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Abstract

This paper addresses upper and lower bounds for the cardinality of a maximum vertex-/edge-
disjoint cycle packing in a polyhedral graph G. Bounds on the cardinality of such packings are
provided, that depend on the size, the order or the number of faces of G, respectively. Polyhedral
graphs are constructed, that attain these bounds.
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1. Introduction

Packing vertex- or edge-disjoint cycles in graphs is also a widely studied graph-theoretical
problem. A large amount of literature can be found concerning conditions that are sufficient for
the existence of some number of disjoint cycles which may satisfy further restrictive conditions.
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For examples, we refer to publications [6], [9], [10], [12], [15], [16], [18], [20], [21], [23], [24].
The algorithmic problems concerning cycle packings are typically hard ([5], [11], [20]) and ap-
proximation algorithms are described ([11], [17]). Several authors mention practical applications
in computational biology ([3], [8], [13]) or the design of optical networks ([1]). In this paper, we
investigate maximum cycle packings in polyhedral graphs G. We derive different bounds on the
cardinality of such packings depending on the size of G, the order of G and the number of faces
of G, respectively. As our main result we show that the bounds are sharp in the sense that we
construct corresponding polyhedral graphs attaining these bounds.

2. Preliminaries and basic definitions

In the sequel all graphsG will be finite and undirected with vertex set V (G) and edge set E(G)
that contains no loops or multiple edges. We recall some basic notions. If an edge e ∈ E(G) has
two incident vertices u and v we write e = (u, v). For finite sequence (vi0 , e0, vi1 , e1, . . . , er−1, vir)
of vertices vij ∈ V (G) and pairwise disjoint edges ej = (vij , vij+1

) ∈ E(G) the subgraph W of
G with vertex set V (W ) and edge set E(W ) is called a walk of length r with start vertex vi0 and
end vertex vir . A path P (vi0 , vir) is a walk in which all vertices v have degree δW (v) ≤ 2. If
P (vi0 , vir) is closed, i.e. vi0 = vir , it is called a cycle. A graph G is k-vertex-connected if for each
pair u, v ∈ V (G) there are k paths Pi(u, v) in G that mutually have no common vertices, except
u and v. In addition, G is called Eulerian if it is connected and all vertices have even degree. An
independent set in G is a subset of V (G) without edges between them. A vertex-disjoint (edge-
disjoint) cycle packing C(G) = {C1, C2, . . . , Cq} of G is a collection of cycles Ci of G such that
all Ci are mutually vertex-disjoint (edge-disjoint). The maximum cardinality of a vertex-disjoint
(edge-disjoint) cycle packing of G is denoted by ν(G) or ν ′(G), respectively. A related packing is
called maximum vertex-disjoint (edge-disjoint) cycle packing.

A planar graph is a graph G which can be drawn in a plane without any mutual crossings of
edges. In a plane drawing an area F that is surrounded by edges of G is called a face of G. E(F )
are the surrounding edges. The set of faces is denoted by F (G). If G is planar and connected
Euler formula holds (see [19]), i.e. n −m + f = 2, where n = |V (G)| denotes the order of G,
m = |E(G)| its size and f = |F (G)| the number of faces, respectively. It is well known (see
[2], [22]) that every planar graph has a 4-coloring of its vertices, and in consequence, every planar
graph G has an independent set of size at least |V (G)|/4.

A graph G, resulting from a stereographic projection of vertices and edges of a convex polyhe-
dron P ⊂ R3 into the plane R2 is called a polyhedral graph. The set of polyhedral graphs will be
denoted by P . Due to the Theorem of Steinitz (see [4]) G is a polyhedral graph if and only if G is
planar and 3-connected. The class of polyhedral graphs is a well investigated field in graph theory.
The fundamental relation between geometry and graph theory in the class P has generated a large
variety of results concerning different topics. For a comprehensive overview we refer to [14] and
[25].

