{2 n}, 2\right)$, for every even integer n, is a multiple generalized complete split-like graph as $\Gamma=\bar{K}_{n-2} \nabla 3 S$, where S is a strongly regular graph with parameters ($n, n-2, n-3, n-2$) and the set of vertices of \bar{K}_{n-2} is an independent set as follows:

$$
V\left(\bar{K}_{n-2}\right)=\left\{a, a^{2}, \ldots, a^{\frac{n}{2}-1}, a^{\frac{n}{2}+1}, \ldots, a^{n}-1\right\} .
$$

In order to find the clique number, we may choose one vertex of \bar{K}_{n-2} and the other vertices from only one copy of S 's. By definition, every vertex is not joined to its inverse, so, we can choose $\frac{n}{2}$ vertices of S and hence, $\omega(\Gamma)=\frac{n}{2}+1$. The color of every vertex in S is co-color with its inverse. Therefore, the chromatic number of S is equal to $\frac{n}{2}$, and so the maximum color number for all the vertices of $3 S$ is equal to $\frac{n}{2}$. By only one color distinct from $\frac{n}{2}$-color in $3 S$, we can color \bar{K}_{n-2}. So, $\chi(\Gamma)=\frac{n}{2}+1$. For $n=6, \bar{K}_{n-2}$ have four independent vertices, but with two non-adjacent vertices chosen from any of the copies of S, we get 6 independent vertices. Therefore, in this case $\alpha(\Gamma)=6$. Now, for $n \geq 8$, the set \bar{K}_{n-2} is the largest independent set and so, $\alpha(\Gamma)=n-2$. By using Lemma 1.1, we have $\beta(\Gamma)=n(\Gamma)-\alpha(\Gamma)$. Hence, if $n=6$ then $\beta(\Gamma)=16$, else if $n \geq 8$ then $\beta(\Gamma)=4 n-2-(n-2)=3 n$. By choosing any vertex in \bar{K}_{n-2} and the other in one of the copies of S, the domination set of Γ will be determined. Hence, $\gamma(\Gamma)=2$.

3. About perfectness and splitness of the non-commuting graph of a Moufang loop

In this section, first we show that the multiple complete split-like graphs are perfect and then characterize all Chein loops that their non-commuting graphs are $3-$ split-like.

Theorem 3.1. Every multiple complete split-like graph $M C S_{b, n}^{a} \cong \bar{K}_{a} \nabla\left(n K_{b}\right)$, $(n \geq 2)$ is perfect, but not chordal. Moreover, every complete split graph $C S_{b, n}^{a} \cong \bar{K}_{a} \nabla K_{b}$, is perfect and also chordal.

Proof. Let $\Gamma \cong \bar{K}_{a} \nabla\left(n K_{b}\right)$ and C be an odd cycle. If all vertices of C lie in only one copy of K_{b} 's, clearly this cycle has a chord. Also, if some vertices of C lie in more than one copy of K_{b} 's, then since in this case C has some vertices of \bar{K}_{a} and also these vertices in \bar{K}_{a} are adjacent to each vertex of K_{b}, therefore, the cycle has a chord. In addition, the complement graph, $\bar{\Gamma}$, is a disconnected graph of the form $\bar{\Gamma} \cong K_{a} \cup S$ such that S is strongly regular graph with parameters $(n b,(n-1) b,(n-2) b,(n-1) b)$ or $S \cong T_{n b, b}$, which is a complete n-partite graph with $n b$ vertices, and hence, each part has b vertices. Clearly, any cycle in K_{a} has a chord. If C be an odd cycle in S, then by structure of S, there is an intersection of C with more than three sections of S and these vertices are adjacent to any of the vertices in other sections and so, C has a chord. If C has an instruction with only two sections of S, then the induced subgraph of these sections will be a bipartite graph such that there is no any odd cycle in it. Now, by Berg Theorem ([9], Theorem 1.2) Γ is a perfect graph. Let $\Gamma \cong \bar{K}_{a} \nabla\left(n K_{b}\right)$ and $x_{1}, x_{2} \in \bar{K}_{a}, x_{1} \neq x_{2}$. Take x_{3} and x_{4} from two distinct copies of K_{b} 's. Now the induced subgraph of Γ generated by x_{1}, x_{2}, x_{3} and x_{4} is a cycle of length four without a chord. So, by definition, Γ is not chordal.

Similar to the proof of the first part, $C S_{b, n}^{a} \cong \bar{K}_{a} \nabla K_{b}$ is perfect, but there is no cycle of length four or more without any chord and so this is a chordal graph. This completes the proof.

Corollary 3.1. The non-commuting graph of $M\left(D_{2 n}, 2\right)$ is perfect but not chordal.
Proof. Let $\Gamma=\Gamma\left(M\left(D_{2 n}, 2\right)\right)$, where n be an odd integer. Then by Lemma 2.1 (a), $\Gamma \cong \bar{K}_{n-1}$ $\nabla\left(3 K_{n}\right)$ and by Theorem 3.1, Γ is perfect but not chordal.

If n be an even integer then by Lemma $2.1(b), \Gamma \cong \bar{K}_{n-2} \nabla 3 S$ such that S is a strongly regular graph with parameters $(n, n-2, n-3, n-2)$. Assume that C is an odd cycle in Γ with length 5 or more, the length of the longest cycle without chord in each copy of S is equal to 4 . Then there are some vertices of \bar{K}_{n-2} in C, and these vertices are adjacent to each vertex in $3 S$. Therefore, C have a chord. On the other hand, $\bar{\Gamma} \cong K_{n-2} \cup\left(\frac{n}{2} K_{2} \nabla \frac{n}{2} K_{2} \nabla \frac{n}{2} K_{2}\right)$. Let C be a cycle in $\bar{\Gamma}$. Clearly, every cycle in K_{n-2} have a chord and if C be an odd cycle in $\frac{n}{2} K_{2} \nabla \frac{n}{2} K_{2} \nabla \frac{n}{2} K_{2}$, then C have an intersection with more than two parts of $\frac{n}{2} K_{2}$, where one of them have more than one vertex in C, and these vertices adjacent to all vertices of C in other parts and so, C have a chord and by Theorem ([9], Theorem 1.2), Γ is perfect. The induced subgraph consist of any two vertices of \bar{K}_{n-2} and two non-adjacent vertices of S is a cycle with length 4 without chord then Γ is not chordal.