3. Vertex-disjoint cycle packings in polyhedral graphs

In this section we give bounds on the cardinality of maximum vertex-disjoint cycle packings.
These bounds depend on n,m or f . It turns out that the provided bounds are sharp, in the sense
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that there exist polyhedral graphs that attain the bounds. For n, f ≥ 4,m = 6 or m ≥ 8 let
PVn := {G ∈ P | |V (G)| = n} denote the set of polyhedral graphs of size n, PEm := {G ∈ P |
|E(G)| = m} the set of these graphs of order m and PFf := {G ∈ P | |F (G)| = f} the set of
polyhedral graphs with f faces, respectively. First, we make the following observation

Lemma 3.1. For a polyhedral graph G the following holds:

1 ≤ ν(G) ≤
⌊
n

3

⌋
≤
⌊

2m

9

⌋
≤
⌊

2(f − 2)

3

⌋
.

Proof. Obviously, 1 ≤ ν(G) holds since f ≥ 1 for G ∈ P . By the fact that all cycles in G have
length greater or equal to 3, immediately ν(G) ≤

⌊
n
3

⌋
follows. Using Euler formula and the

property that 3n ≤ 2m is true for G ∈ P we get

n

3
≤ 2m

9
=

6m− 4m

9
≤ 2(m− n)

3
=

2(f − 2)

3
.

In the following we want to examine, whether these bounds are sharp in the classes PVn,PEm
and PFf , respectively. In Figure 1 polyhedral graphs G1, . . . , G10 are drawn, which belong to
PEm,m = 6 or 8 ≤ m ≤ 16, to PVn, n ∈ {4, 5, 6, 7, 8, 9} and to PFf , f ∈ {4, 5, 6, 7}. Obvi-

ously, ν(Gi) =
⌊
n
3

⌋
=
⌊

2m
9

⌋
, i ∈ {1, . . . , 10} and ν(Gi) =

⌊
2(f−2)

3

⌋
, i ∈ {1, 3, 4, 5, 6, 8, 9}.

G5 : n = 7,m = 11
f = 6, ν(G4) = 2

G9 : n = 10,m = 15 G10 : n = 9,m = 16
f = 9, ν(G10) = 3f = 7, ν(G7) = 2

G7 : n = 8,m = 13
f = 7, ν(G9) = 3

G8 : n = 9,m = 14
f = 7, ν(G8) = 3

G1 : n = 4,m = 6
f = 4, ν(G1) = 1

G2 : n = 5,m = 8
f = 5, ν(G2) = 1

G3 : n = 6,m = 9
f = 5, ν(G3) = 2

G4 : n = 6,m = 10

G6 : n = 8,m = 12
f = 6, ν(G6) = 2

f = 6, ν(G5) = 2

Figure 1. Graphs Gi, i ∈ {1, 2, . . . , 10}, used for induction in Proposition 3.1.

A vertex-disjoint cycle packing in Gi is indicated by bold edges. Moreover, each of the graphs
G2, G3, . . . , G10 has a face F such that |E(F )| ≥ 4 (shaded area) and for which two of the edges
e1, e2 ∈ E(F ) (dotted edges) do not belong to the maximum cycle packing. These graphs are used
in order to show

Proposition 3.1. The following is true:
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(i) for n ≥ 4, there is G ∈ PVn such that ν(G) =
⌊
n
3

⌋
,

(ii) for m = 6 or m ≥ 8, there is G ∈ PEm such that ν(G) =
⌊

2m
9

⌋
,

(iii) for f ≥ 4, there is G ∈ PFf with ν(G) =
⌊

2(f−2)
3

⌋
.

Proof. Let us use the planar graph T , drawn in Figure 2.

u1

v1 v2

t1

s1

t2

w1

e′2e′1

w2

s2

u2

Figure 2. Graph T used for the iterative step in Proposition 3.1.

Now, consider G ∈ P such that G contains a face F with |E(F )| ≥ 4. Let e1, e2 denote
two non-adjacent edges of F . Thus, we define G′(e1, e2) := G ⊕ T by identifying the edges
e1 = (u1, v1) with the path (u1, s1, t1, v1) and e2 = (u2, v2) with (u2, s2, t2, v2), respectively, and
embedding T into the interior of the face F . Then, |V (G′(e1, e2))| = |V (G)|+6, |E(G′(e1, e2))| =
|E(G)| + 9 and |F (G′(e1, e2))| = |F (G)| + 3. Clearly, G′(e1, e2) ∈ P , since it is planar and 3-
connected. We show not only that ν(G) =

⌊
2m
9

⌋
, but also that there is always a face F in G such

that |E(F )| ≥ 4 and for which two non adjacent edges e1, e2 ∈ E(F ) do not belong to a maximum
cycle packing of G.

(i) This assertion is true for 8 ≤ m ≤ 16, since each of the graphs G2, . . . , G10 has a face
F such that |E(F )| ≥ 4 (shaded area) and for which two non adjacent edges e1, e2 ∈ E(F )
(dotted edges) do not belong to a maximum cycle packing of G (bold edges). In order to
use induction arguments, we assume, that it is true for some G ∈ PEm. Let ν(G) =

⌊
2m
9

⌋
and C(G) be a corresponding vertex-disjoint cycle packing. Clearly, G′(e1, e2) ∈ PEm+9,
since it is planar and 3-connected. For C1 = (s1, t1, w1, s1) and C2 = (s2, t2, w2, s2) the
set C(G′(e1, e2)) = C(G) ∪ {C1, C2} is a vertex-disjoint cycle packing of G′(e1, e2) with
|C(G′(e1, e2))| = ν(G) + 2 which is maximal, since

|C(G′(e1, e2))| ≤ ν(G′(e1, e2)) ≤
⌊

2(m+ 9)

9

⌋
= ν(G) + 2.

Moreover, e′1 = (u1, s1) and e′2 = (u2, s2) are two non adjacent edges of the boundary of the
same face F ′ ∈ G′. Since {e′1, (s1, w1), (w1, w2), (w2, s2), e′2} ∈ E(F ′).

(ii) Using the graphs Gi with i ∈ {2, 3, 5, 6, 8, 9} from Figure 1 the assertion holds for
graphs G ∈ PVn, 5 ≤ n ≤ 10. Performing the same induction arguments as in (i), we get
(ii).
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(iii) The graphs Gi with i ∈ {2, 4, 7} show that the assertion is true for G ∈ PVf , 5 ≤ f ≤
7. Again, we perform the same induction arguments as in (i) to get (iii).

With respect to the lower bound ν(G) ≥ 1 of a polyhedral graph G we remark

Remark 3.1. A wheel Wn on n ≥ 4 vertices is a graph with n vertices v1, . . . , vn with v1 having
degree n − 1 and all the other vertices having degree 3. The vertex v1 is adjacent to vertices, and
for i ∈ {2, . . . , n− 1}, vi is adjacent to vi+1, and vn is adjacent to v2.

• Obviously, ν(Wn) = 1. In [7] it is shown that for 3-connected planar graphs with more than
5 vertices wheels are the only graphs with ν(G) = 1.

• Since Wn is self-dual, Wn ∈ PVn ∩ PFn, n ≥ 4, i.e. wheel graphs Wn attain the minimum
cardinality of a maximum cycle packing in the classesPVn andPFf , n, f ≥ 4, respectively.

• As |E(Wn)| = 2(n− 1), Wn is also the graph that minimizes the cardinality of a maximum
cycle packing in the set PEm,m ≥ 6 and even m.

• To investigate PEm,m ≥ 11 and odd m we observe, that Wm+1
2
∈ PEm−1. Since v2, v3 are

adjacent in Wm+1
2

, there are two nonadjacent vertices vi, vj , different from v2, v3 and a path
P (vi, vj) ∈ Wm+1

2
not containing {v1, v2, v3}. We now define G ∈ PEm by

G = Wm+1
2
∪ {(vi, vj)}.