Remark 3.1. The generalized multiple complete split-like graph $G M C S_{k}^{a}$ is not perfect. As a counterexample, let we have a generalized complete split-like graph $\Gamma \cong \bar{K}_{a} \nabla(n S)$ in which S is a Peterson graph. This graph is not perfect, since it has a cycle of length 5 without any chord. Recall that a Peterson graph is a strongly regular graph with parameters $(10,3,0,1)$.

Theorem 3.2. Let G be a non-abelian group. Then its non-commuting graph Γ_{G}, is split if and only if the non-commuting graph of the Moufang loop $M(G, 2), \Gamma_{M}$, is 3 -split.

Proof. Let Γ_{M} be $3-$ split of the form $\Gamma_{M}=I \nabla 3 C$, where I is an independent set and C is a complete graph. First we show that $Z(G)=C(M)$. By Lemma([3], Lemma 3.10), $C(M) \subseteq$ $Z(G)$. Let $Z(G) \nsubseteq C(M)$. Then there exists $x \in Z(G)$ such that $x \notin C(M)$. Also, there exists $y u \in G u$, where $x \circ(y u) \neq(y u) \circ x$, which yields $(y x) u \neq\left(y x^{-1}\right) u$. Therefore, $x \neq x^{-1}$ and $x \in I$. So, every vertex y in each copy of C is adjacent to x and so $x y \neq y x$. But $x \in Z(G)$ then for every $g \in G$, we have $x g=g x$. Hence $G \subseteq I$. Now, let $g \in G \backslash Z(G)$. So, there exist $t \in G$ such that $t g \neq g t$ but in this case $t, g \in I$ and this is a contradiction, since I is an independent set. So, $G=Z(G)$ and this contradicts with non-abelianity of G. Thus $Z(G)=C(M)$. Obviously, every element of $3 C$ is an involution. Let $x \in 3 C$ and $x \neq x^{-1}$. So, since each element of $G u$ has order 2 then $x \in G$. Put $3 C=C_{1} \cup C_{2} \cup C_{3}$, where each C_{i} is equal to a copy of $C,(1 \leq i \leq 3)$. Without loss of generality, let $x \in C_{1}$ and $x^{-1} \in C_{2}$ (note that $x x^{-1}=x^{-1} x$). Let $y \in G \backslash Z(G)$ and $y \notin\langle x\rangle$. Then since every element of G which commutes with x, also commutes with x^{-1}, so if $y \in C_{1}$ then $x y \neq y x$, and therefore $x^{-1} y \neq y x^{-1}$, but $x^{-1} \in C_{2}$ and this is a contradiction. Similarly, the case $y \in C_{2}$ will reach to a contradiction. So, $y \in I$ or $y \in C_{3}$. Now, consider the element $x y$. By the same reason as above, we have $x y \in I$ or $x y \in C_{3}$. Trivially, $x y \neq x, x^{-1}$. We have four cases as below:

Case 1. Let $y, x y \in I$. Then $y(x y)=(x y) y \Rightarrow y x=x y$. which is a contradiction, since y is adjacent to every element of C_{1}.
Case 2. Let $y \in I$ and $x y \in C_{3}$. Then $x \in C_{1} \Rightarrow x(x y)=(x y) x,(x, y \in G) \Rightarrow x y=y x$ and we have the same contradiction as in case 1 .

Case 3. Let $y \in C_{3}$ and $x y \in I$. Then $(x y) y \neq y(x y) \Rightarrow x y \neq y x$, which is also a contradiction since $y \in C_{3}$ and $x \in C_{1}$.
Case 4. Let $y, x y \in C_{3}$. Then we have $y(x y) \neq(x y) y \Rightarrow x y \neq y x$ and we obtain a similar contradiction as in case 3 .
Therefore, every element of $3 C$ has order 2 . On the other hand, Γ_{G} is always connected and it is the induced subgraph of Γ_{M}. Therefore, $\Gamma_{G} \cong K_{m},\left(K_{m} \subseteq C\right)$ or $\Gamma_{G} \cong I^{\prime} \nabla n C^{\prime}$ such that $I^{\prime} \subseteq I$, $C^{\prime} \subseteq C$ and $n C^{\prime}=\cup_{i=1}^{n} C_{i}$, where $1 \leq n \leq 3$, and each C_{i} is a subset of one copy of C 's. If $\Gamma_{G} \cong K_{m}$, then the order of every element of G will be equal to 2 , so G must be abelian, which is absurd. Therefore, we get, $\Gamma_{G} \cong I^{\prime} \nabla n C^{\prime}$. If $n=1$ then Γ_{G} is split. Suppose that $1 \neq x, y \in G$, $x \in C_{1}$ and $y \in C_{2}$, then $x y=y x$ and there exists $z \in I^{\prime}$ where $y z \neq z y$ and $x z \neq z x$. So, $x y \in G$. If $x y \in I^{\prime}$, then $x(x y) \neq(x y) x$ and so, $x^{2} y \neq x(y x)$. Therefore, $x^{2} y \neq x(x y)$ and this is a contradiction. If $x y \in C_{1}$ then $x(y x) \neq(x y) x$ and $x^{2} y \neq x^{2} y$, and it is a contradiction, and if $x y \in C_{2}$ then $y(x y) \neq(x y) y$ and $y^{2} x \neq y^{2} x$, and it is also a contradiction. Finally, let $x y \in C_{3}$. Now, $x u \in M(G, 2)$ then:

1) If $x u \in I$ or $x u \in C_{1}$, then $(x u) \circ x \neq x \circ(x u)$ and so $\left(x x^{-1}\right) u \neq(x x) u$. Therefore, $u \neq x^{2} u$, this is a contradiction. So, every element of C in Γ_{M} is of order 2 therefore, $x^{2}=1$.
2) If $x u \in C_{2}$ then $(x u) \circ y \neq y \circ(x u)$ and so $\left(x y^{-1}\right) u \neq(x y) u$. Thus $(x y) u \neq(x y) u$ and this is a contradiction.
3) If $x u \in C_{3}$ then $(x u) \circ(x y) \neq(x y) \circ(x u)$ and so $\left(x(x y)^{-1}\right) u \neq(x(x y)) u$ or $\left(x\left(y^{-1} x^{-1}\right)\right) u \neq$ $\left(x^{2} y\right) u$. So, $(x(y x)) u \neq\left(x^{2} y\right) u$, or $(x(x y)) u \neq y u$. Thus $\left(x^{2} y\right) u \neq y u$ and this is a contradiction.