Then C1 = (v1, v2, v3, v1) and C2 = P (vi, vj) ∪ {(vi, vj)} are two vertex-disjoint cycles in
G, i.e. the minimal cardinality in this class is 2.

• In addition, ν(G) = 1 holds for G ∈ PE9 ∩ PV5 with Lemma 3.1.

4. Edge-disjoint cycle packings in polyhedral graphs

In the following section upper and lower bounds for the cardinality of maximum edge-disjoint
cycle packings are established. It is shown that in almost all cases they are sharp.

Lemma 4.1. For G ∈ P the following holds:

(i) max
{⌈

f
4

⌉
,
⌈
m+6

12

⌉
,
⌈
n+4

8

⌉}
≤ ν ′(G),

(ii) 1 ≤ ν ′(G) ≤ min
{
n− 2,

⌊
m
3

⌋
,
⌊

2(f−2)
3

⌋}
.

Proof. (i) Let G∗ be the dual graph of a plane drawing of G. G∗ is the graph drawn by
placing a new vertex inside each face of G and connecting these vertices in G∗ whenever the
corresponding two faces share an edge in G. As G is 3-connected, G∗ is simple and planar
and therefore, has an independent set S of vertices of size |S| ≥ f

4
. Hence, ν ′(G) ≥

⌈
|F (G)|

4

⌉
.

Moreover, f ≥ n+4
2

and f ≥ m+6
3

. By this immediately (i) follows.
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(ii) Obviously, 1 ≤ ν ′(G) holds, since f ≥ 4 for G ∈ P . Now, let ci = |{v ∈ G|δG(v) =
i}|, i ∈ {3, 4, 5, . . .} and ∆ := max{δG(v)|v ∈ V }. By c we denote the number of vertices
of odd degree. By the two facts that all cycles in G have at least a length of 3 and there are
at least 1

2
c edges that cannot belong to any maximum cycle packing it follows

ν ′(G) ≤
⌊
m− 1

2
c

3

⌋
≤

⌊
m

3

⌋
≤ n− 2.

More sophisticated, we get

m− 1

2
c =

1

2

 ∆∑
i=3,
i odd

ici +
∆∑

i=3,
i even

ici −
∆∑

i=3,
i odd

ci


=

1

2

(
∆∑
j=1

(2j + 1)c2j+1 +
∆∑
j=2

2jc2j −
∆∑
j=1

c2j+1

)

=
1

2

(
∆∑
j=1

2jc2j+1 +
∆∑
j=2

2jc2j

)
=

∆∑
j=1

jc2j+1 +
∆∑
j=2

jc2j

≤
∆∑
i=1

(i− 2)ci = 2m− 2n = 2(f − 2)

from which we conclude ν ′(G) ≤
⌊

2(f−2)
3

⌋
.

Remark 4.1. The graphs G ∈ PFf attaining the upper bound ν(G) =
⌊

2(f−2)
3

⌋
according to

Proposition 3.1, of course, attain the upper bound ν ′(G) =
⌊

2(f−2)
3

⌋
. This follows, since every

vertex-disjoint cycle packing of G induces an edge-disjoint cycle packing.

Again, we show that also the two other bounds in Lemma 4.1 are sharp for graphs in PEm and
PVn, respectively. More precisely we prove

Proposition 4.1. The following is true:

(i) for n = 6 or n ≥ 8 there is G ∈ PVn with ν ′(G) = n− 2,

(ii) for m ∈ {8, 11, 12, 13, 14} or m ≥ 16 there is G ∈ PEm with ν ′(G) =
⌊
m
3

⌋
.

Proof. For the proof induction arguments are used. For this we first consider the planar graph D,
drawn in Figure 3. Obviously, δD(u) = δD(v) = δD(w) = 2. For a planar graph G that contains
a triangle C = (ū, v̄, w̄, ū), which is also a face F of G, we define G′(ū, v̄, w̄) := G ⊕ D by
identifying the vertices {ū, v̄, w̄} with the vertices {u, v, w}, and embedding D into the interior of
the face F .

23



www.ejgta.org

On maximum cycle packings in polyhedral graphs | Peter Recht and Stefan Stehling

w

t

r
v

u

s

Figure 3. Graph D used for the iterative step in Proposition 4.1.

(i) We will show not only that ν ′(G) = |V (G)| − 2, but it also has a maximum edge-
disjoint cycle packing C, that contains a cycle C = (ū, v̄, w̄, ū), which is also a face F of
G. The assertion is true for n ∈ {6, 8, 10}. The corresponding graphs Gi with i ∈ {3, 7, 9}
are listed in Figure 4. In order to use induction arguments, let us assume that it is true for

f = 9, ν ′(G5) = 4
G5 : n = 7,m = 14,

f = 8, ν ′(G4) = 4
G4 : n = 7,m = 13,

f = 16, ν ′(G9) = 8

f = 5, ν ′(G1) = 2
G1 : n = 5,m = 8,

G9 : n = 10,m = 24,G8 : n = 9,m = 19,G7 : n = 8,m = 18,

f = 10, ν ′(G6) = 5
G6 : n = 8,m = 16,

f = 12, ν ′(G7) = 6 f = 12, ν ′(G8) = 6

f = 7, ν ′(G2) = 3
G2 : n = 6,m = 11, G3 : n = 6,m = 12,

f = 8, ν ′(G3) = 4

Figure 4. Plane drawings with ν′(G) = min
{
n− 2,

⌊
m
3

⌋
,
⌊
2(f−2)

3

⌋}
.

some G ∈ FVn, n ≥ 11, i.e. ν ′(G) = n − 2, and there is a maximum edge-disjoint cycle
packing C of G such that it contains a cycle C = (ū, v̄, w̄, ū), which is also a face F of G.
DefineG′ := G′(ū, v̄, w̄) = G⊕D. Clearly, G′ ∈ PVn+3, since it is planar and 3-connected.
Moreover, there is an edge-disjoint cycle packing C ′ of G′, given by

C ′ = C ∪ {u, s, t, u} ∪ {v, s, r, v} ∪ {w, r, t, w},

i.e. ν ′(G′) ≥ ν ′(G) + 3 = (|V (G)| − 2) + 3 = |V (G′)| − 2. With Lemma 4.1 ν ′(G′) =
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|V (G′)| − 2 follows. Moreover, each of the three additional cycles is the boundary of a face
of G′.

(ii) As before, we show not only that ν ′(G) =
⌊
|E(G)|

3

⌋
, but it also has a maximum edge-

disjoint cycle packing C, that contains a cycle C = (ū, v̄, w̄, ū), which is also a face F of
G. This is true for m ∈ {8, 11, 12, 13, 14, 16, 18, 19, 24}. Corresponding graphs are listed
in Figure 4. In order to use induction arguments, let us assume that it is true for some
G ∈ PEm,m ≥ 16, i.e. ν ′(G) =

⌊
m
3

⌋
, and there is a maximum edge-disjoint cycle packing

C of G such that it contains a cycle C = (ū, v̄, w̄, ū), which is also a face F of G. Again,
set G′ = G′(ū, v̄, w̄) = G ⊕ D. Clearly, G′ ∈ PEn+9, since it is planar and 3-connected.
Moreover, there is a maximum edge-disjoint cycle packing C ′ of G′, given by

C ′ = C ∪ {u, s, t, u} ∪ {v, s, r, v} ∪ {w, r, t, w},

i.e. ν ′(G′) ≥ ν ′(G) + 3 =
⌊
|E(G)|

3

⌋
+ 3 =

⌊
|E(G)|+9

3

⌋
=
⌊
|E(G′)|

3

⌋
. Again, ν ′(G′) =

⌊
|E(G′)|

3

⌋
follows. Moreover, each of the three additional cycles is the boundary of a face of G′.