Therefore, $\Gamma_{G} \cong I^{\prime} \nabla C^{\prime}$ and Γ_{G} is split.
Conversely, let Γ_{G} be split. Then $\Gamma_{G} \cong I \nabla C$. We show that Γ_{M} is $3-$ split. By splitness of Γ_{G} and Lemmas ([4], Lemmas 2.4 and 2.5), we have, $Z(G)=1$ and $C(M) \subseteq Z(G)$. So, $C(M)=1$. Let $V(I)=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ and $V(C)=\left\{b_{1}, b_{2}, \ldots, b_{t}\right\}$. Then, $V\left(\Gamma_{M}\right)$ includes $V(I), V(C)$ and the set of vertices of the form, $V(I u)=\left\{a_{1} u, a_{2} u, \ldots, a_{k} u\right\}$ and $V(C u)=\left\{b_{1} u, b_{2} u, \ldots, b_{t} u\right\}$. To prove $3-$ splitness Γ_{M}, we consider and stablish the following claims.

Claim 1. The induced subgraph containing the vertices in $V(I u)$ forms a clique.
Suppose that there exist two non-adjacent vertices $a_{i} u$ and $a_{j} u$. So, $\left(a_{i} u\right) \circ\left(a_{j} u\right)=\left(a_{j} u\right) \circ\left(a_{i} u\right)$ and then $a_{i} a_{j}^{-1}=a_{j} a_{i}^{-1}$ or $\left(a_{i} a_{j}^{-1}\right)^{2}=1$. Therefore, by Lemmas ([4], Lemmas 2.4 and 2.5), $I^{*}=I \cup\{1\}$ is a maximal subgroup of odd order and there is not any element of even order. So, $a_{i} a_{j}^{-1} \in C$, where in this case $\left(a_{i} a_{j}^{-1}\right) a_{j} \neq a_{j}\left(a_{i} a_{j}^{-1}\right)$. Then $a_{i} \neq a_{j}\left(a_{i} a_{j}^{-1}\right)$ and $a_{j}^{-1} a_{i} \neq a_{i} a_{j}^{-1}$ and this is a contradiction.
Claim 2. The induced subgraph containing the vertices in $V(C u)$ is a clique.
Suppose that there exist two vertices $b_{i} u$ and $b_{j} u$ such that are not adjacent. So, $\left(b_{i} u\right) \circ\left(b_{j} u\right)=$ $\left(b_{j} u\right) \circ\left(b_{i} u\right)$. Therefore, $b_{i} b_{j}^{-1}=b_{j} b_{i}^{-1}$ and $b_{i} b_{j}=b_{j} b_{i}$, since, each element of C is an involution and which yields to a contradiction.

Claim 3. There is no edge between $V(I u)$ and $V(C u)$.
Suppose that there exist two vertices $a_{i} u$ and $b_{j} u$ such that $\left(a_{i} u\right) \circ\left(b_{j} u\right) \neq\left(b_{j} u\right) \circ\left(a_{i} u\right)$ then $b_{j}^{-1} a_{i} \neq a_{i}^{-1} b_{j}$ and $b_{j} a_{i} \neq a_{i}^{-1} b_{j}$, therefore $\left(b_{j} a_{i}\right)^{2} \neq 1$. On the other hand $b_{j} a_{i} \in G$. So, $b_{j} a_{i} \in I$ or $b_{j} a_{i} \in C$.

1) If $b_{j} a_{i} \in I$ then $\left(b_{j} a_{i}\right) a_{i}=a_{i}\left(b_{j} a_{i}\right)$ and $b_{j} a_{i}=a_{i} b_{j}$, which yields to a contradiction.
2) If $b_{j} a_{i} \in C$ then $\left(b_{j} a_{i}\right)^{2}=1$ and this is a contradiction. Therefore, any two elements of $V(I u)$ and $V(C u)$ are non-adjacent.
Claim 4. There is no edge between $V(C)$ and $V(C u)$.
Suppose that there exist two vertices b_{i} and $b_{j} u$ such that $b_{i} \circ\left(b_{j} u\right) \neq\left(b_{j} u\right) \circ b_{i}$. Then $\left(b_{j} b_{i}\right) u \neq$ $\left(b_{j} b_{i}^{-1}\right) u$, so, $\left(b_{j} b_{i}\right) u \neq\left(b_{j} b_{i}\right) u$, and this is a contradiction. Therefore any two elements of $V(C)$ and $V(C u)$ are non-adjacent.

Claim 5. There is no edge between $V(C)$ and $V(I u)$.
Suppose that there exist two vertices b_{i} and $a_{j} u$ such that $b_{i} \circ\left(a_{j} u\right) \neq\left(a_{j} u\right) \circ b_{i}$. Then $\left(a_{j} b_{i}\right) u \neq\left(a_{j} b_{i}^{-1}\right) u$ and $a_{j} b_{i} \neq a_{j} b_{i}$. This is a contradiction. Therefore, any two vertices in $V(C)$ and $V(I u)$ are non-adjacent.

Claim 6. Every vertex in $V(I u)$ is adjacent to every vertex in $V(I)$.