Immediately we deduce

Corollary 4.1. There are infinitely many n ∈ N for which there is G ∈ PVn such that

ν ′(G) = n− 2 =

⌊
m

3

⌋
=

⌊
2(f − 2)

3

⌋
. (1)

Proof. An easy calculation shows, that (1) is true for the octahedron G ∈ PV6 ∩ PE12 ∩ PF8.
Using the construction scheme of the last proposition for induction we get that G′ ∈ PV |V (G)|+3 ∩
PE |E(G)|+9 ∩ PF |F (G)|+6, from which

ν ′(G′) = |V (G′)| − 2 =

⌊
|E(G′)|

3

⌋
=

⌊
2(|F (G′)| − 2)

3

⌋
follows.

Remark 4.2. The upper bounds in Proposition 4.1 with respect tom and n are not sharp in the cases
G ∈ PEm,m ∈ {6, 9, 10, 15} and G ∈ PVn, n ∈ {4, 5, 7}. This is true for m ∈ {6, 9, 10, 15},
because according to Lemma 4.1 a necessary condition for graphs G ∈ PEm,m ∈ {6, 9, 15} to
attain ν ′(G) =

⌊
m
3

⌋
is to be Eulerian. A necessary condition for G ∈ PE10 to attain ν ′(G) = 3 is

that it has most two vertices of odd degree. But these conditions are not satisfied: to realize this,
we first observe that G ∈ PE6 implies |V (G)| = 4 and G ∈ PE9 implies |V (G)| ∈ {5, 6}, respec-
tively. If G ∈ PE10 |V (G)| = 6 and for G ∈ PE15 implies |V (G)| ∈ {7, . . . , 10}. Investigation of
all cases show that

• a graph G ∈ PE10 has at least 4 vertices of odd degree,
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• a 3-connected Eulerian graph G with |V (G)| = 7, |E(G)| = 15 contains K3,3, hence it is
not planar,

• all remaining cases lead to graphs which are non-Eulerian.

A similar consideration shows that for the cases n ∈ {4, 5, 7} the bound n − 2 cannot be
attained by graphs G ∈ PVn. Graphs G ∈ PEm,m ∈ {6, 9, 10, 15} satisfying ν ′(G) =

⌊
m
3

⌋
− 1

and graphs G ∈ PVn, n ∈ {4, 5, 7} satisfying ν ′(G) = n− 3 are listed in Figure 5.

f = 10, ν ′(G4) = 4f = 4, ν ′(G1) = 1
G1 : n = 4,m = 6, G3 : n = 6,m = 10,

f = 6, ν ′(G3) = 2f = 6, ν ′(G2) = 2
G2 : n = 5,m = 9, G4 : n = 7,m = 15,

Figure 5. Plane drawings of Gi ∈ PEm for m ∈ {6, 9, 10, 15} with the property ν′(G) =
⌊
m
3

⌋
− 1.

For the lower bounds of the cardinality of maximum cycle packings we proof the following
result

Proposition 4.2. The following is true:

(i) for n ≥ 4 there is G ∈ PVn, such that ν ′(G) =
⌈
n+4

8

⌉
,

(ii) for m = 6 or m ≥ 8 there is G ∈ PEm, such that ν ′(G) =
⌈
m+6

12

⌉
,

(iii) for f ≥ 4 there is G ∈ PFf , such that ν ′(G) =
⌈
f
4

⌉
.

Proof. We first consider the planar graph S, drawn in the Figure 6. For a planar graph G that

v2u4

u3

u1

v3

v1

u2v4

Figure 6. Graph S used for the iterative step in Proposition 4.2.

contains a cycle C = (e1, e2, e3, e4), which is also a face F of G we define G′(e1, e2, e3, e4) :=
G⊕S by subdividing each of the four edges ei, identifying the additional vertices with the vertices
{v1, v2, v3, v4}, and embedding S into the interior of F .
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G8 : n = 9,m = 14,G7 : n = 8,m = 13,

G4 : n = 6,m = 10,

G10 : n = 10,m = 16,
f = 9, ν ′(G13) = 3
G13 : n = 12,m = 19,

f = 5, ν ′(G2) = 2
G2 : n = 5,m = 8,

f = 6, ν ′(G4) = 2

f = 7, ν ′(G7) = 2 f = 7, ν ′(G8) = 2f = 6, ν ′(G5) = 2

G11 : n = 11,m = 17,
f = 8, ν ′(G11) = 2f = 8, ν ′(G10) = 2

G5 : n = 7,m = 11,

G1 : n = 4,m = 6,
f = 4, ν ′(G1) = 1

G3 : n = 6,m = 9,
f = 5, ν ′(G3) = 2

G12 : n = 12,m = 18,
f = 8, ν ′(G12) = 2

G6 : n = 8,m = 12,
f = 6, ν ′(G6) = 2

G9 : n = 10,m = 15,
f = 7, ν ′(G9) = 2

Figure 7. Plane drawings with ν′(G) = max
{⌈

n+4
8

⌉
,
⌈
m+6
12

⌉
,
⌈
f
4

⌉}
.

(i) We show not only that ν ′(G) attains the bound, but also that in G exists at least one
face which is bounded by four edges. The assertion is true for n ∈ {4, 5, . . . , 12}. The
corresponding graphs Gi with i ∈ {1, 2, 3, 5, 6, 9, 10, 12} are listed in Figure 7.

In order to use induction arguments, let us assume that ν ′(G) =
⌈
n+4

8

⌉
is true for some

G ∈ FVn, n ≥ 4, and there is a maximum edge-disjoint cycle packing C of G such that it
contains a cycleC of length 4 which is also a face F ofG. Let (e1, e2, e3, e4) be the boundary
of F and set G′ = G′(e1, e2, e3, e4) = G ⊕ S. Clearly, G′ ∈ PVn+8, since it is planar and
3-connected.
Moreover, there is an edge-disjoint cycle packing C ′ of G′, given by

C ′ = C ∪ {(u1, u2, u3, u4)},

i.e. ν ′(G′) ≥ ν ′(G) + 1 =
⌈
|V (G)|+4

8

⌉
+ 1 =

⌈
|V (G′)|+4

8

⌉
. The additional cycle is, of course,

the boundary of a face F ′ of G′. It remains to show, that ν ′(G′) = ν ′(G) + 1.

Assume that is not the case. Then ν ′(G′) ≥ ν ′(G) + 2. Let C ′ be a corresponding maximum
cycle packing. At least two of the cycles in C ′ must contain edges of S. By the structure
of S exactly two cycles, say C1, C2 ∈ C ′, must have this property. Let v1, v2 ∈ V (C1) and
v3, v4 ∈ V (C2), respectively. With δS(vi) = 3, i ∈ {1, . . . , 4},

E(C) ∩ (E(C ′) \ {E(C1), E(C2)}) = ∅,

i.e. C ′ \ {C1, C2} ∪ C is an edge-disjoint cycle packing of G with cardinality of at least
ν ′(G) + 1, which contradicts ν ′(G) as cardinality of a maximum cycle packing of G. The
embedding of S guarantees that G′ has at least one face that is bounded by four edges.
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(ii) The proof is similar to (i). In this case we start with graphs G ∈ PEm,m ≥ 8 (the first
thirteen graphs are drawn in Figure 7) and observe that G′ ∈ PEm+12.

(iii) The proof is analogous to (i). We start with graphs G ∈ PFf , f ≥ 4 (the first four
graphs Gi with i ∈ {1, 2, 4, 7} are drawn in Figure 7) and observe that G′ ∈ PFf+4.

The following proposition shows that the number of graphs G ∈ P with predefined ν(G) is in
general large.

Proposition 4.3. Let k ≥ 1.

(i) For n satisfying k + 3 ≤ n ≤ 8k − 4 there is a non-Eulerian G ∈ PVn such that
ν ′(G) = k,

(ii) for m satisfying 3k + 3 ≤ m ≤ 12k − 6 there is a non-Eulerian G ∈ PEm such that
ν ′(G) = k,

(iii) for f satisfying
⌈

3k
2

⌉
+ 2 ≤ f ≤ 4k there is a non-Eulerian G ∈ PFf such that

ν ′(G) = k.