Suppose that there exist two vertices a_{i} and $a_{j} u$ such that $a_{i} \circ\left(a_{j} u\right)=\left(a_{j} u\right) \circ a_{i}$. Then $\left(a_{j} a_{i}\right) u=\left(a_{j} a_{i}^{-1}\right) u$ and $a_{j} a_{i}=a_{j} a_{i}^{-1}$. So, $a_{i}=a_{i}^{-1}$. Therefore, $a_{i}^{2}=1$ and this is a contradiction.

Claim 7. Every vertex in $V(C u)$ is adjacent to every vertex in $V(I)$.
Suppose that there exist two vertices $a_{i} \in I$ and $b_{j} u \in C u$ such that $a_{i} \circ\left(b_{j} u\right)=\left(b_{j} u\right) \circ a_{i}$. Also, $\left(b_{j} a_{i}\right) u=\left(b_{j} a_{i}^{-1}\right) u$ then $b_{j} a_{i}=b_{j} a_{i}^{-1}$ and $a_{i}=a_{i}^{-1}$, therefore $a_{i}^{2}=1$ and this is a contradiction.

Thus the non-commuting graph of $M(G, 2)$ is 3 -split, where the induced subgraphs containing the vertices of C and $C u$ and $I u$ are cliques and I is an independent set.

Now, by using Theorems ([4], Theorem 2.3) and 3.2, we can classify all 3-split Chein loops:
Corollary 3.2. Let G be a non-abelian group. Then the non-commuting graph of the Moufang loop $M(G, 2)$, is $3-$ split if and only if G is isomorphic to a Frobenius group of order $2 n, n$ is odd, whose Frobenius kernel is abelian of order n.

4. About the energy and the number of spanning trees of generalized and multiple splite-like graphs

In this section, we are going to calculate the energy of generalized complete and multiple splite-like graphs and derive the energy and also the number of spanning trees in the case of the non-commuting graph of Chein loops of the form $M\left(D_{2 n}, 2\right)$.

Theorem 4.1. Let Γ be a generalized complete split-like graph, $\Gamma \cong \bar{K}_{a} \nabla\left(n K_{b}\right)$. Then $\varepsilon(\Gamma)=$ $2 n(b-1)$.

Proof. Let $P_{K_{b}}(\lambda)$ be the characteristic polynomial of K_{b}. Then,

$$
P_{K_{b}}(\lambda)=(-1)^{b}(\lambda+1)^{b-1}(\lambda-b+1)
$$

So,

$$
P_{n K_{b}}(\lambda)=(-1)^{n b}(\lambda+1)^{n(b-1)}(\lambda-b+1)^{n}
$$

and

$$
P_{\bar{K}_{a}}(\lambda)=(-\lambda)^{a} .
$$

By using Theorem 1.2, we have:

$$
P_{\Gamma}(\lambda)=(-1)^{n b+a}(\lambda+1)^{n(b-1)}(\lambda-b+1)^{n-1} \lambda^{a-1}\left(\lambda^{2}-(b-1) \lambda-n a b\right)
$$

and by definition of the energy of a graph, we get:

$$
\varepsilon(\Gamma)=n(b-1)+(n-1)(b-1)+b-1 .
$$

Hence, $\varepsilon(\Gamma)=2 n(b-1)$.
Corollary 4.1. Let n be an odd integer. Let $G=D_{2 n}$ and $M=M(G, 2)$. Then:
(i) if n is an odd integer, then $\varepsilon\left(\Gamma_{M}\right)=6(n-1)$;
(i) if n is an even integer, then $\varepsilon\left(\Gamma_{M}\right)=6(n-2)$.
Moreover, in both cases, $\varepsilon\left(\Gamma_{G}\right)$ divides $\varepsilon\left(\Gamma_{M}\right)$.
Proof. Since, $\Gamma_{M} \cong \bar{K}_{n-1} \nabla 3 K_{n}$, by Theorem 4.1, $\varepsilon\left(\Gamma_{M}\right)=6(n-1)$. We know that $\Gamma_{G} \cong$ $\bar{K}_{n-1} \nabla K_{n}$ and by Theorem 4.1, we have $\varepsilon\left(\Gamma_{G}\right)=2(n-1)$. Thus $\varepsilon\left(\Gamma_{G}\right)$ divides $\varepsilon\left(\Gamma_{M}\right)$.
ii) Now, let n be an even integer. Then, by Theorem 2.1, $\Gamma_{M} \cong \bar{K}_{n-2} \nabla 3 S$, in which S is a strongly regular graph with parameters $(n, n-2, n-3, n-2)$. Thus, by Theorems ([5], Theorems 6.2 and 6.22), the adjacency matrix of S has exactly three distinct eigenvalues: $\lambda_{1}=n-2$, whose multiplicity is $1, \lambda_{2}=0$, whose multiplicity is 1 and $\lambda_{3}=-1$, whose multiplicity is $n-2$. Therefore,

$$
P_{S}(\lambda)=(\lambda-n+2)(\lambda+1)^{n-2} \lambda .
$$

So,

$$
P_{3 S}(\lambda)=(\lambda-n+2)^{3}(\lambda+1)^{3 n-6} \lambda^{3}
$$

and

$$
P_{\bar{K}_{n-2}}(\lambda)=\lambda^{n-2} .
$$

By Theorem 1.2, we have:

$$
P_{\Gamma_{M}}(\lambda)=(\lambda-n+2)^{2}(\lambda+1)^{3 n-6} \lambda^{n-2}\left(\lambda^{2}+(2-n) \lambda-3 n(n-2)\right) .
$$

Thus, $\varepsilon\left(\Gamma_{M}\right)=6(n-2)$. We know that $\Gamma_{G} \cong \bar{K}_{n-2} \nabla S$, such that S is a strongly regular graph with parameters $(n, n-2, n-3, n-2)$. Therefore, by Theorems ([5], Theorems 6.2 and 6.22),

$$
P_{\Gamma_{G}}(\lambda)=(\lambda+1)^{n-2} \lambda^{n-2}\left(\lambda^{2}+(2-n) \lambda-n(n-2)\right) .
$$

So, $\varepsilon\left(\Gamma_{G}\right)=2(n-2)$. Thus $\varepsilon\left(\Gamma_{G}\right)$ divides $\varepsilon\left(\Gamma_{M}\right)$.
Finally, in the following Theorems, we count the number of spanning trees of the non-commuting graph Γ_{M}, where $M=M\left(D_{2 n}, 2\right)$, for odd and even n, separately, and they lead us to an important result.

Theorem 4.2. The number of spanning trees of the non-commuting graph Γ_{M}, where $M=$ $M\left(D_{2 n}, 2\right)$ and n is odd, is equal to:

$$
\kappa\left(\Gamma_{M}\right)=(2 n-1)^{3 n-3}(n-1)^{2}(3 n)^{n-2}
$$

Proof. There are $4 n-1$ vertices in this graph, such that they are in $t_{1}, t_{2}, t_{3}, t_{4}$. Each of t_{i}, $2 \leq i \leq 4$, have n vertices of degree $2 n-2$, and t_{1} have $n-1$ vertices of degrees $3 n$. By the structure of graph Γ_{M} in Lemma 2.1, the matrix of vertex degree, namely D of this graph is equal to:

$$
D=\left[\begin{array}{cc}
(2 n-2) I_{3 n} & 0_{3 n(n-1)} \\
0_{(n-1) 3 n} & (3 n) I_{n-1}
\end{array}\right]
$$

and the adjacent matrix of graph has the form:

$$
A=\left[\begin{array}{cc}
\left(J_{n}-I_{n}\right) \otimes I_{3} & J_{3 n(n-1)} \\
J_{(n-1) 3 n} & 0_{n-1}
\end{array}\right]
$$

where, \otimes denotes the tensor product of matrices. Thus,

$$
L=D-A=\left[\begin{array}{cc}
\left((2 n-1) I_{n}-J_{n}\right) \otimes I_{3} & -J_{3 n(n-1)} \\
-J_{(n-1) 3 n} & (3 n) I_{n-1}
\end{array}\right] .
$$

Now, to calculate $\operatorname{det}(L+J)$, we have

$$
L+J=\left[\begin{array}{cccc}
(2 n-1) I_{n} & J_{n} & J_{n} & 0 \\
J_{n} & (2 n-1) I_{n} & J_{n} & 0 \\
J_{n} & J_{n} & (2 n-1) I_{n} & 0 \\
0 & 0 & 0 & (3 n) I_{n-1}+J_{n-1}
\end{array}\right]
$$

Also, in this case we have

$$
\begin{equation*}
\operatorname{det}(L+J)=\operatorname{det} B \times \operatorname{det} C \tag{1}
\end{equation*}
$$

where,

$$
B=\left[\begin{array}{ccc}
(2 n-1) I_{n} & J_{n} & J_{n} \\
J_{n} & (2 n-1) I_{n} & J_{n} \\
J_{n} & J_{n} & (2 n-1) I_{n}
\end{array}\right]
$$

and $C=(3 n) I_{n-1}+J_{n-1}$. So,

$$
\begin{equation*}
\operatorname{det} C=(3 n)^{n-2}(4 n-1) \tag{2}
\end{equation*}
$$

and

$$
B=\left[\begin{array}{cc}
E & J_{(2 n) n} \\
J_{n(2 n)} & F
\end{array}\right],
$$

where,

$$
E=\left[\begin{array}{cc}
(2 n-1) I_{n} & J_{n} \\
J_{n} & (2 n-1) I_{n}
\end{array}\right]
$$

and $F=(2 n-1) I_{n}$. By Theorem 1.1, we have

$$
\begin{equation*}
\operatorname{det} B=\operatorname{det} F \times \operatorname{det}\left(E-J F^{-1} J\right) . \tag{3}
\end{equation*}
$$

So, by using the following relations

$$
\begin{equation*}
\operatorname{det} F=(2 n-1)^{n}, \quad F^{-1}=\frac{1}{2 n-1} I_{n}, \quad J F^{-1} J=\frac{n}{2 n-1} J_{2 n}, \tag{4}
\end{equation*}
$$

we have

$$
E-J F^{-1} J=\frac{1}{2 n-1}\left[\begin{array}{cc}
G & (n-1) J \\
(n-1) J & G
\end{array}\right]
$$

where, $G=(2 n-1)^{2} I-n J$ and

$$
\begin{equation*}
\operatorname{det} G=(2 n-1)^{2 n-2}(n-1)(3 n-1), \quad G^{-1}=\frac{1}{(2 n-1)^{2}}\left(I+\frac{n}{(n-1)(3 n-1)} J\right) \tag{5}
\end{equation*}
$$

Now,

$$
\begin{equation*}
\operatorname{det}\left(E-J F^{-1} J\right)=\left(\frac{1}{2 n-1}\right)^{2 n} \operatorname{det}(G) \times \operatorname{det}\left(G-(n-1)^{2} J G^{-1} J\right) \tag{6}
\end{equation*}
$$

where,

$$
(n-1)^{2} J G^{-1} J=\frac{n(n-1)}{3 n-1} J
$$

and

$$
G-(n-1)^{2} J G^{-1} J=\frac{1}{3 n-1}((\alpha-\beta) I+\beta J)
$$

such that, $\alpha=(n-1)(2 n-1)(6 n-1)$ and $\beta=-2 n(2 n-1)$. So,

$$
\begin{equation*}
\operatorname{det}\left(G-(n-1)^{2} J G^{-1} J\right)=(2 n-1)^{2(n-1)} \frac{8 n^{3}-14 n^{2}+7 n-1}{3 n-1} \tag{7}
\end{equation*}
$$

By using the relations 5, 6 and 7, we have

$$
\begin{equation*}
\operatorname{det}\left(E-J F^{-1} J\right)=(2 n-1)^{2(n-2)}(n-1)\left(8 n^{3}-14 n^{2}+7 n-1\right) \tag{8}
\end{equation*}
$$

and by replacing relations 4 and 8 in 3 we get

$$
\begin{equation*}
\operatorname{det} B=(2 n-1)^{3 n-4}(n-1)\left(8 n^{3}-14 n^{2}+7 n-1\right) \tag{9}
\end{equation*}
$$