Proof. The proof is done by induction. For k = 1 the assertion holds with graph G1 from Figure 7
for (i), (ii) and (iii).

(i) Assume that the assertion holds for k ≥ 1. We have to show that it is also true for k+1,
i.e. that for all n with (k+ 1) + 3 ≤ n ≤ 8(k+ 1)− 4 there is non-Eulerian G ∈ PVn, with
ν ′(G) = k + 1. We distinguish between two cases:

(a) Let k + 4 ≤ n ≤ 8k − 4:
Then, for n′ := n − 1, we get k + 3 ≤ n′ ≤ 8n − 5. Hence, there is a non-Eulerian
G′ ∈ PVn′ and ν ′(G′) = k. Let C be a maximum cycle packing. There must be
e = (u, v) ∈ E(G′) such that e /∈ E(C ′). Let F be the face of G′ such that e ∈ E(F ).
DefineG := G′⊕K1,3 by embeddingK1,3 into the interior of F in such a way, that u, v
is identified with two of the vertices in K1,3 and the third vertex of K1,3 is identified
with an arbitrary vertex w ∈ V (F ) \ {u, v}. Obviously G ∈ PVn, G is non-Eulerian
and ν ′(G) = k + 1.

(b) Let 8k − 4 < n ≤ 8k − 4 + 8:

k =
8k

8
<
n+ 4

8
≤ 8k + 8

8
= k + 1,

i.e. in these cases
⌈
n+4

8

⌉
= k + 1. With Proposition 4.2, there is G ∈ PVn with

ν ′(G) = k + 1. Moreover, by construction of G in Proposition 4.2, G is non-Eulerian.

(ii) The proof is performed analogously to (i), but instead of n′ = n − 1 we here have to
consider m′ = m−3 and have to distinguish between the cases (a) 3k+3 ≤ m ≤ 6(2k−1)
and (b) 6(2k − 1) ≤ m ≤ 6(2(k + 1)− 1), respectively.
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(iii) We have to show that for
⌈

3(k+1)
2

⌉
+ 2 ≤ f ≤ 4(k + 1) the assertion holds. First, let

k be even, i.e. k + 1 ≥ 3 and
⌈

3(k+1)
2

⌉
+ 2 =

⌈
3k
2

⌉
+ 4. Again, we distinguish between

(a)
⌈

3k
2

⌉
+ 4 ≤ f ≤ 4k and (b) 4k < f ≤ 4k + 4. The same considerations as in (i) with

f ′ = f − 2 instead of n′ = n− 1 then proves the assertion.

Secondly, if k is odd, we get
⌈

3(k+1)
2

⌉
+ 2 =

⌈
3k
2

⌉
+ 3. Here, we distinguish between the

following two cases: (a) f =
⌈

3k
2

⌉
+ 3, i.e. f = 3k

2
+ 1

2
+ 3, from which k = 2(f−3)

3
−

1
3

=
⌊

2(f−3)
3

⌋
follows. Using Remark 4.1 there exists a non-Eulerian G ∈ PFf such that

ν ′(G) = k. For the remaining cases (b)
⌈

3k
2

⌉
+ 4 ≤ f ≤ 4k ≤ 4k+ 4 the proof is performed

as for the even case.

Remark 4.3. According to Remark 4.2, for the cases k = 4 or k ≥ 6 in Proposition 4.3

• in (i) even the sharper inequality k + 2 ≤ n ≤ 8k − 4 holds,

• in (ii) even the sharper inequality 3k ≤ m ≤ 6(2k − 1) holds.

Using G4 and G1 from Figure 4, the construction scheme from Proposition 4.3, moreover, yields
that

• for k ≥ 4 there is G ∈ PE3k+1 such that ν ′(G) = k,

• for k ≥ 2 there is G ∈ PE3k+2 such that ν ′(G) = k.
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