Now, by replacing relations 2 and 9 in 1, we get

$$
\operatorname{det}(L+J)=(2 n-1)^{3(n-1)}(n-1)^{2}(4 n-1)^{2}(3 n)^{n-2}
$$

By Theorem ([5], Theorem 4.11), we have $\kappa=\frac{\operatorname{det}(L+J)}{(4 n-1)^{2}}$. Therefore,

$$
\kappa\left(\Gamma_{M}\right)=(2 n-1)^{3(n-1)}(n-1)^{2}(3 n)^{n-2}
$$

Theorem 4.3. The number of spanning trees of the non-commuting graph Γ_{M}, where, $M=$ $M\left(D_{2 n}, 2\right)$ and n is even, is equal to:

$$
\kappa\left(\Gamma_{M}\right)=2^{3 n-3}(3 n)^{n-3}(n-1)^{\frac{3 n}{2}-3}(n-2)^{\frac{3 n}{2}+2}
$$

Proof. There are $4 n-2$ vertices in this graph and they are in $t_{1}, t_{2}, t_{3}, t_{4}$. Each of $t_{i}, 2 \leq i \leq 4$, have n vertices of degree $2 n-4$ and t_{1} have $n-2$ vertices of degree $3 n$. By the structure of the graph Γ in 2.1 , the matrix of the vertex degree namely D, of this graph is:

$$
D=\left[\begin{array}{cc}
2(n-2) I_{3 n} & 0 \\
0 & 3 n I_{n-2}
\end{array}\right]
$$

and the adjacent matrix of the graph has the form:

$$
A=\left[\begin{array}{cccc}
X_{n} & 0 & 0 & J \\
0 & X_{n} & 0 & J \\
0 & 0 & X_{n} & J \\
J & J & J & 0
\end{array}\right]
$$

By Lemma 2.1, each vertex in every $t_{i} \quad(2 \leq i \leq 4)$, is connected to the other vertices except its inverse element and itself, and so,

$$
X=\left[\begin{array}{ll}
J-I & J-I \\
J-I & J-I
\end{array}\right]
$$

such that I and J are square matrices of order $\frac{n}{2}$ in X. So,

$$
L=D-A=\left[\begin{array}{cccc}
Y_{n} & 0 & 0 & -J \\
0 & Y_{n} & 0 & -J \\
0 & 0 & Y_{n} & -J \\
-J & -J & -J & 3 n I_{n-2}
\end{array}\right]
$$

such that,

$$
Y=\left[\begin{array}{cc}
(2 n-3) I-J & I-J \\
I-J & (2 n-3) I-J
\end{array}\right]
$$

Hence,

$$
L+J=\left[\begin{array}{cccc}
Z & J & J & 0 \\
J & Z & J & 0 \\
J & J & Z & 0 \\
0 & 0 & 0 & 3 n I+J
\end{array}\right]
$$

We have

$$
Z=Y+J=\left[\begin{array}{cc}
(2 n-3) I & I \\
I & (2 n-3) I
\end{array}\right],
$$

in which the order of I is equal to $\frac{n}{2}$. Now we obtain

$$
\begin{equation*}
\operatorname{det}(L+J)=\operatorname{det} B \times \operatorname{det} C \tag{10}
\end{equation*}
$$

where $C=3 n I_{n-2}+J_{n-2}$ and

$$
B=\left[\begin{array}{lll}
Z & J & J \\
J & Z & J \\
J & J & Z
\end{array}\right]
$$

Therefore,

$$
\begin{equation*}
\operatorname{det} C=2(3 n)^{n-3}(2 n-1) \tag{11}
\end{equation*}
$$

and by using Theorem 1.1, we have

$$
\begin{equation*}
\operatorname{det} B=\operatorname{det} Z \times \operatorname{det}\left(D-J Z^{-1} J\right) \tag{12}
\end{equation*}
$$

where,

$$
D=\left[\begin{array}{ll}
Z & J \\
J & Z
\end{array}\right]
$$

and

$$
\begin{equation*}
\operatorname{det} Z=(4(n-1)(n-2))^{\frac{n}{2}} \tag{13}
\end{equation*}
$$

Also,

$$
Z^{-1}=\frac{1}{(2 n-3)^{2}-1}\left[\begin{array}{cc}
(2 n-3) I_{\frac{n}{2}} & -I_{\frac{n}{2}} \\
-I_{\frac{n}{2}} & (2 n-3) I_{\frac{n}{2}}
\end{array}\right]
$$

and so, $J Z^{-1}=\frac{1}{2(n-1)} J_{2 n \times n}$ and $J Z^{-1} J=\frac{n}{2(n-1)} J_{2 n \times 2 n}$. So,

$$
D-J Z^{-1} J=\left[\begin{array}{cc}
G & H \tag{14}\\
H & G
\end{array}\right]
$$

such that, $H=\frac{n-2}{2(n-1)} J$ and

$$
G=\left[\begin{array}{ll}
G_{11} & G_{12} \\
G_{21} & G_{22}
\end{array}\right]
$$

where, $G_{11}=G_{22}=(2 n-3) I-\frac{n}{2(n-1)} J \quad$ and $\quad G_{12}=G_{21}=I-\frac{n}{2(n-1)} J$.
By using elementary row or column operations in G we have

$$
\begin{aligned}
\operatorname{det} G & =\operatorname{det}\left(\frac{1}{2(n-1)}\left[\begin{array}{cc}
(n-1)(4 n-6) I-n J & 4(n-2)(1-n) I \\
4(n-2)(1-n) I & 8(n-1)(n-2) I
\end{array}\right]\right) \\
& =(8(n-1)(n-2))^{\frac{n}{2}} \frac{1}{(2(n-1))^{n}} \operatorname{det}\left(2(n-1)^{2} I-n J\right)
\end{aligned}
$$

Since,

$$
\operatorname{det}\left(2(n-1)^{2} I-n J\right)=2^{\frac{n}{2}-2}(n-1)^{n-2}(n-2)(3 n-2)
$$

then

$$
\begin{equation*}
\operatorname{det} G=2^{n-2}(n-1)^{\frac{n}{2}-2}(n-2)^{\frac{n}{2}+1}(3 n-2) . \tag{15}
\end{equation*}
$$

By Theorem 1.1, G^{-1} is as follows:

$$
G^{-1}=\left[\begin{array}{cc}
G_{11}^{-1}+\left(G_{11}^{-1} G_{12}\right)\left(G / G_{11}\right)^{-1}\left(G_{12} G_{11}^{-1}\right) & -G_{11}^{-1} G_{12}\left(G / G_{11}\right)^{-1} \\
-\left(G / G_{11}\right)^{-1} G_{12} G_{11}^{-1} & \left(G / G_{11}\right)^{-1}
\end{array}\right],
$$

such that, $\quad G / G_{11}=G_{11}-G_{12} G_{11}^{-1} G_{12}$. Therefore,

$$
G_{11}^{-1}=\frac{1}{(n-1)(2 n-3)}\left(\frac{1}{2} I+\frac{n}{(n-2)(7 n-6)} J\right)
$$

and $\quad G_{12}=I-\frac{n}{2(n-1)} J$. Then:

$$
G_{12} G_{11}^{-1} G_{12}=\frac{1}{(2 n-3)}\left(2(n-1) I+\frac{n\left(2 n^{2}-15 n+14\right)}{(7 n-6)} J\right)
$$

and

$$
G_{11}-G_{12} G_{11}^{-1} G_{12}=\frac{8(n-1)(n-2)}{2 n-3}\left((n-1) I-\frac{2 n}{7 n-6} J\right)
$$

Now, we have

$$
G / G_{11}=\frac{8(n-1)(n-2)}{(2 n-3)}\left((n-1) I-\frac{2 n}{7 n-6} J\right),
$$

and

$$
\left(G / G_{11}\right)^{-1}=\frac{1}{8(n-1)^{2}(n-2)}\left((2 n-3) I+\frac{2 n}{3 n-2} J\right)
$$

Therefore,

$$
G^{-1}=\frac{1}{4(n-1)(n-2)}\left(\left[\begin{array}{cc}
(2 n-3) I & -I \\
-I & (2 n-3) I
\end{array}\right]+\frac{2 n}{3 n-2} J\right)
$$

Also, $H G^{-1} H=\frac{n(n-2)}{2(n-1)(3 n-2)} J$ and

$$
G-H G^{-1} H=\left[\begin{array}{cc}
(2 n-3) I & I \\
I & (2 n-3) I
\end{array}\right]-\frac{2 n}{3 n-2} J
$$

By using elementary row or column operations, we have

$$
\begin{equation*}
\operatorname{det}\left(G-H G^{-1} H\right)=\frac{2^{n}}{(3 n-2)}(n-2)^{\frac{n}{2}+1}(n-1)^{\frac{n}{2}-1}(2 n-1) \tag{16}
\end{equation*}
$$

By relation 14, we get

$$
\operatorname{det}\left(D-J Z^{-1} J\right)=\operatorname{det} G \times \operatorname{det}\left(G-H G^{-1} H\right)
$$

Then, by relations 15 and 16 , we have

$$
\begin{equation*}
\operatorname{det}\left(D-J Z^{-1} J\right)=2^{2 n-2}(n-1)^{n-3}(n-2)^{n+2}(2 n-1) \tag{17}
\end{equation*}
$$

Also, from relations 12, 13 and 17, we obtain

$$
\begin{equation*}
\operatorname{det} B=2^{3 n-2}(n-1)^{\frac{3 n}{2}-3}(n-2)^{\frac{3 n}{2}+2}(2 n-1) \tag{18}
\end{equation*}
$$

and by relations 10,11 and 18 , we have

$$
\begin{equation*}
\operatorname{det}(L+J)=2^{3 n-1}(3 n)^{n-3}(n-1)^{\frac{3 n}{2}-3}(n-2)^{\frac{3 n}{2}+2}(2 n-1)^{2} \tag{19}
\end{equation*}
$$

and from replacing 19 in $\kappa=\frac{\operatorname{det}(L+J)}{(4 n-2)^{2}}$, we get

$$
\kappa\left(\Gamma_{M}\right)=2^{3 n-3}(3 n)^{n-3}(n-1)^{\frac{3 n}{2}-3}(n-2)^{\frac{3 n}{2}+2} .
$$

Corollary 4.2. Let $M=M(G, 2)$, where $G=D_{2 n}$. Then $\kappa\left(\Gamma_{G}\right)$ divides $\kappa\left(\Gamma_{M}\right)$.

Proof. By Example 1 in [4], the non-commuting graph of $G=D_{2 n}$, when in is odd, is a split graph and $\Gamma_{G} \cong I \nabla C$, where I is an independent set with $n-1$ vertices and $C \cong K_{n}$. So, the degree matrix of Γ_{G} has the form:

$$
D=\left[\begin{array}{cc}
(2 n-2) I_{n-1} & 0 \\
0 & n I_{n}
\end{array}\right]
$$

and the adjacency matrix of Γ_{G} is equal to:

$$
A=\left[\begin{array}{cc}
J-I & J \\
J & 0
\end{array}\right]
$$

So,

$$
L=D-A=\left[\begin{array}{cc}
2 n-1) I-J & -J \\
-J & n I
\end{array}\right]
$$

and

$$
L+J=\left[\begin{array}{cc}
(2 n-2) I & 0 \\
0 & n I+J
\end{array}\right]
$$

Thus, $\operatorname{det}(L+J)=\operatorname{det}((2 n-1) I) \times \operatorname{det}(n I+J)$ and this gives us:

$$
\operatorname{det}(L+J)=(2 n-1)^{n+1} n^{n-2}
$$

Therefore,

$$
\kappa\left(\Gamma_{G}\right)=\frac{\operatorname{det}(L+J)}{(2 n-1)^{2}}=(2 n-1)^{n-1} n^{n-2}
$$

By Theorem 4.2, $\kappa\left(\Gamma_{M}\right)=(2 n-1)^{3(n-1)}(n-1)^{2}(3 n)^{n-2}$. Hence, the proof is complete and $\kappa\left(\Gamma_{G}\right)$ divides $\kappa\left(\Gamma_{M}\right)$, where n is an odd integer.

Now, let n be an even integer. Then $\Gamma_{G} \cong \bar{K}_{n-2} \nabla S$, where S is a strongly regular graph with parameters $(n, n-2, n-4, n-2)$. Also, the degree matrix, D, of Γ_{G} is equal to:

$$
D=\left[\begin{array}{cc}
(2 n-4) I & 0 \\
0 & n I
\end{array}\right]
$$

and the adjacency matrix of Γ_{G}, namely A, has the form:

$$
A=\left[\begin{array}{cc}
X & J \\
J & 0
\end{array}\right]
$$

where,

$$
X=\left[\begin{array}{ll}
J-I & J-I \\
J-I & J-I
\end{array}\right]
$$

in which, I and J are of order $\frac{n}{2}$. So,

$$
L=D-A=\left[\begin{array}{cc}
Y & -J \\
-J & n I
\end{array}\right],
$$

where,

$$
Y=\left[\begin{array}{cc}
(2 n-3) I-J & I-J \\
I-J & (2 n-3) I-J
\end{array}\right] .
$$

Hence,

$$
L+J=\left[\begin{array}{cc}
Z & 0 \\
0 & n I+J
\end{array}\right]
$$

where,

$$
Z=\left[\begin{array}{cc}
(2 n-3) I & I \\
I & (2 n-3) I
\end{array}\right]
$$

Since, $\operatorname{det}(L+J)=\operatorname{det} Z \times \operatorname{det}(n I+J), \operatorname{det} Z=(4(n-1)(n-2))^{\frac{n}{2}}$ and $\operatorname{det}(n I+J)=$ $n^{n-3}(2 n-2)$, then

$$
\operatorname{det}(L+J)=2^{n+1} n^{n-3}(n-1)^{\frac{n}{2}+1}(n-2)^{\frac{n}{2}}
$$

Therefore,

$$
\kappa\left(\Gamma_{G}\right)=\frac{\operatorname{det}(L+J)}{(2 n-2)^{2}}=2^{n-1} n^{n-3}(n-1)^{\frac{n}{2}-1}(n-2)^{\frac{n}{2}}
$$

Also, by Theorem 4.3, we have

$$
\kappa\left(\Gamma_{M}\right)=2^{3 n-3}(3 n)^{n-3}(n-1)^{\frac{3 n}{2}-3}(n-2)^{\frac{3 n}{2}+2}
$$

This proves that $\kappa\left(\Gamma_{G}\right)$ divides $\kappa\left(\Gamma_{M}\right)$.

5. Conclusion

In this research work, we studied some properties of the non-commuting graph of a class of finite Moufang loops. Also, we proved that the multiple complete-like graphs and the noncommuting graph of Chein loops of the form $M\left(D_{2 n}, 2\right)$ are perfect, and both graphs are non chordal. Finally, we characterized when the non-commuting graph of Moufang loop $M(G, 2)$ is 3-splite and we give the energy of generalized and multiple splite-like graphs. In future, we will try to study the similar graph properties of the non-commuting graph for the simple Moufang loops and characterize relations between any group G with the non-commuting graph $M(G, 2)$.

Acknowledgement

The authors would like to extend thanks to the referees for a very careful reading of the paper and constructive comments and useful offers, which completed considerably the levels and presentations of this paper.

Some structural graph properties of the non-commuting graph ...

References

[1] A. Abdollahi, S. Akbari and H.R. Maimani, Non-commuting graph of a group, Algebra 298 (2006), 468-492.
[2] K. Ahmadidelir, On the Commutatively degree in finite Moufang loops, International Journal of Group Theory 5 (2016), 37-47.
[3] K. Ahmadidelir, On the non-commuting graph in finite Moufang loops, J. Algebra Appl. 17 (4) (2018), 1850070.
[4] M. Akbari and A.R. Moghaddamfar, Groups for which the noncommuting graph is a split graph, International Journal of Group Theory 6 (1) (2017), 29-35.
[5] R.B. Bapat, Graphs and Matrices, Springer-Verlag, London (2014).
[6] S. Bera, On the intersection power graph of a finite group, Electron. J. Graph Theory Appl. 6 (1) (2018), 178189.
[7] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, American Elsevier publishing Co., Inc, New York. (1977).
[8] R.H. Bruck, A Survay of Binary Systems, Springer-Verlag Berlin-Heidelberg (1958).
[9] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong perfect graph theorem, Annals of Math. 164 (1) (2006), 51-229.
[10] M.R. Darafsheh, Groups with the same non-commuting graph, Discretre Appl. Math. 157 (4) (2009), 833-837.
[11] H.A. Ganie, U. Samee, S. Pirzada and A.M. Alghamdi, Bounds for graph energy in terms of vertex covering and clique numbers, Electron. J. Graph Theory Appl. 7 (2) (2019), 315328.
[12] M. Golumbic, Algorithmic Graph Theory and Perfect Graphs, 2nd Edition, Series: Annals of Discrete Mathematics, Volume 57, Elsevier, North Holland. (2004).
[13] A.N. Grishkov and A.V. Zavarnitsine, Lagranges theorem for Moufang loops, Math. Proc. Camb. Phil. Soc. 139 (1) (2005), 41-57.
[14] P. Hansen, H. Mélot and D. Stevanović, Integral complete split graphs, Publ. Elektrotehn. Fak., Ser. Math. 13 (2002), 89-95.
[15] A.R. Moghaddamfar, About noncommuting graphs, Siberian Math. J. 47 (5) (2006), 911914.
[16] H.O. Pflugfelder, Quasigroups and loops: Introduction, Helderman Verlag, Berlin (1990).
[17] R. Solomon and A. Woldar, Simple groups are characterized by their non-commuting graph, J. Group Theory. 16 (2013), 793-824.

[^0]: ${ }^{1}$ Corresponding author
 Received: 21 September 2017, Revised: 2 May 2020, Accepted: 23 May 2020.

